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Abstract

The article explores the study of approximation controllability in a particular subset of differential inclusion systems
that include non-instantaneous impulses in the Banach space X. By using non-linear alternatives for Kakutani map-
pings, semi-group theory, and fixed-point theorems. Our approach yields noteworthy conclusions. Furthermore, we
provide a concrete example to clarify how the suggested theoretical framework might be used in practice. An investiga-
tion of the concept of approximation controllability is crucial for comprehending the dynamics of a system, especially
in situations when attaining exact control is difficult. When we consider systems with impulses that do not happen
instantly, we face complexity that requires advanced mathematical techniques for a comprehensive examination. Our
study expands the theoretical comprehension of controllability in complex systems and provides valuable insights for
both theoretical investigation and practical applications in control theory.
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1 Introduction

Controllability represents a fundamental concept within mathematical control theory, serving as a pivotal informal
attribute of dynamical control systems. This notion holds paramount importance in the realm of control theory,
signifying the system’s capacity to transition from any given initial state to a desired final state through a set of
admissible controls. Specifically, approximate controllability entails guiding the system from a primary state to a
vicinity of the final state. Originally introduced by Kalman in 1960, the concept of controllability has since garnered
significant attention within the research community. Klamka conducted a comprehensive survey on the controllability
of dynamical systems, contributing to the elucidation of its principles. Additionally, Balachandran et al. extended the
understanding of controllability by establishing results applicable to non-linear systems situated in Banach spaces[12]-
[24]

The dynamics of various evolving processes often encounter blunt alterations, such as those induced by harvesting
activities or natural disasters. These events introduce short-term perturbations into the system, typically manifesting
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as impulses within a piecewise continuous framework. Within the literature, differential equations accommodating
such impulsive effects are categorized into two main types. Initially, there exist individuals typified by instantaneous
impulses, whereby the temporal extent of these alterations is markedly concise when juxtaposed with the overarching
time frame of the phenomenon. [18]. Secondly, there exist systems governed by non-instantaneous impulses [11, 22],
where the impulsive action commences at a predetermined fixed point and persists over a finite duration. M.Guo
et al. [10] and Benchohra et al.[5] have laid the groundwork for understanding instantaneous impulsive differential
equations. Simultaneously, Malik et al. [17] have advanced the understanding of second-order non-linear differential
equations incorporating non-instantaneous impulses, elucidating facets such as the existence, uniqueness, and stability
of solutions. Controllable impulsive differential inclusions have arisen as a versatile modelling apparatus spanning
diverse domains, encompassing physics, population dynamics, ecology, biological systems, biotechnology, industrial
robotics, pharmaceutics, and optimal control. Noteworthy scholarly interest has been directed towards abstract
functional differential equations and differential inclusions [1, 9, 14], with several authors elucidating controllability
results in both differential equations and inclusions [1, 9, 14, 16, 19, 21], as well as in integro-differential equations
and inclusions [4, 3, 15, 26, 27].

In light of the absence of literature addressing the approximate controllability for a specific category of differential
inclusion systems featuring non-instantaneous impulses, we endeavour to address this gap in knowledge. To this end,
we scrutinize the following impulsive differential inclusion model:

x′(l) ∈ Ax(l) +Bu(l) + F (l, x(l)), l ∈ (si, li+1], i = 1, 2, · · · ,m,

x(l+i ) = gi(l, x(l
−
i )), i = 1, 2, · · · ,m,

x(l) = gi(l, x(l
−
i )), l ∈ (li, si], i = 1, 2, · · · ,m, (1.1)

The framework under consideration involves an analytic semi-group {S(l) : l ≥ 0} of bounded linear operators on
a Banach space (X, ∥.∥x), where A serves as the infinitesimal generator of this semi-group. Here, the time interval
[0, T ] is discretized into subintervals [li, si] with 0 = l0 = s0 < l1 < s1 < l2 · · · · · · lm < sm < lm+1 = T < ∞. The
map F (l, x(l)) denotes a non-empty bounded, closed, and convex multi-valued function, while the control functions
u ∈ L2(J, U) are elements of a Banach space of admissible control functions, where J = (si, li+1]. Additionally, B
represents a bounded linear operator from the control space U to the Banach space X, and u(l) ∈ U represents the
control function. Furthermore, the presence of non-instantaneous impulses during the intervals (li, si] is characterized
by the function gi(l, x(l

−
i )), where i = 1, 2, · · · ,m. The functions f and gi are appropriately defined, with specific

definitions to be provided subsequently.

2 Preliminaries and assumptions

In the following paragraphs, we will outline the initial notions and essential terminology that are the foundation for
our future conversations. We are examining Banach spaces (X, ∥.∥x) and (Y, ∥.∥y). The notation £(Y,X) denotes the
Banach space comprising bounded linear operators from Y to X, endowed with its corresponding topology. Consider
A as the infinitesimal generator of an analytic semigroup {S(t) : t ≥ 0} consisting of bounded linear operators on X.
Additionally, let {ρ(A)} denote the spectrum of A, representing the set of complex values for which the linear operator
A admits a resolvent. Here, Br(x,X) signifies the closed ball centered at x with radius r ≥ 0 in the Banach space X.
Moreover, the Banach space C(J,X) denotes the collection of all continuous functions mapping the interval J to the
space X, equipped with the supremum norm,

∥x∥c = max
l∈J

∥x(l)∥, ∀x ∈ C. (2.1)

In the given scenario, where A acts as the infinitesimal generator of a statistical semi-group comprising of bounded
linear operators {S(l) : l ≥ 0} that operate on a separable Banach space X containing the norm ∥ · ∥X , it can be
proven that there exist non-negative constants M and ω that satisfy the inequality:

∥S(l)∥ ≤ Meωl, ∀ l ≥ 0. (2.2)

This signifies that the norm of the operators within the semi-group is bounded by an exponential function of time,
thereby demonstrating a fundamental property of the semi-group’s behaviour over time. Given that the semi-group
is bounded by M , denoted as ∥S(l)∥ ≤ M , and that 0 ∈ ρ(A), indicating the invertibility of the operator A, it follows



Approximate controllability of differential inclusion 3

that A constitutes a closed linear operator on its domain D(A) within the Banach space X [20]. Specifically, it holds
that

∥x∥ = ∥Ax∥ (2.3)

for every x belonging to the set D(A). In addition, the space (D(A), ∥ · ∥X) is a compact Banach space. The resolvent
operator R(λ,A) = (λI + A)−1 associated with A is characterized as compact. Here, we define the Banach space of
continuous functions equipped with a norm as C(J,X). Specifically, for all x ∈ C, where J represents the domain of
these functions, we express the norm ∥x∥c as follows:

∥x∥c = sup
l∈J

∥Ax(l)∥ (2.4)

Definition 2.1. A family of bounded linear operators W (l) indexed by l ∈ [0, T ] is designated as a resolvent operator
if it satisfies the following conditions:

1. Initialization: The operator W (0) equals the identity operator (I), and its norm is bounded by Keωl for some
non-negative K and real ω, where l ranges over the interval [0, T ].

2. Strong Continuity: For every x ∈ X, the operator W (l) exhibits strong continuity with respect to l over the
interval I.

3. Controllability Operator Grammian: The resolvent operatorW (l) is defined as the integral
∫ l

0
S(l − s)BB∗S∗(l − s)ds,

where S, B, and X represent relevant operators and spaces in the context of the problem.

Proposition 2.2. The family of bounded linear operator W (l) is continuous for all l > 0 is the uniform operator
topology of £(X,X).

Proposition 2.3. The family of bounded linear operator AW (l) is continuous for all l > 0 is the uniform operator
topology of £(X,X).

Definition 2.4. A multi-valued map F : (J×X) → 2X is termed Carathéodory if it satisfies the following conditions:

1. Measurability: For each x ∈ X, the mapping F (l, x(l)), where l varies, is measurable with respect to l.

2. Upper Semi-Continuity (u.s.c.): For each l ∈ J , the mapping F (l, x(l)), where x varies, is upper semi-continuous
with respect to x.

3. Non-emptiness: For each fixed x ∈ C(J,X), the set SF,x defined as v ∈ L1(J,X) : v(l) ∈ F (l, x(l)) for almost
every l ∈ J is non-empty.

Let us consider a linear continuous mapping denoted as ℘, which operates from the space L1(J,X) to C(J,X).
Then, we define an operator as ℘ ⊖ SF : C(J,X) → ℘(C(J,X)), where for each x, x → ℘ ⊖ SF (x) := ℘(SF,x). This
operator is characterized by a closed graph.

Theorem 2.5. The linear operator S(l − si) is characterized as an evolution operator. Furthermore, if S(l, s0) is
compact for every l ∈ [0, l1], then it follows that S(l, si) remains compact for all li ≤ si ≤ li+1, where s0 = l0 = 0.

Theorem 2.6. (Non-linear alternative for Kakutani maps) Consider a Banach space X and a closed, convex subset
Y ⊆ X. Let J ×X be an open subset of Y containing the origin 0 ∈ J ×X. Suppose ϕ : J ×X → 2Y is an upper
semi-continuous mapping, where 2Y denotes the collection of nonempty, compact convex subsets of Y . Then, the
theorem states that either:

1. ϕ possesses a fixed point in J ×X, or

2. There exist v ∈ ∂(J ×X) and λ ∈ (0, 1) such that v ∈ λϕ(v).

Definition 2.7. A multi-valued map Γ is termed upper semi-continuous (u.s.c.) on X provided that for each x ∈ X,
the set Γ(x, l) is a non-empty closed subset of X. Additionally, for any open set C in X containing Γ(x, l), there exists
an open neighborhood N of x0 such that Γ(N) is a subset of C.

Definition 2.8. The function set Γ is said to be totally continuous if the image of every bounded subset C of X
under Γ is reasonably compact. If the non-empty multivalued map Γ(x, l) is entirely continuous, then Γ(x, l) is upper
semi-continuous (u.s.c.) if and only if Γ has a closed graph. This implies that if two sequences {xn} and {ϕn} converge
to x and ϕ respectively as n approaches infinity, and if {ϕn} belongs to the set Γxn(l), then ϕ belongs to the set Γx(l).
If there exists an element x in the set X such that x is a fixed point of the function Γ, then Γ has a fixed point.
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The set PC([0, T ], X) is defined as the collection of functions x : [0, T ] → X that are continuous on each open
interval (li, li+1].For any i in the range 0 to m, the following condition must hold: there are limits x(l−i ) and x(l+i )
such that x(l−i ) = x(li).

Definition 2.9. A function x(l) ∈ PC([0, T ], X) is said to be a mild solution of system (6.3) if

1. x(0) = x0, for all l ∈ [0, l1].

2. x(l+i ) = gi(l, x(l
−
i )), for all l ∈ (li, si], i = 1, 2, · · · ,m.

3. There exist a function f ∈ L1(J,X) such that f(l) ∈ F (l, x(l)) on J and

x(l) =S(l)x0 +

∫ l

0

S(l − τ)f(τ, x(τ))dτ +

∫ l

0

S(l − τ)Bu(τ)dτ, l ∈ [0, l1],

x(l) =S(l − si)gi(si, x(l
−
i )) +

∫ l

si

S(l − τ)f(τ, x(τ))dτ +

∫ l

si

S(l − τ)Bu(τ)dτ, l ∈ (si, li+1],

x(l) =gi

(
l, S(li − si−1)gi(si−1, x(l

−
i−1)) +

∫ li

si−1

S(li − τ)f(τ, x(τ))dτ +

∫ li

si−1

S(li − τ)Bu(τ)dτ
)
, l ∈ (li, si−1].

(2.5)

Definition 2.10. System (6.3) is approximately controllable on J if R(T, ϕ) is dense in X. Where

R(T, ϕ) = {x(T, ϕ, u) : u ∈ L2(J, U)} (2.6)

x(T, ϕ, u) is mild solution of (6.3). We obtain the results, we introduce the set of resolvent operators and control
operator Grammian is defined on X and the basic assumption on these operators :

1. Γ
li+1
si =

∫ li+1

si
S(li+1 − s)BB∗S∗(li+1 − s)ds.

2. R(λ,Γ
li+1
si ) = (λI + Γ

li+1
si )−1.

where B∗ and S∗(.) are the adjoint operators of the B and S(.) respectively. We also assume that the operator

R(λ,Γ
li+1
si ) satisfies the following hypothesis:

(V): λR(λ,Γ
li+1
si ) → 0 as λ → 0+ in the strong operator topology.

Hypothesis (V) holds if and only if the linear system (6.3) is approximately controllable on [0, T ].

3 Controllability for non-linear system

In this portion, we establish adequate criteria for the approximation controllability of a specific category of dif-
ferential inclusions, expressed as equation (6.3), within Banach spaces. To accomplish this, we utilise the non-linear
option offered by the Kakutani maps fixed point theorem. To provide evidence for our findings, we depend on the
following hypotheses:

(V1): S0(l), l > 0 is compact.

(V2): For B is bounded linear operator from U to X and MB > 0 then ∥B∥ = MB .

(V3): For each positive number r and each x belonging to the set C such that ∥x∥C ≤ r, we require the existence of a
function Lf,r(.) in L1(J,R+) satisfying the condition:

sup{∥f∥ : f(l) ∈ F (l, x(l))} ≤ Lf,r(l), for l ∈ J.

Here, J = (si, li+1], where i ranges over non-negative integers.

(V4): The function si → Lf,r(si) ∈ L1(J,R+), and there exists a γ > 0, such that

lim
n→∞

∫ l

si
Lf,r(s)ds

r
= γ < +∞.

(V5): There exists a positive constant Lgi such that

∥gi(l, x)− gi(l, y)∥ ≤ Lgi∥x− y∥,



Approximate controllability of differential inclusion 5

for all x, y ∈ X and l ∈ [li, si], i = 1, 2, · · ·m Also, there exists a positive constant Li, i = 1, 2, · · · ,m such that

∥gi(l, x)∥ ≤ Li, ∀ l ∈ J, x ∈ X,

Here, Li is denoted as the impulsive constant. The claim posits that the system described by equation (6.3) exhibits
approximate controllability under the condition that, for every λ > 0, there exists a continuous function denoted as
x(·) such that

x(l) =S(l − si)gi(si, x(l
−
i )) +

∫ l

si

S(l − τ)f(τ, x(τ))dτ +

∫ l

si

S(l − τ)Bu(τ)dτ l ∈ (si, li+1].

u(l) =B∗S∗(li+1 − si)R(λ,Γli+1
si )p(x(l)),

where

p(x(l)) = x(li+1)− S(li+1 − si)gi(si, x(l
−
i )) +

∫ li+1

si

S(li+1 − τ)f(τ, x(τ))dτ. (3.1)

Theorem 3.1. Suppose that the hypotheses (V 1)− (V 5) are satisfied. Assume also

M

[
1 +

M2M2
BT

γ

]
< 1· (3.2)

where ∥B∥ = MB , then system (6.3) has a solution on X.

Proof . In this section, our main focus is to delineate conditions conducive to the solvability of system (6.3) for λ > 0.
We aim to illustrate that through the utilization of the control u(x, l), the operator Γ : C → 2C is defined as follows:

Γ(x) = {ϕ ∈ C : ϕ(l) = S(l − si)gi(si, x(l
−
i )) +

∫ l

si

S(l − τ)f(τ, x(τ))dτ +

∫ t

si

S(l − τ)Bu(τ)dτ},

for l ∈ (si, li+1], i = 0, 1, 2, · · · ,m, and f ∈ SF,x, where SF,x represents the controllability operator Grammian. This
operator Γ guarantees the existence of a fixed point x(l), which serves as a mild solution of system (6.3). To establish
that Γ fulfills all prerequisites outlined in Theorem (2.3), we delineate the proof into six distinct steps.

Step 1. Convexity of Γ for each x ∈ C: Given ϕ1 and ϕ2 belonging to Γ(x), there exist f1 and f2 from SF,x

such that for every t ∈ J , we can express the following:

ϕi(l) = S(l − si)gi(si, x(l
−
i )) +

∫ l

si

S(l − τ)fi(τ, x(τ))dτ +

∫ l

si

S(l − τ)Bu(τ)dτ, i = 1, 2.

Let λ ∈ (0, 1) and for all l ∈ J , we get

λϕ1(l) + (1− λ)ϕ2(l) =S(l − si)gi(si, x(l
−
i )) +

∫ l

si

S(l − si)[λf1(si, x(si))(1− λ)f2(si, x(si))]ds

+

∫ l

si

S(l − si)BB∗S∗(li+1 − si)R(λ,Γli+1
si )[x(li+1)− S(li+1 − si)gi(si, x(l

−
i ))

+

∫ l

si

S(li+1 − si)[λf1(si, x(si)) + (1− λ)f2(si, x(si))]ds]ds.

The convexity of SF,x is readily apparent due to the convex nature of the values assumed by the function F . Hence,
we have:

λf1(si, x(si)) + (1− λ)f2(si, x(si)) ∈ SF,x.

Consequently,
(λϕ1(l) + (1− λ)ϕ2(l)) ∈ Γ(x), l ∈ J.

Step 2. Let Br(x,X) be the set of elements x in X such that ∥x∥PC < r, where r is a positive number. Therefore,
it may be concluded that Br is a set that is both bounded, closed, and convex within the set C. Our claim is that
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there is a positive number r for which the set of all points within a distance r from a given point, denoted by Γ(Br),
is completely contained within the set Br. Assume that this statement is false. For any positive number r, there is a
function xr in Br, but Γ(x)

r is not in Br, meaning that

∥xr∥C = sup{∥ϕr∥C : ϕr ∈ (Γ(xr))} > r.

ϕr(l) = S(l − si)gi(si, x(l
−
i )) +

∫ l

si

S(l − s)fr(s, x(s))ds+

∫ l

si

S(l − s)Bur(s)ds.

some fr(. , .) ∈ SF,x.

r <∥Γ(xr(l))∥ ≤ ∥S(l − si)gi(si, x(l
−
i ))∥+

∫ l

si

∥S(l − s)fr(s, x(s))ds∥+
∫ l

si

∥S(l − s)Bur(s)ds∥.

<∥Γ(xr(l))∥ ≤ ∥S(l − si)∥∥gi(si, x(l−i ))∥+
∫ l

si

∥S(l − s)∥∥fr(s, x(s))∥∥ds∥

+

∫ l

si

∥S(l − s)∥∥B∥∥ur(s)∥∥ds∥.

<

[
MLgi +M

∫ l

si

Lfr(s)ds

]
+

1

λ
M2M2

B

[
∥x(l)i+1∥+ ∥S(li+1 − si)∥∥gi(si, x(l−i ))∥

+

∫ l

si

∥S(li+1 − s)∥∥f(s, x(s))∥ds∥
]
∥ds∥

<

[
MLgi +M

∫ l

si

Lfr(s)ds

]
+

1

λ
M2M2

B

[
∥x∥+MLgi +M

∫ l

si

Lfr(s)ds

]
.

By dividing both sides of the inequality by r and taking the limit as r → ∞ using V4, we obtain:

Mγ

[
1 +

1

λ
M2M2

BT

]
≥ 1.

This contradicts condition (3.19). Therefore, there exists some r > 0 such that Γ(Br) ⊆ Br.

Step 3. The operator Γ demonstrates the property of mapping bounded sets to equicontinuous sets within C. For
any given x ∈ Br and ϕ ∈ Γ(x), there exists an f ∈ SF,x such that

ϕ(l) = S(l − si)gi(si, x(l
−
i )) +

∫ l

si

S(l − s)f(s, x(s))ds+

∫ l

si

S(l − s)Bu(s)ds, l ∈ (si, li+1]

Let 0 < ε < 0 and 0 < si < li+1 ≤ T then

∥ϕ1(l)− ϕ2(l)∥ =∥[S(l1 − si)− S(l2 − si)]gi(si, x(l
−
i ))∥+ ∥

∫ l1−ε

si

[S(l1 − si)− S(l2 − si)]f(s, x(s))ds∥

+ ∥
∫ l1

l1−ε

[S(l1 − si)− S(l2 − si)]f(s, x(s))ds∥+ ∥
∫ l2

l1

S(l2 − si)f(s, x(s))ds∥

+ ∥
∫ l1−ε

si

[S(l1 − si)− S(l2 − si)]Bu(s)ds∥

+ ∥
∫ l1

l1−ε

[S(l1 − si)− S(l2 − si)]Bu(s)ds∥+ ∥
∫ l2

l1

S(l2 − si)Bu(s)ds∥

≤∥S(l1 − si)− S(l2 − si)∥Lgi +

∫ l1−ε

si

∥S(l1 − si)− S(l2 − si)∥fr(s)ds

+

∫ l1

l1−ε

∥S(l1 − si)− S(l2 − si)∥fr(s)ds+M

∫ l2

l1

fr(s)ds

+MB

∫ l1−ε

si

∥S(l1 − si)− S(l2 − si)∥∥u(s)∥ds

+MB

∫ l1

l1−ε

∥S(l1 − si)− S(l2 − si)∥∥u(s)∥ds+MMB

∫ l2

l1

∥u(s)∥ds.
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As (l1 − l2) → 0 and ε becomes sufficiently small, the right-hand side of the expression tends to zero regardless
of x ∈ Br. This phenomenon arises from the compactness exhibited by the operator S(l, s), guaranteeing continuity
within the uniform operator topology. As a result, Γ(xr) systematically transforms Br into an equicontinuous array
of functions.

Step 4. Consider the set G(l) = {ϕ(l) : ϕ ∈ Γ(Br)}, which is deemed pre-compact within the spaceX. Let l ∈ (si, li+1]
be fixed, and let ϵ denote a real number satisfying si < ϵ < li+1 ≤ T for x ∈ Br. Our objective is to establish that
Γ(x) systematically maps Br into a pre-compact set within X. We define

ϕϵ(l) = S(l − si − ϵ)gi(si, x(l
−
i )) +

∫ l−ϵ

si

S(l − s− ϵ)f(s, x(s))ds+

∫ l−ϵ

si

S(l − s− ϵ)Bu(s)ds.

Since S(l, s) is a compact operator, the set Yϵ(l) = {Γx(l) : x ∈ Br} is pre-compact in X for every ϵ, where
si < ϵ < li+1. Moreover, for every x ∈ Br we have:

∥ϕ(l)− ϕϵ(l)∥ ≤ M

∫ l−ϵ

si

fr(s)ds+MMB

∫ l−ϵ

si

∥u(s)∥ds.

Hence, there exist relatively compact sets in proximity to the set Yϵ(l) = {Γx(l) : x ∈ Br}. This implies that the
set Y (l) = {Γx(l) : x ∈ Br} is compact within X, thereby affirming the completeness of the operator Γ.

Step 5. The operator Γx(l) exhibits upper semi-continuity (u.s.c.) if and only if Γ possesses a closed graph, i.e.,
if {xn} → x as n → ∞ and {ϕn} ∈ Γxn(l), then ϕn → ϕx(l) as n → ∞. To demonstrate that ϕ ∈ Γx(l), we establish
the existence of fn ∈ SF,xn

such that

ϕn(l) =S(l − si)gi(si, x(l
−
i )) +

∫ l

si

S(l − si)fn(si, x(si))ds

+

∫ l

si

S(l − si)BB∗S∗(li+1 − si)R(λ,Γli+1
si )[x(li+1)− S(li+1 − si)gi(si, x(l

−
i )) +

∫ l

si

S(li+1 − s)fn(s, x(s))ds]ds.

We must proof that there exist a f ∈ SF,x such that

ϕ(l) =S(l − si)gi(si, x(l
−
i )) +

∫ l

si

S(l − si)f(si, x(si))ds

+

∫ l

si

S(l − si)BB∗S∗(li+1 − si)R(λ,Γli+1
si )

[
x(li+1)− S(li+1 − si)gi(si, x(l

−
i )) +

∫ l

si

S(li+1 − s)f(s, x(s))ds

]
ds.

Control sequence uxn
(l) → ux(l) as n → ∞ and l ∈ (si, li+1]. Then

ux(l) = B∗S∗(li+1 − si)
[
x(li+1)− S(li+1 − si)gi(si, x(l

−
i ))
]

clearly, we have
∥fn(l)− f(l)∥ → 0. as n → ∞.

∥uxn(l)− ux(l)∥ → 0. as n → ∞.

Hence
∥ϕn(l)− ϕ(l)∥ → 0. as n → ∞.

Consider the operator ℘ : L1(J,X) → C,

(℘f)(l) =

∫ l

si

S(l − s)

[
f(s)−BB∗S∗(li+1 − si)

(∫ li+1

si

S(li+1 − si)f(s)ds

)
(s)

]
ds.

The operator ℘ is linear and continuous. it follows that (℘f)(l) is a closed graph operator. Moreover,[
ϕn(l)− S(l − si)gi(si, x(l

−
i ))−

∫ l

si

S(l − si)fn(si, x(si))ds−
∫ l

si

S(l − si)BB∗S∗(li+1 − si)

R(λ,Γli+1
si )

[
x(li+1)− S(li+1 − si)gi(si, x(l

−
i )) +

∫ l

si

S(li+1 − s)fn(s, x(s))ds

]
ds

]
∈ ℘(SF,xn

)
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Then the sequence {xn} → x as n → ∞. It follows that

(ϕ(l)− S(l − si)gi(si, x(l
−
i ))−

∫ l

si

S(l − si)f(si, x(si))ds−
∫ l

si

S(l − si)BB∗S∗(li+1 − si)R(λ,Γli+1
si )

[x(li+1)− S(li+1 − si)gi(si, x(l
−
i )) +

∫ l

si

S(li+1 − s)f(s, x(s))ds]ds) ∈ ℘(SF,x)

Consequently, the operator Γx(l) satisfies the condition of possessing a closed graph. Therefore, Γ exhibits a closed
graph.

Consequently, all the steps, coupled with the Arzela-Ascoli theorem, are duly satisfied. Hence, we can infer that Γ
admits a fixed point x(t), which serves as a mild solution to system (1.2). □

Theorem 3.2. Let X denote a Banach space, and let F represent a bounded subset of L1[(si, li+1), X]. The equicon-
tinuity of F holds if and only if F constitutes a relatively compact subset of L1[(si, li+1), X], equipped with the weak
topology.

Theorem 3.3. Suppose all the given assumptions hold. Then, there existsK∗ ∈ L1(J,R+) such that supx∈X ∥F (l, x)∥ ≤
K∗(l) for almost every l ∈ (si, li+1], where i = 0, 1, 2, · · · ,m. Consequently, the non-linear differential inclusion (1.2)
is approximately controllable on (si, li+1] for each i.

Proof . Let x℧ denote a fixed point of Γ within Br. According to the above theorem, any fixed point of Γ serves
as a mild solution of (1.2) within the framework of the approximate control system utilizing the impulse condition, then

u℧(l) = B∗S∗(li+1 − si)R(λ,Γli+1
si )p(x℧(l)).

and satisfies the following
x℧(li+1) = x(li+1) + λR(λ,Γli+1

si )p(x℧(l)).

Moreover, leveraging the assumption regarding F (x, l) and the Dunford-Pettis Theorem, we can establish the
existence of a subsequence denoted as {f℧(s)} that exhibits weak compactness within L1((si, li+1), X). Consequently,
there emerges a subsequence, also labeled {f℧(s)}, which weakly converges to, for instance, f(s) in L1((si, li+1), X).
Defined

H = x(li+1)− S(li+1 − si)gi(si, x(l
−
i ))−

∫ li+1

si

S(li+1 − τ)f(τ, x(τ))dτ.

We take norm of

∥p(x℧(l)−H∥ =∥
∫ li+1

si

S(li+1 − si)

[
f(si, x

℧(si))− f(si, x(si))

]
dsi∥

≤ sup
l∈(si,li+1]

∥
∫ l

0

S(l − si)

[
f(si, x

℧(si))− f(si, x(si))

]
dsi∥.

By using the Ascoli-Arzela theorem, one can show that an operator

ℓ(.) →
∫ α

0

S(α− si)ℓ(si)dsi : L
1((si, li+1), X) → C

is a compact. now we implies that ∥p(x∗(l)−H∥ → 0 as λ → 0. Then, we get

∥x℧(li+1)− x(li+1)∥ ≤∥λR(λ,Γli+1
si )(H)∥+ ∥λR(λ,Γli+1

si )∥∥p(x℧(l)−H∥
≤∥λR(λ,Γli+1

si )(H)∥+ ∥p(x∗(l)−H∥.

If the given condition (V1) satisfied then the above line ∥x℧(li+1) − x(li+1)∥ → 0 as λ → 0. Hence proved that
problems (1.2) is approximate controllability of differential inclusion with non-instantaneous impulses. □
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4 Non-local problems

The investigation of non-local Cauchy problems holds significant relevance due to their prevalence in various
physical phenomena. Byszewski [6] is credited as the pioneering scholar to delve into the examination of non-local
initial value problems. Consideration is directed towards a specific class of controllable non-local differential inclusion
problems characterized by non-instantaneous impulses. This can be succinctly represented by the following system of
equations:

x′(l) ∈ Ax(l) +Bu(l) + F (l, x(l)), l ∈ (si, li+1], i = 1, 2, . . . ,m,

x(l+i ) = gi(l, x(l
−
i )), l ∈ (li, si], i = 1, 2, . . . ,m,

x(l) = x0 + q(x). (4.1)

In this formulation, the dynamics of the system are governed by a differential inclusion involving matrices A and
B, along with a function F (l, x(l)). Additionally, the system incorporates impulses at specific time points li, where the
behaviour of the solution x(l) undergoes a prescribed transition represented by gi(l, x(l

−
i )). Furthermore, the initial

condition x0 is augmented by a term q(x), contributing to the overall state x(l).

[(V6):] Given a continuous function q : ([0, T ], X) → X, it is asserted that there exists a positive constant Kq

such that
∥q(x)− q(y)∥ ≤ Kq∥x− y∥.

To establish the approximate controllability of the system (4.1), it is required to demonstrate the existence of a
continuous function x(·) for all λ > 0, satisfying the following relations:

x(l) = S(l − si)gi(si, x(l
−
i )) +

∫ l

si

S(l − τ)f(τ, x(τ))dτ +

∫ l

si

S(l − τ)Bu(τ)dτ, l ∈ (si, li+1],

u(l) = B∗S∗(li+1 − si)R(λ,Γli+1
si )p(x(l)),

where

p(x(l)) = x(li+1)− S(li+1 − si)gi(si, x(l
−
i )) +

∫ li+1

si

S(li+1 − τ)f(τ, x(τ))dτ. (4.2)

Here, S(·) denotes the semi-group generated by A, B∗ represents the ad-joint operator of B, and R(λ,Γ
li+1
si ) is a

certain operator determined by parameters λ and the evolution operator Γ
li+1
si .

Definition 4.1. A function x(l) ∈ PC([0, T ], X) is termed a mild solution of system (4.1) under the following
conditions:

1. At the initial time l = 0, the function satisfies x(0) = x0 + q(x) for all l in the interval [0, l1].
2. Across each interval (li, si], the function adheres to the constraint x(l+i ) = gi(l, x(l

−
i )) for i = 1, 2, . . . ,m.

3. There exists a function f ∈ L1(J,X) such that f(l) ∈ F (l, x(l)) on J , and the function x(l) satisfies the following
integral equations:

x(l) = S(l)(x0 + q(x)) +

∫ l

0

S(l − τ)f(τ, x(τ))dτ +

∫ l

0

S(l − τ)Bu(τ)dτ, l ∈ [0, l1],

x(l) = S(l − si)gi(si, x(si)) +

∫ l

si

S(l − τ)f(τ, x(τ))dτ +

∫ l

si

S(l − τ)Bu(τ)dτ, l ∈ (si, li+1],

x(l) = gi

(
l, S(li − si−1)gi(si−1, x(si−1)) +

∫ li

si−1

S(li − τ)f(τ, x(τ))dτ +

∫ li

si−1

S(li − τ)Bu(τ)dτ
)
, l ∈ (li, si−1].

Theorem 4.2. Assuming that hypotheses (V 1)− (V 6) hold, along with the additional condition

M

[
1 +

M2M2
BT

γ

]
< 1· (4.3)

we can conclude that the system (4.1) admits a solution on X.

Proof . The proof methodology for establishing the existence of a solution to the non-local controllable differential
inclusion system (4.1) mirrors that of system (6.3). □
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5 Integro-differential equation

In this section, we examine an approximate control system characterized by an integro-differential inclusion within
the domain:

x′(l) ∈ Ax(l) +Bu(l) + F (l, x(l)) +

∫ l

0

k(l − s)h(s, x(s))ds, l ∈ (si, li+1], i = 1, 2, . . . ,m,

x(l+i ) = gi(l, x(l
−
i )), l ∈ (li, si], i = 1, 2, . . . ,m,

x(l) = x0. (5.1)

This formulation describes the evolution of the system over intervals (si, li+1], where A and B represent matrices
governing the dynamics, F (l, x(l)) signifies a function of l and x(l), and k(l− s)h(s, x(s)) captures the influence of an
integral term over the interval. The system also incorporates transitions at specific times li, where the behaviour of
the solution x(l) is governed by gi(l, x(l

−
i )). Furthermore, the initial condition is denoted by x0.

(V7): It is assumed that the function h : (J × X) → X is continuous, with a positive constant Lh satisfying the
inequality:

∥h(l, x1)− h(l, x2)∥ ≤ Lh∥x1 − x2∥.
(V8): The function K : J → C is continuous such that

kT =

∫ T

0

∥k(s)∥ds.

where C is set of continuous functions. We aim to demonstrate the approximate controllability of system (5.1).
For any given λ > 0, the system is considered approximately controllable if there exists a continuous function
x(l) satisfying the following equations:

x(l) = S(l − si)gi(si, x(l
−
i )) +

∫ l

si

S(l − τ)f(τ, x(τ))dτ +

∫ l

si

S(l − τ)Bu(τ)dτ

+

∫ l

si

S(l − τ)

[∫ l

0

k(l − s)h(s, x(s))ds

]
dτ, l ∈ (si, li+1].

u(l) = B∗S∗(li+1 − si)R(λ,Γli+1
si )p(x(l)),

where

p(x(l)) = x(li+1)− S(li+1 − si)gi(si, x(l
−
i ))−

∫ li+1

si

S(li+1 − τ)f(τ, x(τ))dτ

−
∫ li+1

si

S(li+1 − τ)

[∫ l

0

k(l − s)h(s, x(s))ds

]
dτ.

Definition 5.1. A function x(l) ∈ PC([0, T ], X) is deemed a mild solution of system (5.1) if it satisfies the
following conditions:

(a) x(0) = x0 holds for all l within the interval [0, l1].
(b) At each transition time li, the function adheres to the constraint x(l+i ) = gi(l, x(l

−
i )) for i = 1, 2, . . . ,m.

(c) There exists a function f ∈ L1(J,X) such that f(l) ∈ F (l, x(l)) on J and

x(l) =S(l)x0 +

∫ l

0

S(l − τ)f(τ, x(τ))dτ +

∫ l

0

S(l − τ)Bu(τ)dτ

+

∫ l

0

S(l − τ)

[ ∫ l

0

k(l − s)h(s, x(s))ds

]
dτ, l ∈ [0, l1],

x(l) =S(l − si)gi(si, x(si)) +

∫ l

si

S(l − τ)f(τ, x(τ))dτ +

∫ l

si

S(l − τ)Bu(τ)dτ

+

∫ l

si

S(l − τ)

[ ∫ l

0

k(l − s)h(s, x(s))ds

]
dτ, l ∈ (si, li+1],
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x(l) =gi

(
l, S(li − si−1)gi(si−1, x(si−1)) +

∫ li

si−1

S(li − τ)f(τ, x(τ))dτ

+

∫ li

si−1

S(li − τ)Bu(τ)dτ +

∫ l

si

S(l − τ)

[ ∫ l

0

k(l − s)h(s, x(s))ds

]
dτ

)
, l ∈ (li, si−1].

Theorem 5.2. Suppose that the hypotheses (V 1) − (V 5) and (V 7) − (V 8) are satisfied.Then the system (5.1) is
approximately controllable on z. Assume also

M

[
1 +

M2M2
BT

γ

]
< 1· (5.2)

then the system (5.1) has a solution on X·.

Proof . The proof of controllable integro-differential inclusion system is same as system (6.3). □

6 Application

Let us now consider the heat flow problem in finite length with using non-instantaneous impulse condition of the
following :

∂

∂l
Z(l, y) ∈ ∂2

∂y2
Z(l, y) + b(y)W (l, y) + F (l, Z(l, y)), y ∈ (0, π), l ∈ (2i, 2i+ 1], i ∈ {0} ∪ N,

Z(l, 0) = 0, l ∈ [0, T ], 0 < T < ∞,

Z(l, π) = 0, l ∈ [0, T ], (6.1)

Z(l, y) = (sin il)Z((2i− 1)−, y), l ∈ (2i− 1, 2i], i = 1, 2, · · · ,m,

Z(0, y) = x0 y ∈ (0, π),

Consider a domain defined by 0 = l0 = s0 < l1 < s1 < l2 · · · < lm < sm < lm+1 = T . Within this domain, let
Z(l, y) denote the temperature at point y at time l. Additionally, let {F (l, x) : (2i, 2i + 1] × X → 2X} represent a
non-empty, bounded, closed, and convex multivalued mapping. The function space X is characterized by X = L2[0, π].
We define the operator A as follows:

Ax = x′′,

where the domain D(A) is specified as:

D(A) = {x ∈ X : x′′ ∈ X and x(0) = x(π) = 0}. (6.2)

The operator A engenders a strongly continuous semi-group {S(l) : l ≥ 0} distinguished by traits of compactness,
analyticity, and self-adjointness. Additionally, A manifests a discrete spectrum, characterized by eigenvalues denoted

as {λn = n2 : n ∈ N}, alongside corresponding normalized eigenvectors ηn(x) =
√

2
π sin(nx). The semi-group {S(l)}

possesses certain pertinent properties:

(i) For x ∈ D(A), the action of A on x is expressed as

Az =

∞∑
n=1

n2⟨x, ηn⟩ηn.

(ii) For all x ∈ X, the semi-group S(l) acts on x as

S(l)x =

∞∑
n=1

e−n2l⟨x, ηn⟩ηn,

wherein S(l) is uniformly stable, and ∥S(l)∥L2[0,π] ≤ e−l holds particularly true. These properties delineate funda-
mental aspects of the behaviour and structure of the semi-group generated by the operator A, contributing to its
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mathematical characterization and analytical significance. Consider the linear operator B belonging to the space of
bounded linear operators from a Banach space U to a Hilbert space X, denoted as L(U,X). The operator B is defined
as follows:

Bu(l)(y) = b(y)W (l, y), 0 < y < π, b(y) ∈ L2(0, π).

Equation (6.1) can be equivalently represented as an abstract equation in the Hilbert space X = L2(0, π):
x′(l) ∈ Ax(l) +Bu(l) + F (l, x(l)), l ∈ (si, li+1], i = 1, 2, · · · ,m,
x(l+i ) = gi(l, x(l

−
i )), i = 1, 2, · · · ,m,

x(l) = gi(l, x(l
−
i )), l ∈ (li, si], i = 1, 2, · · · ,m,

(6.3)

Let x(l) = Z(l, ·), where x(l)(y) = Z(l, y) for y ∈ (0, π). The functions gi(l, x(l
−
i )) = (sin il)Z((2i − 1)−, y)

represent non-instantaneous impulses occurring during the intervals (li, si]. The operator A remains consistent with
the definition provided in equation (6.2). In the context of non-local conditions, the function q(x) can be represented
as:

q(x) =

n∑
k=1

βk x(lk),

where lk ∈ J for all k = 1, 2, 3, . . . , n, and βk denote constants. These formulations delineate the mathematical
representation of the functions and operators involved, providing a systematic framework for analysing the non-local
conditions within the given context.

7 Conclusion

This article examines the delicate domain of approximation controllability within a specific subset of differential
inclusion systems involving non-instantaneous impulses within the Banach space X. Our technique, which uses non-
linear alternatives such as Kakutani mappings, semi-group theory and fixed-point theorems, has revealed substantial
discoveries. Furthermore, we provide a concrete illustration to clarify the actual use of the suggested theoretical
framework.

The study of approximation controllability is crucial for comprehending the dynamics of mechanisms, especially
in situations where gaining precise control is difficult. Complexity emerges with systems, including non-instantaneous
impulses, demanding the application of advanced mathematical approaches for a complete analysis. Our study has
enhanced the theoretical comprehension of controllability in complex systems, offering valuable insights for both
theoretical investigation and practical implementation in control theory. Our research elucidates this complex idea,
enhancing the progress of knowledge in this subject and facilitating further inquiry and innovation.
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