| تعداد نشریات | 21 |
| تعداد شمارهها | 671 |
| تعداد مقالات | 9,762 |
| تعداد مشاهده مقاله | 69,474,416 |
| تعداد دریافت فایل اصل مقاله | 48,617,823 |
مدلسازی و مطالعه ی تجربی ساختارهای جدارنازک شش ضلعی منظم: بررسی المان های جذب انرژی در اثر بارگذاری | ||
| مدل سازی در مهندسی | ||
| دوره 23، شماره 83، دی 1404، صفحه 181-189 اصل مقاله (545.11 K) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22075/jme.2025.36693.2801 | ||
| نویسندگان | ||
| مهدی بینقی1؛ علی دادرسی* 1؛ محسن بینقی2 | ||
| 1گروه مهندسی مکانیک، دانشکده فنی مهندسی، دانشگاه حکیم سبزواری، سبزوار، ایران | ||
| 2گروه مهندسی مکانیک، دانشکده فنی مهندسی، دانشگاه نوشیروانی بابل، بابل، ایران | ||
| تاریخ دریافت: 04 بهمن 1403، تاریخ بازنگری: 08 اردیبهشت 1404، تاریخ پذیرش: 31 اردیبهشت 1404 | ||
| چکیده | ||
| در بسیاری از صنایع سازههایی مورد پذیرش قرار میگیرند که پایداری مناسبی در برابر بارگذاریهای مختلف از خود نشان میدهند. در نتیجه، بررسی قابلیت جذب انرژی در چنین ساختارهایی از اهمیت بالایی برخوردار است. به همین منظور، در این مقاله، قابلیتهای جذب انرژی ساختارهای جدارنازک شش ضلعی مورد مطالعه قرار گرفته است. آزمایش تجربی و مدلسازی بر ضخامت ساختار شش ضلعی ساده و ساختار شش ضلعی بهبود یافته صورت پذیرفته است. همچنین، اثر حضور یک شش ضلعی کوچکتر درون سازهها نیز مورد مطالعه قرار گرفته است. نتایج بدست آمده نشان میدهد که افزایش ضخامت دیواره در هر دو ساختار ساده و بهبود یافته باعث افزایش قابلیتهای جذب انرژی میگردد. قابلیت جذب انرژی ویژه برای ساختار ساده با ضخامت 81/2 میلیمتر، 79/18 کیلوژول بر کیلوگرم بدست آمده است که 76/53 درصد افزایش را نسبت به ضخامت 3/0 میلیمتر نشان میدهد. همچنین، قابلیتهای جذب انرژی ساختار بهبود یافته بالاتر از ساختار ساده گزارش شده است. به صورتی که مقدار جذب انرژی برای ساختار ساده و با ضخامت 3/0 میلیمتر، 1128 ژول گزارش شده است که این مقدار برای ساختار بهبود یافته و 2139 ژول محاسبه گشته است که 62/89 درصد افزایش را نشان میدهد. این روند افزایش در هر دو حالت ساختار ساده و بهبود یافته برای بار فروپاشی متوسط نیز گزارش شده است. نتایج این تحقیق میتواند مسیر جدیدی را برای طراحی جاذبهای انرژی بهبود یافته ارایه دهد. | ||
| کلیدواژهها | ||
| جذب انرژی؛ ساختار جدار نازک؛ ساختار شش ضلعی؛ مدلسازی؛ بار فروپاشی | ||
| عنوان مقاله [English] | ||
| Modeling and Experimental Study of Regular Hexagonal Thin-Walled Structures: Investigating Energy-Absorbing Elements under Loading | ||
| نویسندگان [English] | ||
| Mehdi Beynaghi1؛ Ali Dadrasi1؛ Mohsen Beynaghi2 | ||
| 1Department of Mechanical Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran | ||
| 2Department of Mechanical Engineering, Faculty of Engineering, Babol Noshirvani University, Babol, Iran | ||
| چکیده [English] | ||
| In many industries, structures are designed to demonstrate good stability against various loadings. Consequently, studying the energy absorption capacity of such structures is of great importance. This paper investigates the energy absorption capabilities of thin-walled hexagonal structures. Experimental tests and modeling were performed on both simple hexagonal structures and improved hexagonal structures. Additionally, the effect of a smaller hexagon inside these structures was studied. The results indicate that increasing the wall thickness in both simple and improved structures enhances their energy absorption capabilities. The specific energy absorption capacity of the simple structure with a thickness of 2.81 mm is 18.79 kJ/kg, representing a 53.76% increase compared to a thickness of 0.3 mm. The improved structure also exhibited higher energy absorption capabilities than the simple structure. The energy absorption value for the simple structure with a thickness of 0.3 mm was 1128 J, whereas it was 2139 J for the improved structure, showing a 62.89% increase. This increasing trend was also observed in both simple and improved structures for the average collapse load. The results of this research provide new insights for the design of improved energy absorbers. | ||
| کلیدواژهها [English] | ||
| Energy absorption, Thin-walled structure, Hexagonal structure, Modeling, Crushing load | ||
| مراجع | ||
|
[1] Liu, Hu, Zheng Chng, Guanghian Wang, and Bing Ng. "Crashworthiness improvements of multi-cell thin-walled tubes through lattice structure enhancements." International Journal of Mechanical Sciences 210, no. 15 (2021): 106731. [2] Liang, Rui, Xuebang Tang, Jie Huang, Cheng Zhang, and Wanghie Tuo. "Experimental Studies on Energy Absorption of Curved Steel Sheets under Impact Loading and the Effect of Pendentive on the Deformation of Samples." Journal of Modeling in Engineering 18, no. 63 (2020): 27-40. [3] Zhang, Hongbo, Dayong Hu, Haojie Peng, Wentao Yuan, Zhen Zhang, Zhenyu Yang, and Zhing Zhang. "In-plane crashworthiness study of bio-inspired metallic lattice structure based on deep-sea glass sponge." Thin-Walled Structures 205, no. 15 (2024): 112505. [4] Miao, Fuxing, and Yue Jin. "Crashworthiness analysis and structural optimization of thin-walled circular tubes with porous arrays." Structures 70, no. 16 (2024): 107811. [5] Singh, Kumar, Ramesh Pandey, and Ashutosh Upadhyay. "A numerical study on combined effects of groove shape and numbers on crashworthiness characteristics of thin-walled tube." Materials Today: Proceedings 44, no. 6 (2020): 4381-4386. [6] Fu, Jie, Qiang Liu, Xiaokang Ma, and Ming Cai. "Experimental investigation of impact loading effects on rectangular flat panels of fiber self-compacting cementations composite with expanded steel sheet." Journal of Brazilian Society of Mechanical Science and Engineering 42, no. 318 (2020): 221453. [7] Ye, Xiu, Xiaojie Shi, Xiaojin Miao, Peipei Lu, and Meiping Wu. "The influence mechanism of fractal design method on mechanical properties and corrosion behavior of sheet Gyroid porous structures formed by LPBF." Materialstoday 41, no. 8 (2024): 110373. [8] Pehlivan, Levent, and Cengiz Baykasong. "Theoretical and Numerical Study and Comparison of the Inertia Effects on the Collapse Behavior of Expanded metal tube Absorber with Single and Double Cell under Impact Loading." Amirkabir Journal of Mechanical Enginnering 50, no. 5 (2019): 999-1014. [9] Viccica, Marco, Manuela Galati, Flaviana Calignano, and Luca Iuliano. "Design, additive manufacturing, and characterization of a three-dimensional cross-based fractal structure for shock absorption." Thin-Walled Structures 181, no. 15 (2022): 110106. [10] Zhu, Guohua, Zhonghao Zhao, Po Hu, Geng Luo, Xuan Zhao, and Qiang Yu. "On energy-absorbing mechanisms and structural crashworthiness of laterally crushed thin-walled structures filled with aluminum foam and CFRP skeleton." Thin-Walled Structures 160, no. 1 (2021): 107390. [11] Albak, Emre. "Crashworthiness design for multi-cell circumferentially corrugated thin-walled tubes with sub-sections under multiple loading conditions." Thin-Walled Structures 164, no. 11 (2021): 107886. [12] Abdulgadir, Seif, Ammar Abed, and Alaseel Bassam. "Crashworthiness enhancement of thin-walled hexagonal tubes under flexural loads by using different stiffener geometries." Materials Today: Proceedings 42, no. 5 (2021): 2887-2895. [13] Liu, Bin, and Xiang Xu. "Experimental and numerical study on crashworthiness of bionic hedgehog spine thin-walled structures." Thin-Walled Structures 189, no. 13 (2023): 110892. [14] Ying, Liang, Sensen Wang, and Yong Wang. "Crashworthiness analysis and optimization of multi-functional gradient foam-aluminum filled hierarchical thin-walled structures." Thin-Walled Structures 189, no. 8 (2023): 110906. [15] Liang, Rui, XI Liu, and Christophe Bastien. "A methodology to investigate and optimise the crashworthiness response of foam-filled twelve right angles thin-walled structures under axial impact." Composites Structures 310, no. 15 (2023): 116736. [16] Xiao, Yong, Qian Wu, and Hong Hu. "Optimization design of crashworthiness of polyurethane foam filled Origami thin wall square tube based on an surrogate model." Structures 65, no. 12 (2024): 106713. [17] Yao, Ruyang, Tong Pang, and Guangyong Sun. "On the crashworthiness of thin-walled multi-cell structures and materials: State of the art and prospects." Thin-Walled Structures 189, no. 8 (2023): 110734. [18] Li, Tianjun, Zhilong Huang, Jing Zhao, Xiongfei Xu, and Xiaobo Guo. "Pore structure characteristics and their influencing factors: A case study from the middle jurassic mixed siliciclastic carbonate rocks, Turpan-Hami basin, Northwest China." Journal of Petroleum Science and Engineering 203, no. 11 (2021): 108611. [19] Cui, Cy, Song Feng, Xong Cui, and Jing Lu. "Compressive resistance of the bio-inspired cuttlebone-like sandwich structure under quasi-static load." International Journal of Mechanical Sciences 248, no. 15 (2023): 108222. [20] Qin, Ruixian Xi Wang, Feng Gao, and Bingzhi Chen. "Energy absorption performance of hexagonal multi-cell tube with hierarchy under axial loading." Thin-Walled Structures 169, no. 24 (2021): 108392. [21] Mohammadi, Hossein, Zaini Ahmad, Michal Petru, Saiful Mazlan, Mohd Johari, Hossein Hatami, and Saeid Koloor. "An insight from nature: honeycomb pattern in advanced structural design for impact energy absorption." Journal of Materials Research and Technology 22, no. 19 (2023): 2862-2887. [22] Ma, Daofan, Wang Guangwei, Ma Youguang, Zhu Chunying, and Tang Xiangyang. "Hydrodynamics behavior and mass transfer performance of gas–liquid two-phase flow in the honeycomb fractal microreactor." Chemical Engineering Journal 462, no. 15 (2023): 142228. | ||
|
آمار تعداد مشاهده مقاله: 208 تعداد دریافت فایل اصل مقاله: 32 |
||