| تعداد نشریات | 21 |
| تعداد شمارهها | 663 |
| تعداد مقالات | 9,691 |
| تعداد مشاهده مقاله | 68,983,188 |
| تعداد دریافت فایل اصل مقاله | 48,478,638 |
ارائه مدل جدید ارزیابی عملکرد کارکنان مبتنی بر مفاهیم الگوریتم پیجرنک | ||
| مدل سازی در مهندسی | ||
| دوره 23، شماره 83، دی 1404، صفحه 103-119 اصل مقاله (677.14 K) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22075/jme.2025.36563.2791 | ||
| نویسندگان | ||
| حسین ناهید تیتکانلو* ؛ علی دهقانی فیل آبادی | ||
| گروه مهندسی صنایع، دانشگاه پیام نور، تهران، ایران | ||
| تاریخ دریافت: 23 دی 1403، تاریخ بازنگری: 13 فروردین 1404، تاریخ پذیرش: 13 اردیبهشت 1404 | ||
| چکیده | ||
| در این پژوهش با هدف ارائه یک مدل جدید برای ارزیابی عملکرد کارکنان با استفاده از الگوریتم پیجرنک انجام شده است. الگوریتم پیجرنک که ابتدا برای رتبهبندی صفحات وب توسط گوگل طراحی شد، اهمیت صفحات را بر اساس ارتباطات متقابل بین آنها ارزیابی میکند. این الگوریتم علاوه بر تعداد لینکهای ورودی، اعتبار صفحاتی را که این لینکها را ارسال کردهاند نیز در نظر میگیرد. با الهام از این روش، مدلی برای ارزیابی عملکرد کارکنان طراحی شده که در آن هر کارمند بر اساس ارزیابیهای دریافتی و اعتبار نسبی ارزیابها امتیازدهی میشود. این مدل با هدف کاهش محدودیتهای روشهای سنتی مانند میانگین وزنی و ارائه ارزیابیهای دقیقتر و منصفانهتر طراحی شده است. برای ارزیابی اثربخشی مدل پیشنهادی، عملکرد آن در سه سناریو بررسی شد: دادههای تصادفی برای حذف سوگیری، شبیهسازی ارزیابیهای جانبدارانه، و کاهش تأثیر ارزیابها کماعتبار. آزمون ویلکاکسون برای تحلیل تفاوتها استفاده شد. نتایج نشان داد مدل پیشنهادی در سناریوهای مختلف قادر به ارائه رتبهبندیهای منطقی، شناسایی و کاهش تأثیر ارزیابیهای جانبدارانه، و تعدیل تأثیر نظرات کماعتبار بوده است. این پژوهش نشان داد که مدل پیشنهادی با بهرهگیری از الگوریتم پیجرنک میتواند ارزیابیهای دقیقتر و منصفانهتری ارائه دهد و به ابزاری مؤثر برای بهبود سیستمهای ارزیابی عملکرد کارکنان تبدیل شود. این مدل میتواند با ایجاد امکان مشارکت بیشتر کارکنان، فرآیند ارزیابی را بهبود بخشد. | ||
| کلیدواژهها | ||
| ارزیابی عملکرد کارکنان؛ الگوریتم پیج رنک؛ ارزیابی جانبدارانه | ||
| عنوان مقاله [English] | ||
| A Novel Employee Performance Evaluation Model Based on the Concepts of the PageRank Algorithm | ||
| نویسندگان [English] | ||
| Hossein Nahid Titkanlu؛ Ali Dehghani Filabadi | ||
| Department of Industrial Engineering, Payame Noor University, Tehran, Iran | ||
| چکیده [English] | ||
| This study aims to propose a novel model for employee performance evaluation using the PageRank algorithm. Originally designed by Google to rank web pages, the PageRank algorithm assesses the importance of pages based on their mutual connections. It considers not only the number of incoming links but also the credibility of the pages providing these links. Inspired by this approach, a model is developed in which employees are scored based on the evaluations they receive and the relative credibility of the evaluators. The model is designed to address the limitations of traditional methods, such as weighted averages, and to deliver more accurate and fair assessments. To evaluate the effectiveness of the proposed model, its performance was tested under three scenarios: random data to eliminate bias, simulated biased evaluations, and reduced influence of low-credibility evaluators. The Wilcoxon test was used to analyze differences. Results demonstrated that the proposed model effectively provides logical rankings, identifies and mitigates the impact of biased evaluations, and adjusts for the influence of low-credibility opinions across various scenarios. This research concludes that the proposed model, leveraging the PageRank algorithm, can offer more precise and equitable evaluations, serving as an effective tool to enhance employee performance evaluation systems. By incorporating employee participation, the model can further improve the evaluation process. | ||
| کلیدواژهها [English] | ||
| Employee Performance Evaluation, PageRank Algorithm, Biased Evaluation | ||
| مراجع | ||
|
[1] Islam, Rafikul, and Nagendran Periaiah. "Overcoming the Pitfalls in Employee Performance Evaluation: An Application of Ratings Mode of the Analytic Hierarchy Process." Journal of Entrepreneurship, Management and Innovation 19, no. 2 (2023): 127–157. [2] Nahid Titkanlu, Hossein, Roxana Fekri, and Abbas Keramati. "Modelling Uncertainty in Performance Appraisal Process Based on Evidence Theory and Fuzzy Theory." Journal of Modeling in Engineering 15, no. 51 (2017): 411–432. [3] Dehghani Fil Abadi, Ali. "Presenting a Model for Selecting the Best Supplier in the Space of Qualitative Reasoning: A New Approach for Multi‑Attribute Decision‑Making." Journal of Industrial Engineering Research in Production Systems 11, no. 22 (2023): 69–81. [4] Jiang, Jiajia, Gaocan Gong, Lin Wang, and Quanbo Zha. "Risk measurement of aggregation approaches in multiple attribute decision making under uncertain information." Applied Soft Computing 158 (2024): 111568. [5] Gong, Na, Wai Fong Boh, Anne Wu, and Tsuilin Kuo. "Leniency bias in subjective performance evaluation: contextual uncertainty and prior employee performance." Emerging Markets Finance and Trade 57, no. 8 (2021): 2176-2190. [6] Eren, Ozkan. "Potential in-group bias at work: Evidence from performance evaluations." Journal of Economic Behavior & Organization 206 (2023): 296-312. [7] Tambunan, Toman Sony, Paham Ginting, Sirojuzilam Sirojuzilam, and Yeni Absah. "Analysis applicability of 360-degree feedback performance appraisal as a new technique performance appraisal for civil servants." Review of Management, Accounting, and Business Studies 2, no. 1 (2021): 30-39. [8] Sadati, Leila, Afsaneh Askarkhah, Sedigheh Hannani, Mostfa Moazamfard, Mahmood Abedinzade, Parisa Mohammad Alinejad, Nazanin Saraf, Azin Arabkhazaei, and Azar Arabkhazaei. "Assessment of staff performance in CSSD unit by 360 degree evaluation method." Asia Pacific Journal of Health Management 15, no. 4 (2020): 71-77. [9] Titkanloo, Hossein Nahid, Abbas Keramati, and Roxana Fekri. "Data aggregation in multi-source assessment model based on evidence theory." Applied Soft Computing 69 (2018): 443-452. [10] Nahid, Hosein, and Davoud Khani. "The position of belief functions structure in performance evaluation measures: a new approach." Journal of Sustainable Human Resource Management 5, no. 9 (2023): 49-72. [11] Shaout, Adnan, and Mohamed Khalid Yousif. "Employee performance appraisal system using fuzzy logic." International Journal of Computer Science & Information Technology 6, no. 4 (2014): 1-19 . [12] Ozkan, Coskun, Gulsen Aydin Keskin, and Sevinc Ilhan Omurca. "A Variant Perspective To Performance Appraisal System: Fuzzy C–Means Algorithm." International Journal of Industrial Engineering 21, no. 3 (2014). [13] DeNisi, Angelo S., and Kevin R. Murphy. "Performance appraisal and performance management: 100 years of progress?." Journal of applied psychology 102, no. 3 (2017): 421. [14] Kusumah, Adie Irwan, Haryadi, Adi Indrayanto, and Iwan Setiawan. "A mediating and moderating role on employee performance appraisal." Management Research Review 44, no. 12 (2021): 1639-1659. [15] Taneja, Sapna, Ravikesh Srivastava, and N. Ravichandran. "Employees’ fairness perception towards performance appraisal system: Antecedents and consequences." Review of Managerial Science 18, no. 8 (2024): 2163-2196. [16] Madhumita, G., P. Dolly Diana, PB Narendra Kiran, Swati Aggarwal, and Amarja Satish Nargunde. "AI-powered performance management: Driving employee success and organizational growth." In 2024 5th international conference on recent trends in computer science and technology (ICRTCST), pp. 204-209. IEEE, 2024. [17] Micacchi, Lorenza, Francesco Vide, Giorgio Giacomelli, and Marta Barbieri. "Performance appraisal justice and employees' work engagement in the public sector: Making the most of performance appraisal design." Public Administration 102, no. 3 (2024): 815-840. [18] Yang, Y., and J. Xiao. "Uncertainty Modelling and Aggregation in Comprehensive Evaluation of Teaching (CET) Systems: An Evidence–Fuzzy Framework." Engineering Applications of Artificial Intelligence 133, (2024): 107915. [19] John Bernardin, H., Stephanie Thomason, M. Ronald Buckley, and Jeffrey S. Kane. "Rater rating‐level bias and accuracy in performance appraisals: The impact of rater personality, performance management competence, and rater accountability." Human Resource Management 55, no. 2 (2016): 321-340. [20] Jirschitzka, Jens, Aileen Oeberst, Richard Göllner, and Ulrike Cress. "Inter-rater reliability and validity of peer reviews in an interdisciplinary field." Scientometrics 113, no. 2 (2017): 1059-1092. [21] Bankar, Swati, and Kasturi Shukla. "Performance management and artificial intelligence: a futuristic conceptual framework." In Contemporary studies of risks in emerging technology, Part B, pp. 341-360. Emerald Publishing Limited, 2023. [22] Andrieux, Pierre, Richard D. Johnson, Jalal Sarabadani, and Craig Van Slyke. "Ethical considerations of generative AI-enabled human resource management." Organizational Dynamics 53, no. 1 (2024): 101032. [23] Varma, Arup, Vijay Pereira, and Parth Patel. "Artificial intelligence and performance management." Organizational Dynamics 53, no. 1 (2024): 101037. [24] Aguinis, Herman, and Jing Burgi-Tian. "Talent management challenges during COVID-19 and beyond: Performance management to the rescue." BRQ Business Research Quarterly 24, no. 3 (2021): 233-240. [25] Brosig, Sascha, Carsten Bork, Walid Mehanna, and Stefan Tobias. "Digitization of corporate performance management: revolution or evolution?." In Performance Management in Retail and the Consumer Goods Industry: Best Practices and Case Studies, pp. 49-65. Cham: Springer International Publishing, 2019. [26] Ouwehand, Kim, Avalon van der Kroef, Jacqueline Wong, and Fred Paas. "Measuring cognitive load: Are there more valid alternatives to likert rating scales?." In Frontiers in Education, vol. 6, p. 702616. Frontiers Media SA, 2021. [27] González-Gil, María Teresa, Ana Isabel Parro-Moreno, Cristina Oter-Quintana, Cristina González-Blázquez, M. Martínez-Marcos, M. Casillas-Santana, A. Arlandis-Casanova, and C. Canalejas-Pérez. "360-Degree evaluation: Towards a comprehensive, integrated assessment of performance on clinical placement in nursing degrees: A descriptive observational study." Nurse Education Today 95 (2020): 104594. [28] Sharma, Nirvan, and Patrick Hosein. "A comparison of data-driven and traditional approaches to employee performance assessment." In 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA), pp. 34-41. IEEE, 2020. [29] Gordon, Stuart JG, Dianne H. Gardner, Jenny F. Weston, Charlotte Bolwell, Jackie Benschop, and Tim J. Parkinson. "Using the critical incident technique to determine veterinary professional competencies important for enhancing the veterinarian‐client interaction." Veterinary Record 190, no. 6 (2022): e943. [30] Brown, Jason L., Sukari Farrington, and Geoffrey B. Sprinkle. "Biased self-assessments, feedback, and employees' compensation plan choices." Accounting, Organizations and Society 54 (2016): 45-59. [31] Tutuhatunewa, Alfredo. "Application of BARS and AHP methods in the design of employee performance appraisal instruments." In AIP Conference Proceedings, vol. 2588, no. 1, p. 040011. AIP Publishing LLC, 2023. [32] Roch, Sylvia G., David J. Woehr, Vipanchi Mishra, and Urszula Kieszczynska. "Rater training revisited: An updated meta‐analytic review of frame‐of‐reference training." Journal of occupational and organizational psychology 85, no. 2 (2012): 370-395. [33] Barlybayev, Alibek, Altynbek Sharipbay, Gulden Ulyukova, Talgat Sabyrov, and Batyrkhan Kuzenbayev. "Student's performance evaluation by fuzzy logic." Procedia Computer Science 102 (2016): 98-105. [34] Lubiano, María Asunción, Sara de la Rosa de Sáa, Manuel Montenegro, Beatriz Sinova, and María Ángeles Gil. "Descriptive analysis of responses to items in questionnaires. Why not using a fuzzy rating scale?." Information Sciences 360 (2016): 131-148. [35] Dehghani Filabadi, Ali, and Gholamreza Hesamian. 2019. “A Proposed Method for Fuzzy Ranking in Multi‑Attribute Decision‑Making in Type‑2 Fuzzy Environments.” Journal of Modeling in Engineering 17, no. 59 (2019): 47–65. [36] Lepskiy, Alexander. "Evidence-based aggregation and ranking in an ordinal scale." Procedia Computer Science 221 (2023): 1066-1073. [37] Sharma, Prem Sagar, Divakar Yadav, and Pankaj Garg. "A systematic review on page ranking algorithms." International Journal of Information Technology 12, no. 2 (2020): 329-337. [38] Shen, Xiaowei, Xiwei Liu, Dong Fan, Changjian Cheng, and Gang Xiong. "A performance appraisal method based on ACP theory and PageRank algorithm." In Proceedings of 2011 IEEE International Conference on Service Operations, Logistics and Informatics, pp. 197-201. IEEE, 2011. [39] Kamińska, Barbara, and Kamila Szymańczyk. "Professional Evaluation. Application of the PageRank Algorithm in Employee Rating." Przedsiębiorczość i Zarządzanie 15, no. 2 Entrepreneurship and Human Resources in Management (2014): 37-50. [40] Zara, François. "Repr\'esentations de r\'eflexion de groupes de Coxeter Premi\ere partie: le cas irr\'eductible." arXiv preprint arXiv:2001.09278 (2020). [41] Yang, Jie. "Research on PageRank Based Core User Classification Algorithm for Digital Marketing." In 2023 IEEE 3rd International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB), pp. 441-444. IEEE, 2023. [42] Li, Zhaohui, Wenjia Piao, Zhengyi Sun, Lin Wang, Xiaoqian Wang, and Wenli Li. "User real-time influence ranking algorithm of social networks considering interactivity and topicality." Entropy 25, no. 6 (2023): 926.https://doi.org/10.3390/e25060926. [43] Zhang, Yu, Min Wang, Michael Zipperle, Alireza Abbasi, and Massimiliano Tani. "RelRank: A relevance-based author ranking algorithm for individual publication venues." Information Processing & Management 60, no. 1 (2023): 103156. [44] Ho, Chiung Ching, Kuan Hoong Poo, and Kok Chien Ong. “A Comparative Study of HITS vs PageRank Algorithms for Twitter Users Analysis.” 2014 International Conference on Computational Science and Technology (ICCST), Kota Kinabalu, Malaysia, (2014): 1–6.
| ||
|
آمار تعداد مشاهده مقاله: 87 تعداد دریافت فایل اصل مقاله: 15 |
||