
تعداد نشریات | 21 |
تعداد شمارهها | 657 |
تعداد مقالات | 9,639 |
تعداد مشاهده مقاله | 68,640,970 |
تعداد دریافت فایل اصل مقاله | 48,114,572 |
تاثیر توان لیزر و سرعت روبش بر دقت ساختاری قطعات پلیمری تولید شده به وسیله چاپگر سه بعدی ذوب لیزری انتخابی | ||
مدل سازی در مهندسی | ||
دوره 23، شماره 82، مهر 1404، صفحه 115-126 اصل مقاله (714.09 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jme.2025.34924.2713 | ||
نویسندگان | ||
سیدطاها خادمیان؛ علی اصغر عجمی* | ||
دانشکده فیزیک، دانشگاه سمنان، سمنان، ایران | ||
تاریخ دریافت: 11 مرداد 1403، تاریخ بازنگری: 21 فروردین 1404، تاریخ پذیرش: 23 اردیبهشت 1404 | ||
چکیده | ||
ساخت افزایشی که همچنین با نام چاپ سهبعدی شناخته میشود، روش جدیدی برای تولید ساختارهای پیچیده سه بعدی است. در چاپگر بر مبنای گداخت بستر پودر نواحی مشخصی از پودر مواد تحت تابش لیزر ذوب و سپس جامد میشود. در این پژوهش پارامترهای مرتبط با چاپگر ذوب/تفجوشی لیزری انتخابی (SLM/SLS) به طور تجربی و عددی بررسی میشود. از آنجاییکه چشمههای نوری مورد استفاده در چاپگر سهبعدی SLS لیزر پیوسته یا لیزر پالس بلند میباشند درنتیجه تولید و هدایت گرما فرآیند اصلی حاصل از برهمکنش تابش با ماده میباشد. از اینرو از معادله هدایت گرما برای شبیه سازی برهم کنش در نرمافزارکامسول استفاده میشود. برای ساخت بر مبنای گداخت بستر پودر از پودر پلاستیکی پلیاتیلن HDPE 3840UA به عنوان ماده تحت فرآیند و از یک لیزر دیودی با طول موج 450 nm و توان W 4 به عنوان چشمه لیزری استفاده میشود. از آنجایی که جذب پلیاتیلن خالص در طول موج nm 450 خیلی کم است، مخلوط آن با پودر گرافیت به عنوان افزودنی جاذب مورد استفاده قرار میگیرد. تاثیر دو پارامتر مهم در چاپ سهبعدی، توان لیزر مورد استفاده و سرعت روبش باریکه لیزری، بر کیفیت ذوب و پهنای خطوط جامد تولید شده از پودر پلیاتیلن بررسی میشود. نتیجه بررسیها نشان داد که برای توان لیزری پایین در حدود W 0.3 سرعت روبش باید کمتر از mm/Min 600 تنظیم گردد و برای سرعت روبش نسبتا زیاد در حدود mm/Min 3000 توان لیزری بیش از W 2 نیاز است. خارج از این محدوده توان-سرعت هیچ ذوب یا حتی تفجوشی رخ نمیدهد. | ||
کلیدواژهها | ||
ساخت افزودنی؛ چاپگر سهبعدی؛ ذوب لیزری انتخابی؛ تفجوشی لیزری انتخابی؛ دقت ساختاری؛ شار آستانه | ||
عنوان مقاله [English] | ||
Effect of Laser Power and Scanning Speed on the Structural Resolution of Polymeric parts Produced by Selective Laser Melting 3D Printer | ||
نویسندگان [English] | ||
Seyed Taha Khademian؛ Aliasghar Ajami | ||
Faculty of physics, Semnan University, Semnan, Iran | ||
چکیده [English] | ||
Additive manufacturing, also known as 3D printing, is an innovative method for building complex 3D structures. One of the primary 3D printing techniques is powder bed fusion in which, specific areas of a thin layer of powder material are irradiated by a laser to melt or sinter the material, which then solidifies. In this research, the parameters related to selective laser melting/sintering (SLM/SLS) are investigated both experimentally and numerically. Since the lasers used in SLS 3D printers are typically continuous wave (CW) or long-pulse lasers, heat generation and conduction are the main processes resulting from light-matter interaction. Therefore, the heat conduction equation is employed to simulate the interaction process and determine the temporal and spatial behavior of temperature using COMSOL software. A diode laser with a wavelength of 450 nm and maximum power of 4 W is used for experiment. Polyethylene plastic powder (HDPE 3840UA) is utilized for SLM/SLS structuring. Since the absorption of pure polyethylene at 450 nm is very low, it is mixed with a portion of graphite to serve as an absorptive additive. The effects of the two main parameters of 3D printing, laser power and scanning speed, on the width of solid lines printed via SLM/SLS are investigated experimentally and numerically. The results of investigation show that for a low laser power of about 0.3 W, the scanning speed should be set below 600 mm/min, and for a high scanning speed of 3000 mm/min, the laser power should exceed 2 W. Beyond these ranges, no SLM/SLS will occur. | ||
کلیدواژهها [English] | ||
Additive manufacturing, 3D printer, Selective laser melting, Selective laser sintering, Structural resolution, Critical fluence | ||
مراجع | ||
[1] Ligon, Samuel Clark, Robert Liska, Jurgen Stampfl, Matthias Gurr, and Rolf Mülhaupt. "Polymers for 3D printing and customized additive manufacturing". Chemical reviews 117, no. 15 (2017) : 10212-10290. [2] Deckard, Carl R. "Method and apparatus for producing parts by selective sintering." (1991). [3] Papazoglou, Emmanouil L., Nikolaos E. Karkalos, Panagiotis Karmiris-Obratański, and Angelos P. Markopoulos. "On the modeling and simulation of SLM and SLS for metal and polymer powders: a review." Archives of Computational Methods in Engineering (2022): 1-33. [4] Khan, Mushtaq, and Phill Dickens. "Selective laser melting (SLM) of pure gold ". Gold bulletin 43, no. 2 (2010) : 114-121. [5] Liverani, Erica, Stefania Toschi, Lorella Ceschini, and Alessandro Fortunato. "Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel." Journal of Materials Processing Technology 249 (2017): 255-263. [6] Elsayed, Mahmoud, Mootaz Ghazy, Yehia Youssef, and Khamis Essa. "Optimization of SLM process parameters for Ti6Al4V medical implants." Rapid Prototyping Journal 25, no. 3 (2018): 433-447. [7] Karmiris-Obratański, Panagiotis, Emmanouil L. Papazoglou, Nikolaos E. Karkalos, and Angelos P. Markopoulos. "Volume energy density and laser power: Key determinants in SLS-processed PA12 mechanical properties." The International Journal of Advanced Manufacturing Technology 130, no. 5 (2024): 2505-2522. [8] Faraj, Zainab, Smail Zaki, Mohamed Aboussaleh, and Hamid Abouchadi. "Influence of processing parameters on tensile properties of PA12 parts manufactured by selective laser sintering." The International Journal of Advanced Manufacturing Technology 128, no. 3-4 (2023): 1115-1125. [9] El Magri, Anouar, Salah Eddine Bencaid, Hamid Reza Vanaei, and Sébastien Vaudreuil. "Effects of Laser Power and Hatch Orientation on Final Properties of PA12 Parts Produced by Selective Laser Sintering." Polymers 14, no. 17 (2022): 3674. [10] Hou, Gaoyan, Hong Zhu, and Dan Xie. "The Influence of SLS Process Parameters on the Tensile Strength of PA2200 Powder." In IOP Conference Series: Earth and Environmental Science, vol. 571, no. 1, p. 012111. IOP Publishing, 2020. [11] Fateri, Miranda, Andreas Gebhardt, Stefan Thuemmler, and Laura Thurn. "Experimental investigation on selective laser melting of glass." Physics Procedia 56 (2014): 357-364. [12] Juste, Enrique, Fabrice Petit, Véronique Lardot, and Francis Cambier. "Shaping of ceramic parts by selective laser melting of powder bed." Journal of Materials Research 29, no. 17 (2014): 2086-2094. [13] Tran, Hong-Chuong, and Yu-Lung Lo. "Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration." Journal of Materials Processing Technology 255 (2018): 411-425. [14] Boschetto, Alberto, Luana Bottini, Luciano Macera, and Francesco Veniali. "Post-processing of complex SLM parts by barrel finishing." Applied Sciences 10, no. 4 (2020): 1382. [15] Ye, Chang, Chaoyi Zhang, Jingyi Zhao, and Yalin Dong. "Effects of post-processing on the surface finish, porosity, residual stresses, and fatigue performance of additive manufactured metals: a review." Journal of Materials Engineering and Performance 30 (2021): 6407-6425. [16] Weaver, Jordan S., Jarred C. Heigel, and Brandon M. Lane. "Laser spot size and scaling laws for laser beam additive manufacturing." Journal of Manufacturing Processes 73 (2022): 26-39. [17] Dinh, Ba Bach, Yanling Guo, Tat Thang Nguyen, and Nho Tho Tran. "Optimize print speed and laser power of the 3D printing technology selective laser sintering (SLS) for mixture of powder materials green bean and polylactic acid (GBP/PLA)." In IOP Conference Series: Materials Science and Engineering, vol. 782, no. 2, p. 022111. IOP Publishing, 2020. [18] https://www.tpco.ir/fa-IR/DouranPortal/4964/page [19] Bäuerle, Dieter. "Laser Processing and Chemistry [electronic resource]." (2000). [20] Kaselouris, E., I.K. Nikolos, Y. Orphanos, E. Bakarezos, N.A. Papadogiannis, M. Tatarakis, and V. Dimitriou. "A review of simulation methods of laser matter interactions focused on nanosecond laser pulsed systems." Journal of Multiscale Modelling 5, no. 04 (2013): 1330001. [21] Thümmler, Fritz, and Rainer Oberacker. "An introduction to powder metallurgy." Institute of Materials, (1993). [22] Foroozmehr, Ali, Mohsen Badrossamay, Ehsan Foroozmehr, and Sa’id Golabi. "Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed." Materials & Design 89 (2016): 255-263. [23] Hussein, Ahmed, Liang Hao, Chunze Yan, and Richard Everson. "Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting." Materials & Design (1980-2015) 52 (2013): 638-647. [24] Martienssen, Werner, and Hans Warlimont, eds. Springer handbook of condensed matter and materials data. Springer Science & Business Media, 2006. [25] https://plasto.ru/tpc3440.pdf [26] De Gracia, Alvaro, and Luisa F. Cabeza. "Phase change materials and thermal energy storage for buildings." Energy and Buildings 103 (2015): 414-419. [27] Yang, C., M.E. Navarro, B. Zhao, G. Leng, G. Xu, L. Wang, Y. Jin, and Y. Ding. "Thermal conductivity enhancement of recycled high density polyethylene as a storage media for latent heat thermal energy storage." Solar Energy Materials and Solar Cells 152 (2016): 103-110. [28] https://www.engineersedge.com/heat-transfer/convective-heat-transfer-coefficients-13378.html [29] Sobolciak, Patrik, Asma Abdulgader, Miroslav Mrlik, Anton Popelka, Ahmed A. Abdala, Abdelnasser A. Aboukhlewa, Mustapha Karkri, Hendrik Kiepfer, Hans-Joerg Bart, and Igor Krupa. "Thermally conductive polyethylene/expanded graphite composites as heat transfer surface: Mechanical, thermo-physical and surface behavior." Polymers 12, no. 12 (2020): 2863. [30] Vora, Hitesh D., Soundarapandian Santhanakrishnan, Sandip P. Harimkar, Sandra KS Boetcher, and Narendra B. Dahotre. "One-dimensional multipulse laser machining of structural alumina: evolution of surface topography." The International Journal of Advanced Manufacturing Technology 68 (2013): 69-83. | ||
آمار تعداد مشاهده مقاله: 48 تعداد دریافت فایل اصل مقاله: 33 |