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Abstract

This paper deals with designing a sliding mode formation controller for a group of quadrotors in the presence of
disturbances and uncertainties. In this approach, first-order, terminal, super-twisting, and nonsingular super-twisting
terminal sliding mode controllers were developed and compared with each other. In the first-order controller, the
phenomenon of chattering was observed in the control commands, which was solved by using the boundary layer
method. Also, the results of the sensitivity analysis of the controllers showed that the nonsingular super-twisting
terminal controller is less sensitive to the variation of the controller parameters, so this method was applied to control
both the position and attitude of the flight formation of quadrotors. The formation strategy is based on a leader-
follower approach. The leader tracks the prescribed reference trajectory, and the followers retain a constant distance
from the leader. In addition, the proposed controllers are applied in the form of three missions to validate the formation
controller results. In the first mission, the formation of three triangular quadrotors along the spiral path has been
successfully attained. In the second task, the three quadrotors linearly track the S-shaped path. The third one is the
same as the previous one, except that the number of quadrotors has increased to five. The results of the simulation
showed that the convergence time and the overshoot/undershoot of the outputs are less than the other three methods
in the nonsingular super-twisting terminal sliding mode controller. The simulation results for the mentioned missions
for different paths, geometries, and the number of quadrotors indicate that the applied method has been successful in
reducing the effects of disturbances and uncertainties, and the agents succeed in formation flight precisely.

Keywords: Formation Control, Leader-Follower Formation, Quadrotor, Sliding Mode Control, Terminal
Super-Twisting
2020 MSC: 34Hxx

1 Introduction

Recently, the use of quadrupoles for various applications has increased. Due to the non-linear dynamics of this
aircraft, different control methods are used, the most important of which is the sliding mode controller. For example,
in [8], an adaptive non-singular sliding mode controller is applied to control the attitude and altitude of the quadrotor
with three degrees of freedom, concerning limited disturbances. In [13], a non-singular terminal sliding surface based
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on a sliding mode controller is proposed for the tracking problem of a quadrotor in the presence of external distur-
bances. The PID sliding surface is designed to eliminate the steady-state error and improve the robustness of attitude
and position subsystems. In reference [17], the problem of robust attitude control for a quadrotor operating in an
environment polluted with lumped disturbances is considered. A new continuous terminal sliding mode based on active
anti-disturbance control (CTSMBAADC) is proposed by innovatively introducing a finite time disturbance observer
(FTDO) in homogeneous continuous nonsingular terminal sliding mode. [14] investigates the terminal sliding-mode
control (TSMC) with predefined time stability (PTS) for a disturbed quadrotor system (DQS). First, for both the
rotational and translational subsystems of the DQS, a novel notion of predefined-time terminal sliding-mode mani-
fold (PTTSMM) is created. Using the proposed PTTSMM method, the DQS state variables reach their origin in a
predefined time. In [26], addressing such problems as the chattering phenomenon and slow speed of keeping up with
the predetermined trajectory in the application of sliding mode control to a quadrotor, a rare nonlinear sliding mode
control strategy is proposed. [18] solves an accurate fixed-time attitude and position control problem of a quadrotor
UAV system. Robust nonlinear control strategies for attitude and position control are innovatively proposed based on
a new continuous nonsingular terminal sliding mode control (CNTSMC) scheme. A full-order homogeneous terminal
sliding surface is designed for the attitude and position states in such a way that the sliding motion is fixed-time stable
independently of the system’s initial condition. Hence, this contributes to enhancing the control system’s robustness.
In [10], a novel flight controller is proposed based on the chattering-reduced terminal sliding mode control method and
a universal nonlinear disturbance estimator (NDE), which is applied to improve the robustness of the flight system.
By skillfully using Lyapunov theory, the stability condition of the closed-loop systems is derived, and it is shown that
the control gains can be reduced by estimating the model uncertainties and external disturbances.

Over the past decade, the multiple quadrotor formation procedure has obtained extensive attention in changing
climates and complex environments. Formation Flight provides the solicitation of groups in various applications,
such as inaccessible area recognition, disaster management, search in hard-to-reach areas, etc [11]. The mentioned
programs require more than one quadrotor to achieve the intended purpose. Numerous controller methodologies have
been developed to solve the formation flight problem. One of the most important techniques is the leader-follower
strategies that derive from [15]. Distributed and decentralized procedures are the two main approaches for leader-
follower policies. In distributed control, part of the followers receive the leader’s information, but there are interactions
between the followers [7]. On the other hand decentralized mechanism, followers can receive the leader’s information
[5]. In [6], the distributed leader-follower problems have been analyzed by a set of rigid-body spacecraft based on
the representation of the quaternary. A Linear Quadratic Regulator (LQR) for individual and group quadrotor flight
is also proposed in [1]. The simulation results showed the controller’s ability to overcome communication topology
changes between quadrotors. In [20], the optimal methodology is considered to reach the formation. Neuro-controller
was derived to reach leader-follower in [21] with guaranteed Lyapunov stability. Using graph theory, a backstepping
controller was developed to touch the distance-based formation for group robots in [3]. A coordinated group flight
control is designated to alleviate the time delay in communication in [22].

Authors in [16] present a 3-D motion distributed controller scheme to conserve the distance-based formation of
multi-agents. In [12], model predictive techniques have been applied to reach obstacle-avoidance flight formation. The
model predictive controllers have been introduced for the formation control of drones in [23], and the simulations and
experimental results showed the capability of the procedure to steer drones in the desired radius. Flight formation is
developed for both collision and obstacle avoidance in [24]. In [25], the authors propose feedback formation controllers
to track the prescribed path. Then they proposed a nonlinear decentralized formation controller for the problem of
aggressive group flight of quadrotors in [4], where the communication effect is considered in the performance of the
flight group.

The authors in [15] then proposed both the decentralized D-CAPT and the centralized C-CAPT to solve the
simultaneous operation for the quadrotor group flight, and the comparison of the mentioned methods was done both
experimentally and theoretically in the presence of external disturbances. [2] proposes a fast terminal sliding mode
control (SMC) method for the formation of heterogeneous multi-agent systems (MASs) with a fixed topology using
a virtual leader. [19] presents a formation tracking control method for the operation of multi-agent systems under
disturbances. This study aims to ensure that the followers of a quadcopter converge into the desired formation while
the center formation of the follower quadcopters tracks the leader’s trajectory within a finite time. The distributed
finite-time formation control problem is first investigated using the fast terminal sliding mode control (FTSMC)
theory. A disturbance observer is then integrated into the FTSMC to overcome the model uncertainties and bounded
disturbances.[9] proposes a dynamic model based on distance and orientation between an omnidirectional mobile
robot and a quadrotor Unmanned Aerial Vehicle (UAV), both under the leader–follower scheme. It is assumed that
the omnidirectional robot is already controlled to follow the desired trajectory.
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In the previous paper, the comparison between different sliding mode controller methods and the superiority of
the methods have not been discussed. Also, a few past works have dealt with chattering removal with the boundary
layer method. The sensitivity analysis of the parameters has also received less attention. Also, in the discussion of
formation articles, the control of position and situation with the non-singular terminal super twisting sliding mode
method has been discussed in a few works.

In this paper, the nonlinear dynamical model of the quadrotor is considered in the presence of disturbances
and uncertainties. The first-order, nonsingular terminal, super-twisting, and nonsingular terminal super-twisting
sliding mode controllers were applied to control the position and attitude of the quadrotor. Based on the simulation
results, the finite time convergence of the tracking error to zero, and decreasing in the chattering phenomena are the
main merits of the super-twisting nonsingular terminal SMCs for flight formation. Finally, the proposed formation
controllers are validated in the form of three missions. The organization of the present article is explained as follows:
a quadrotor dynamic model is provided in Section 2. The first-order SMC is presented in Section 3. The design of
nonsingular terminal SMC is proposed in Section 4. Section 5 depicts super-twisting SMC. Section 6 illustrates a
nonsingular terminal super twisting SMC. Section 7 is dedicated to illustrating formation control. Eventually, a brief
summarization is presented in the last section.

2 Quadrotor Dynamic Model

The quadrotor consists of a rigid body equipped with four rotors (Figure 1). The two pairs of rotors (1,3) and
(2,4) turn in the opposite direction to balance or produce the yaw motion. The 6-DOF dynamic model of quadrotors,
as well as the model of actuators, is presented in this section. Modelling assumptions include the following:

The body is considered rigid and symmetrical. The lifts and reactive moment produced by four rotors, respectively,
are proportional to the square of their rotational speed. The dynamical model of the quadrotor can be obtained in
two ways: Newton-Euler and Euler-Lagrange. Here, the quadrotor model is obtained according to the Newton-Euler
method in [? ]. Equation 2.1 shows the general kinematics of a rigid body with six degrees of freedom:

ξ̇ = Jθν (2.1)

ξ̇ is the general velocity vector in inertial coordinates, ν is the general velocity vector in body coordinates, and Jθ is
the generalized matrix. ξ is a combination of linear position vectors ΓE and angular ΘE of the quadrotor in inertial
coordinates, which is shown by equation 2.2:

ξ =
[
ΓE ΘE

]T
=

[
X Y Z ϕ θ Ψ

]T
(2.2)

Similarly, ν is a combination of linear velocity V B and angular velocity ωB of the quadrotor in body coordinates
and is shown by equation :

ν =
[
V B ωB

]T
=

[
u ϑ w p q r

]T
(2.3)

In addition, the generalized matrix Jθ consists of four submatrices according to equation 2.4:

Jθ =

[
RΘ 03×3

03×3 TΘ

]
(2.4)

where 03×3 is a submatrix with dimensions 3×3, so that all its rows are zero. The rotation matrix RΘ and the transfer
matrix TΘ are the matrices defined according to equations 2.5 and 2.6.

RΘ =

CΨCθ CΨSθSϕ − SΨCϕ CΨSθCϕ + SΨSϕ
SΨCθ SΨSθSϕ − CΨCϕ SΨSθSϕ − CΨSϕ
−Sθ CθSϕ CθCϕ

 (2.5)

TΘ =

1 Sϕtθ Cϕtθ
0 Cϕ −Sϕ
0

−Sϕ

Cθ

Cϕ

Cθ

 (2.6)

where Ck = cos k, Sk = sin k, tk = tan k. The general dynamics of a 6-degree-of-freedom object are as follows:[
mI3×3 03×3

03×3 I

] [
V̇ B

ω̇B

]
+

[
ωB × (mV B)
ωB × (IωB)

]
=

[
FB

τB

]
(2.7)
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where m is the mass of the body and I is the inertial matrix. V B is the linear acceleration vector of the quadrotor and
ωB is the angular acceleration vector of the quadrotor in body coordinates. In addition, FB is the quadrotor force
vector, and τB is the quadrotor torque vector in body coordinates. The total force vector can be defined as follows:

Λ =
[
FB τB

]T
=

[
Fx Fy Fz τx τy τz

]T
(2.8)

Therefore, equations 2.1, 2.2, ..., 2.7 can be rewritten in the matrix form below:

MB ν̇ + CB(ν)ν = Λ (2.9)

ν̇ is the total acceleration vector in body coordinates. MB is the inertia matrix of the system in body coordinates and
CB is the Coriolis matrix in body coordinates. The following equation shows the inertia matrix of the system.

MB =

[
mI3×3 03×3

03×3 I

]
=


m 0 0
0 m 0
0 0 m

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

Ixx 0 0
0 Iyy 0
0 0 Izz

 (2.10)

The Coriolis matrix is also given below.

CB(ν) =

[
03×3 −mS(V B)
03×3 −S(IωB)

]
=


0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
−mw
mv
0

−Izzr
Iyyq

mw
0

−mu
Izzr
0

−Ixxp

−mv
mu
0

Iyyq
Ixxp
0

 (2.11)

where S is the symmetry deviation. For a three-dimensional vector k, the symmetry deviation matrix is as follows.

S(k) = −ST (k) =

 0 −k3 k1
k3 0 −k1
−k2 k1 0

 , k =

k1k2
k3

 (2.12)

The following equation introduces the total rotors velocity and its vector:

Ω = −Ω1 +Ω2 − Ω3 +Ω4, Ω =


Ω1

Ω2

Ω3

Ω4

 (2.13)

where Ω1, Ω2, Ω3, and Ω4 are the velocity of the front, right, rear, and left rotor. The following equation shows the
effect of the motion vector on the quadrotor dynamics.

UB(Ω) = EBΩ
2 =


0
0
U1

U2

U3

U4

 =


0
0

b(Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4)
bl(Ω2

4 − Ω2
2)

bl(Ω2
3 − Ω2

1)
cd(Ω

2
2 +Ω2

4 − Ω2
1 − Ω2

3)

 (2.14)

where l is the length from the center of mass to each rotor, cT depicts the thrust force coefficient, cd illustrates the
drag force coefficient, EB represents the motion matrix, and UB(Ω) is the motion vector.

EB =


0
0
cT
0

−cT l
−cd

0
0
cT

−cT l
0
cd

0
0
cT
0
cT l
−cd

0
0
cT
cT l
0
cd

 (2.15)
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According to equation 9, the dynamics of the quadrotor can be written as follows:

MB ν̇ + CB(ν)ν = GB(ξ) +OB(ν)Ω + EBΩ
2 (2.16)

where GB(ξ) is the gravity vector and OB(ν) is the gyroscopic matrix of the rotor, which is defined as follows:

OB(ν)Ω =


03×3

−
∑4
k=1 JTP

ωB ×

00
1

 (−1)kΩk

 =


03×1

JTP

−qp
r

Ω

 = JTP


0
0
0
q
−p
0

0
0
0
−q
p
0

0
0
0
q
−p
0

0
0
0
−q
p
0

Ω

JTp is the moment of total rotation of inertia about the rotor axis. Eventually, the dynamical model of the quadrotor
is as follows:

U̇ = (RV −QW ) + g sin θ (2.17)

V̇ = (PW −RU)− g cos θ sinϕ (2.18)

Ẇ = (PV −QU)− g cos θ sinϕ+
U1

m
(2.19)

Ṗ =
Iyy − Izz
Ixx

RQ− JTp
Ixx

QΩ+
U2

Ixx
(2.20)

Q̇ =
Izz − Ixx
Iyy

RP +
JTp
Iyy

PΩ+
U3

Iyy
(2.21)

Ṙ =
Ixx − Iyy

Izz
PQ+

U4

Izz
(2.22)

where (U, V,W ) shows the speed vector, (P,Q,R) illustrate the roll, pitch, and yaw angles, Ixx, Iyy, and Izz are the
moments of inertia about the x, y, and z-axis, whose all values are given in Table 1. Correspondingly, the U1, U2, U3,
and U4 as the rotor’s speed are obtained from the following equations:

U1 = cT (Ω
2
1 +Ω2

2 +Ω2
3 +Ω2

4) (2.23)

U2 = lcT (−Ω2
2 +Ω2

4) (2.24)

U3 = lcT (−Ω2
1 +Ω2

3) (2.25)

U4 = cd(−Ω2
1 +Ω2

2 − Ω2
3 +Ω2

4) (2.26)

Ω = −Ω1 +Ω2 − Ω3 +Ω4 (2.27)

Table 1: Quadrotor model parameters used in the simulation

Value Parameters
11× 10−2 kg m2 Ixx
19× 10−2 kg m2 Iyy
1.3× 10−2 kg m2 Izz
6× 10−5 kg m2 JTp
3.23 kg m
0.23 m l
7.5× 10−7 N m s2 cd
3.13× 10−5 N s2 cT

2.1 Actuators Dynamic Model

Considering that the dynamics of the actuator are not the main focus of this research, we describe the dynamics
of each actuator approximately by the following first-order inertial element:

ω(s)

ωr(s)
=

1

Tacts+ 1
(2.28)
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Figure 1: Quadrotor scheme

where Tact is the time constant of the actuator dynamics, ωr and ω are desired rotation speed and actual rotation
speed of the actuator. We assume that max 0 ≤ ωr ≤ ωmax, where ωmax is the maximum rotation speed of the
practical electric motor. considering the different time scales, the control laws of the actuator servo system and the
quadrotor system are designed separately. Thus, we neglect the controller for the actuator system in this paper and
such first-order inertia element assumption is reasonable.

3 Sliding Mode Controller

The sliding mode control approach is recognized as one of the efficient tools to design robust controllers for complex
high-order nonlinear dynamic plants operating under uncertain conditions. The major advantage of sliding mode is low
sensitivity to plant parameter variations and disturbances which eliminates the necessity of exact modeling. Sliding
mode control enables the decoupling of the overall system motion into independent partial components of lower
dimensions and, as a result, reduces the complexity of feedback design. Sliding mode control implies that control
actions are discontinuous state functions that may easily be implemented by conventional power converters with ”on-
off” as the only admissible operation mode. In the following, the design of four sliding mode control methods has been
discussed.

3.1 First-Order SMC

The nonlinear system is considered in the following form:

x(n)(t) = f(x.t) + g(x.t)u(t) + d(t) (3.1)

where d(t) includes parametric uncertainties, unmodeled dynamics, and disturbance.

d(t) ≤ D (3.2)

where D is the maximum disturbance and is a positive number. In this paper, the wind disturbance was considered
as follows;

Vx = 0.5 sin (0.1 t− π) (3.3)

Vy = 0.5 sin (0.1 t− π). (3.4)

To design a classic SMC, it is first necessary to define the sliding surface as follows [15]:

S =

(
d

dt
+ λ

)n−1

x̃ (3.5)

where,
x̃ = x− xd = e. (3.6)
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The sliding surfaces for the quadrotor are considered as follows:

Sφ = ˙̃φ+ λφ̃ (3.7)

Sθ =
˙̃
θ + λφ̃ (3.8)

Sψ =
˙̃
ψ + λψ̃ (3.9)

Sx = ˙̃x+ λx̃ (3.10)

Sy = ˙̃y + λỹ (3.11)

Sz = ˙̃z + λz̃. (3.12)

The Lyapunov stability of the sliding surface will ensure the stability of the system states; Therefore, considering
the appropriate Lyapunov function as below and examining its changes, a control law will be designed to achieve
asymptotic stability.

V =
1

2
s2 (3.13)

V̇ = sṡ. (3.14)

As a result, the sliding surface s will converge to zero only if:

sṡ < 0. (3.15)

The above equation shows a condition on the sliding variable s and its first derivative and it is a condition of
reaching. If s satisfies any of the following equations, so that k1 and k2 are positive constants, then s satisfies the
condition of reaching.

ṡ = −k1s− k2sgn(s). (3.16)

The sliding mode controller consists of two parts: equivalent control and discontinuous control:

Un = ueqn + udisn, n = 1, 2, 3, x, y, z (3.17)

that ueq is obtained by setting the sliding surface derivative equal to zero and udis is obtained by satisfying the
Lyapunov stability condition of the sliding surface. By putting ṡ in the form of the above functions, discontinuous
control can be considered as one of the following functions:

udisc = −k1s− k2sgn(s) (3.18)

Using equation (3.1), equation (3.15) can be rewritten as below.

V̇ = sṡ ≤ −η (3.19)

sṡ ≤ −η|s| (3.20)

s (f(x) + g(x)u+ d(t)) ≤ −η|s|. (3.21)

By substituting equations (3.16) and (3.17), we have:

s (−k2sgn(s) + d(t)) ≤ −k2|s|+ |s| |d(t)| (3.22)

|s|(−k2 + |d(t)|) ≤ −η|s|. (3.23)

As a result:
k2 ≥ η +D (3.24)

where η is a positive number, so if we choose k2 as above, the system will be stable. Taking condition S = 0, the
surface solution can be calculated as:

ei(t) = ei(0) exp(−λt). (3.25)

Remark 1: The error trajectories of the attitude and position states approach the sliding surface in finite time
and the tracking errors remains zero afterwards.
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Remark 2: In equation (3.16) and (3.18), signum function, sgn

sgn(s) =

 1 s > 0
0 s = 0
−1 s < 0

(3.26)

In practice, switching control law needs high frequency to switch across the surface which caused oscillates within
neighborhood of the switching surface and it is called chattering. To prevent this phenomenon, various methods are
used, such as using the sat function instead of sgn. This topic will be discussed at the end of this section.

Figure 2: The sliding surface of the quadrotor position using first-order SMC

Figure 3: The sliding surface of the quadrotor attitude using first-order SMC

According to the equations mentioned in the previous section, the control inputs are obtained as follows:

U1 =

(
− (Iyy − Izz)

l
θ̇ψ̇ +

JTP
l
θ̇Ω+

Ixx
l
φ̈d − λφ

Ixx
l

˙̃φ

)
+

(
−kφ

Ixx
l
sign (Sφ)

)
(3.27)

U2 =

(
− (Izz − Ixx)

l
φ̇ψ̇ − JTP

l
φ̇Ω+

Iyy
l
θ̈d − λθ

Iyy
l

˙̃
θ

)
+

(
−kθ

Iyy
l
sign (Sθ)

)
(3.28)

U3 =
(
− (Ixx − Iyy) φ̇θ̇ + Izzψ̈d − λψIzzλ

˙̃
ψ
)
+ (−kψIzzsign (Sψ)) (3.29)

Ux =

(
m

U1

)(
ẍd − λx ˙̃x

)
+

(
−kxs

(
m

U1

)
sign (Sx)

)
(3.30)

Uy =

(
m

U1

)(
ÿd − λy ˙̃y

)
+

(
−ky

(
m

U1

)
sign (Sy)

)
(3.31)

Uz =
m

(cos θ cosφ)

(
g + z̈d − λz ˙̃z

)
+

(
−kz

m

(cos θ cosφ)
sign (Sz)

)
(3.32)

In the above control inputs, the first terms are as an equivalent part and the second one as a reaching part. The
Control parameters are given in Table 2. These parameters are obtained based on trial and error.

Table 2: The Control parameters in the first-order SMC

Value parameter Value parameter
3.4 kφ 0.9 kx
0.9 kθ 2.2 ky
0.98 kψ 1.5 kz
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Figure 4: Quadrotor control commands using the first-order sliding mode control method

Figure 5: Quadrotor control commands using the first-order sliding mode control method

In this simulation, the control signals −10 ≤ ux, uy, u2, u3, u4 ≤ 10 and 0 ≤ u1 ≤ 50 are considered. As it is
clear from Figures 4 and 5, the simulation results indicate the chattering phenomenon in the control signal designed
in the first-order sliding mode method as a result of the presence of the sign function, because this function in the
control command forces the operator to switch momentarily. Since the implementation of the controller-sliding mode
is not ideal, and the operators are not able to switch momentarily and do so with a delay, and also the value of the
sliding variable, which is the weighted sum of the error, is not known with infinite accuracy, the chattering phenomenon
occurs. In general, chattering is very undesirable because it has disadvantages such as high control activity, stimulation
of unmodeled high-frequency dynamics, reduction of controller accuracy, increase in heat losses in electrical circuits,
and increase in wear and tear in mechanical parts and actuators. These disadvantages reduce the efficiency of the
system and may lead to instability. Some approaches to prevent chattering create a boundary layer in the vicinity of
the discontinuity surface. A simple solution is to use a saturation function with a high gain (pseudo-sliding). In this
paper, the following function is used.

δν(s.δ) =


sgn(s) if |s| > δ(

δ
|s|

)(q−1)

sgn(s) 0 < |s| < δ

0 s = 0

(3.33)
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In the above equations, the tanh function can be used to obtain a close approximation to the sign function:

(s.δ) = tanh
(s
δ

)
. (3.34)

So that δ < 1 is a small positive number which is defined as the pole of the curve. The results of the simulation
are shown in Figures 6 and 7, which show that the chattering in the control commands has been removed and the
tracking of the desired path has been done smoothly and without oscillation in the control commands.

Figure 6: Quadrotor control commands with boundary layer

Figure 7: Quadrotor control commands with boundary layer

Table 3: Sensitivity analysis kϕ

kϕ kθ kψ kx ky kz eϕ
3.4 0.9 0.98 0.9 2.2 0.15 0.01
5.1 0.9 0.98 0.9 2.2 0.15 0.021
6.8 0.9 0.98 0.9 2.2 0.15 0.03
8.5 0.9 0.98 0.9 2.2 0.15 0.042

The convergence of the sliding surface of the followers to zero is clear in Figures 2 and 3. Figures 4 and 5 show
the quadrotor control commands using the first-order sliding mode controller, where the chattering phenomenon is
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Figure 8: The position of the quadrotor using first-order SMC

Figure 9: The attitude of the sliding surface of the quadrotor using first-order SMC

Table 4: Sensitivity analysis kθ
kϕ kθ kψ kx ky kz eθ
3.4 0.9 0.98 0.9 2.2 0.15 0.015
3.4 1.35 0.98 0.9 2.2 0.15 0.018
3.4 1.8 0.98 0.9 2.2 0.15 0.023
3.4 2.25 0.98 0.9 2.2 0.15 0.04

observed in the results. The results of the simulation to remove the chattering using the boundary layer in Figures
6 and 7 show the success of the applied method, and the tracking of the desired path is done smoothly and without
fluctuations in the control commands, and the control commands are well converged in the desired time. Figures 8 and
9 represent the position and attitude of the quadrotor using first-order sliding mode controllers with a layer boundary,
respectively. In these figures, the output for parameters (kϕ, kθ, kψ, kx, ky, kz) with 1.5, 2, and 2.5 times the values
presented in Table 2 are also shown. This sensitivity analysis for the control parameters shown in Tables 3-8 shows
that the tracking error increased from 0.015 to 0.04 with the increase of the control parameters. Figure 10 also shows
the prosperous tracking performance of the controller in three dimensions. In these figures, the effects of disturbances
and the success of the controller in removing these disturbances are visible. The proposed controller has the following
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Figure 10: Three-dimensional diagram of quadrotor tracking using first-order SMC

merits: 1) convergence of the tracking error to zero, 2) stability of the closed-loop system. The chattering phenomenon
is the main drawback of the method.

4 Terminal SMC

The emphasis of the terminal SMC is on reducing the convergence time sliding surface to zero. For this purpose,
the sliding surface is considered as follows [3]:

S = x1 + λx
α
β

2 (4.1)

where 1
2 <

α
β < 1, α and β are constant and positive numbers. For system (3.1) with the equation (3.32), if the control

is designed as:

u = −b−1(x)

(
f(x) + λ

β

α
x
2−α

β

2 + ηsgn(s)

)
(4.2)

where η > 0, then the manifold (4.1) will be reached in finite time. Furthermore, the states x1 and x2 will converge
to zero in finite time.

Proof. For the equation (4.1) , its derivative along the system dynamics (3.1) is:

ṡ = ẋ1 + λ
α

β
x

α
β −1

2 ẋ2 = x2 + λ
α

β
x

α
β −1

2 (f(x) + g(x) + b(x)u)

= λ
α

β
x

α
β −1

2 (g(x)− ηsgn(s))

sṡ = λ
α

β
x

α
β −1

2 (g(x)s− ηsgn(s)s) ≤ −λα
β
x

α
β −1

2 η|s|

where 1 < α
β < 2, there is x

α
β −1

2 > 0 for x2 ̸= 0. Let ξ(x2) = λαβx
α
β −1

2 η. Then:

sṡ ≤ −ξ(x2)|s| for x2 ̸= 0 (4.3)

ξ(x2) > 0. (4.4)

Therefore, for the x2 > 0, the condition for Lyapunov stability is satisfied. Substituting equation (3.17) into system
(2.6) gives the result:

ẋ2 = − 1

λ

β

α
x
2−α

β

2 + g(x)− ηsgn(s). (4.5)

For x2 = 0,

ẋ2 = − 1

λ

β

α
x
2−α

β

2 + g(x)− ηsgn(s). (4.6)
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For s > 0, ẋ2 ≤ η and for s < 0, ẋ2 ≥ η, showing that x2 = 0 is not an attractor and there exists a vicinity of
x2 = 0 such that for a small ε > 0 such that |x2| < ε, there are ẋ2 ≤ −η for s > 0 and ẋ2 ≥ η for s < 0. The crossing
of the trajectory from the boundary of the vicinity x2 = ε to x2 = −ε for s > 0, and from x2 = −ε to x2 = ε for s < 0
occurs in finite time. For other regions where |x2| > ε, it can be concluded from (3.1) that the switching line s = 0
can be reached in the finite time since we have ẋ2 ≤ −η for s > 0 and ẋ2 ≥ η for s < 0. Therefore, it is concluded
that the sliding mode s = 0 can be reached from anywhere in finite time. Therefore, the NTSM manifold (4.1) can
be reached in a finite time. The states in the sliding mode will reach zero in finite time. This completes the proof. □
The reach time is obtained by setting the sliding surface equal to zero and deriving from it:

ts =
−x(1−

β
α )

i (tr)

λ
q
p

i (1− α
β )

, (4.7)

where tr is the time that s reaches zero. Table 9 shows the values ts.

Table 5: Reaching time

ts(x) ts(y) ts(z) ts(φ) ts(θ) ts(ψ)
0.5(s) 2(s) 0(s) 4.1(s) 2(s) 1(s)

Figure 11: Sliding surface of quadrotor position using terminal SMC

Figure 12: The sliding surface of quadrotor attitude using terminal SMC

ueq is as equivalent term, and ur as reaching one.

ur = ksign(S). (4.8)

As a result, using the terminal SMC, the control commands for the mentioned quadrotor are as follow:

U1 =
m

(cos θ cosφ− g)

[
− ˙̃z + z̈dλz

α
β
˙̃z
(α
β −1)

]
[
λz

α
β
˙̃z
(α
β −1)

] + kzsign(Sz)

U2 =
− Ix
L

[
˙̃φ+ λφ

α
β
˙̃φ
(α
β −1)

(
(Iy−Iz)
Ix

θ̇ψ̇ − JTP

Ix
θ̇Ω− φ̈d

)]
[
λφ

α
β
˙̃φ
(α
β −1)

] + kφsign(Sφ)

U3 = −
(
Iy
L

) [
˙̃
θ + λθ

α
β

˙̃
θ
(α
β −1) (

(Iz−Ix)
Iy

φ̇ψ̇ + JTP

Iy
φ̇Ω− θ̈d

)]
[
λθ

α
β

˙̃
θ
(α
β −1)

] + kθsign(Sθ)
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U4 = −Iz

[
˙̃
ψ + λψ

α
β

˙̃
ψ
(α
β −1) (

(Ix−Iy)
Iz

φ̇θ̇ − ψ̈d

)]
[
λψ

α
β

˙̃
ψ
(α
β −1)

] + kψsign(Sψ)

Ux = −
(
m

U1

) [
λx

α
β
˙̃x
(α
β −1)

(−ẍd) + ˙̃x
]

[
λx

α
β
˙̃x
(α
β −1)

] + kxsign(Sx)

Uy = −
(
m

U1

) [
˙̃y + λy

α
β
˙̃y
(α
β −1)

(−ÿd)
]

[
λy

α
β
˙̃y
(α
β −1)

] + kysign(Sy)

Table 6: Fixed parameter values in the design of terminal SMC

Value parameter Value parameter
11 kφ 21 kx
11 kθ 17 ky
11 kψ 21 kz
0.75 α

β 0.1 δ

Figure 13: Quadrotor control commands using the terminal sliding mode

According to Figures 11 and 12, the sliding surfaces reach zero in finite time. Figures 13 and 14 show the quadrotor
control commands. Figures 15 and 16 represent the position and attitude of the quadrotor using nonsingular terminal
sliding mode controllers, respectively. In these figures, the outputs for k 1.5, 2, and 2.5 times the control parameters
presented in Table 10 are also shown. The results of the sensitivity analysis of the control parameters are shown
in Tables 11-16, which show that the simulation error and the value of tr increase with the increase of the control
parameters. Figure 17 also shows the effective 3-D tracking of the plant. The simulation results and the calculation
of the reaching time of the states showed that the reaching time in the terminal controller is less than the first-order
one.

5 Super Twisting SMC

ST-SMC is designated to decrease the chattering phenomena for a quadrotor with a relative degree of one. The
variable dynamics of the sliding surface can be written as follows:

ṡ = Φ(t, x) + Υ(t, x)u (5.1)
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Figure 14: Quadrotor control commands using the terminal sliding mode

Figure 15: The position of the quadrotor using the terminal SMC

with limited conditions |Φ(t, x)| ≤ Φ, 0 < Γm ≤ Υ(t, x) ≤ ΓM and |S| ≤ S0. So Γm, ΓM , and Φ are positive constant
values. Control inputs in ST-SMC are designed as follows:

u = u1 + u2 (5.2)

where:

u̇1 =

{
−u |u| > 1

−W sign(s) |u| ≤ 1
(5.3)

u2 =

{
−λ|s0|ρsign(s) |s| > s0
−λ|s|ρsign(s) |s| ≤ s0

(5.4)

Sufficient and appropriate conditions for finite time convergence are as follows:

W >
Φ

Γm
> 0 (5.5)

λ2 ≥ 4ϕΓM (W +Φ)

Γ3
m(W − Φ)

. (5.6)
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Figure 16: The attitude of the quadrotor using the terminal SMC

Figure 17: Three-dimensional diagram of quadrotor tracking using terminal SMC

This algorithm does not need the sign of the time derivative of the sliding surface to create a smooth control. For
ρ = 1, the algorithm converges exponentially to the origin. For the systems where s0 = ∞ and there is no limitation
in the control, the algorithm can be simplified as follows [8, 13, 17]:

u(t) = −λ|s|ρsign(s) + u1 (5.7)

u = −λ|s|ρsign(s) + k

∫
sign(S). (5.8)

To design the ST-SMC, the slide surface is considered for each of the control inputs as the first-order SMC. Thus
ueq is attained for each of the control commands like Ueq in the first-order SMC. However, Ur is assumed according
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to Equation (2.15).

U1 =
m

(cos θ cosφ)

(
g + z̈d − λz ˙̃z − kz1|Sz|ρsign(Sz)− kz2

∫
sign(Sz)

)
U2 =

Ix
L

(
− (Iy − Iz)

Ix
θ̇ψ̇ +

JTP
Ix

θ̇Ω+ φ̈d − λφ ˙̃φ− kφ1|Sφ|ρsign(Sφ)− kφ2

∫
sign(Sφ)

)
U3 =

(
Iy
L

)(
− (Iz − Ix)

Iy
φ̇ψ̇ − JTP

Iy
φ̇Ω+ θ̈d − λθ

˙̃
θ − kθ1|Sθ|ρsign(Sθ)− kθ2

∫
sign(Sθ)

)
U4 = Iz

(
− (Ix − Iy)

Iz
φ̇θ̇ + ψ̈d − λψ

˙̃
ψ − kψ1|Sψ|ρsign(Sψ)− kψ2

∫
sign(Sψ)

)
Ux =

(
m

U1

)(
ẍd − λx ˙̃x− kx1|Sx|ρsign(Sx)− kx2

∫
sign(Sx)

)
Uy =

(
m

U1

)(
ÿd − λy ˙̃y − ky1|Sy|ρsign(Sy)− ky2

∫
sign(Sy)

)
(5.9)

Table 7: Parameter values in the design of ST-SMC

Value parameter Value parameter
0.9 kφ 22 kx
1.1 kθ 16.02 ky
1.52 kψ 21 kz

0.1 δ

Figure 18: The sliding surface of the quadrotor position using ST-SMC

Figure 19: The sliding surface of the quadrotor attitude using ST-SMC

According to Figures 18 and 19, the sliding surfaces reach zero in finite time. Figures 20 and 21 represent quadrotor
control commands as depicted in equation (5.9), and Figures 22 and 23 represent the position and attitude of the
quadrotor using ST-SMC, respectively. Also, in these figures, the outputs are plotted for 1.5, 2, and 2.5 times the
values presented in Table 17. The sensitivity analysis of the control parameters is shown in Tables 18-23, which shows
that the simulation error increases with the increase in the values of the control parameters. Figure 24 also shows
the productive 3-D presentation of the planned methodology. This approach decreases chattering phenomena and
increases by about 5% of overshoot.

6 Nonsingular Terminal Super Twisting SMC

In this controller, the slide surface is considered to be the same as the slide surface of the nonsingular terminal
SMC [8]. As a result, ueq is equal to one obtained in the terminal SMC. udis is also the same as the one stated in the
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Figure 20: Quadrotor control commands using the ST-SMC

Figure 21: Quadrotor control commands using the ST-SMC

ST-SMC. Therefore, using the nonsingular terminal super twisting sliding mode controller, the control inputs for the
plant were achieved as follows:

U1 =
m

(cos θ cosφ− g)

[
− ˙̃z + z̈dλz

α
β
˙̃z
(α
β −1)

]
[
λz

α
β
˙̃z
(α
β −1)

] + kz1|Sz|ρsign(Sz) + kz2

∫
sign(Sz)

U2 =
− Ix
L

[
˙̃φ+ λφ

α
β
˙̃φ
(α
β −1)

(
(Iy−Iz)
Ix

θ̇ψ̇ − JTP

Ix
θ̇Ω− φ̈d

)]
[
λφ

α
β
˙̃φ
(α
β −1)

] + kφ|Sφ|ρsign(Sφ)− kφ

∫
sign(Sφ)

U3 = −
(
Iy
L

) [
˙̃
θ + λθ

α
β

˙̃
θ
(α
β −1) (

(Iz−Ix)
Iy

φ̇ψ̇ + JTP

Iy
φ̇Ω− θ̈d

)]
[
λθ

α
β

˙̃
θ
(α
β −1)

] + kθ|Sθ|ρsign(Sθ)− kθ

∫
sign(Sθ)
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Figure 22: The attitude of the quadrotor using the ST-SMC

Figure 23: The position of the sliding surface of the quadrotor using the ST-SMC

U4 = −Iz

[
˙̃
ψ + λψ

α
β

˙̃
ψ
(α
β −1) (

(Ix−Iy)
Iz

φ̇θ̇ − ψ̈d

)]
[
λψ

α
β

˙̃
ψ
(α
β −1)

] + kψ|Sψ|ρsign(Sψ)− kψ

∫
sign(Sψ)

Ux = −
(
m

U1

) [
λx

α
β
˙̃x
(α
β −1)

(−ẍd) + ˙̃x
]

[
λx

α
β
˙̃x
(α
β −1)

] + kx|Sx|ρsign(Sx)− kx

∫
sign(Sx)

Uy = −
(
m

U1

) [
˙̃y + λy

α
β
˙̃y
(α
β −1)

(−ÿd)
]

[
λy

α
β
˙̃y
(α
β −1)

] − ky|Sy|ρsign(Sy)− ky

∫
sign(Sy)

The results of the simulation of four controllers showed that the outputs converge to the desired value. The
convergence time in the non-singular super-twisting terminal controller is less than in the other three methods. The
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Figure 24: Three-dimensional diagram of quadrotor tracking ST-SMC

Figure 25: The sliding surface of the quadrotor position using nonsingular terminal super twisting sliding mode

Figure 26: The sliding surface of the quadrotor attitude using nonsingular terminal super twisting sliding mode

sensitivity analysis also showed that by increasing the value of the control parameters, the simulation error and reaching
time increase. These results showed that the super twisting terminal sliding mode controller is less sensitive to the
change of control parameters than other controllers. Therefore, the quadrotor position and attitude controller were
made using this control method.

7 Formation Control

In the leader-follower formation procedure, 1) the leader first follows a predetermined path; 2) the leader position
is the input of the formation control for the following quadrotors [? ? ]. As shown in Figure 32, λ is the distance
from the center of leader mass to the center of follower mass, and φ is the angle between the x-axis of the leader and
λ line. Figure 33 also shows the block diagram of the quadrotor formation control.{

λx = −(xL − xF ) cosψL − (yL − yF ) sinψL
λy = −(xL − xF ) sinψL − (yL − yF ) cosψL

(7.1)

λdx = λ cosφ
λdy = λ sinφ

(7.2)
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Figure 27: Quadrotor control commands using the terminal ST-SMC

Figure 28: Quadrotor control commands using the terminal ST-SMC

Therefore, the formation error can be defined as follows:
ex = λdx − λx
ey = λdy − λy
eψ = ψF − ψL

(7.3)

Considering that λd and ϕd have constant values, as a result, λdx and λdy have constant values and their derivatives

λ̇dx and λ̇dy are zero. In the following, λ̇x and λ̇y are obtained by deriving relations and defining the translational
dynamics in the x-y plane. The transition dynamics on the x-y plane are also defined as follows:

ẋi = vix cosψi − viy sinψi

ẏi = vix sinψi + viy cosψi

ψ̇L = ωL

(7.4)

Subscript i represents leader (i = L) or follower (i = F ). Where ẋi and ẏi are velocity in the ground coordinate
system. ψi is the angle between the x-axis direction of the fuselage system and the ground coordinate system, and vix
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Figure 29: The position of the quadrotor using the terminal ST-SMC

Figure 30: The attitude of the quadrotor using the terminal ST-SMC

Figure 31: Three-dimensional diagram of quadrotor tracking using terminal ST-SMC

and viy are the velocity in the fuselage coordinate system which are gotten as:{
vix = ẋi cosψi + ẏi sinψi

viy = −ẋi sinψi + ẏi cosψi
(7.5)
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Figure 32: Quadrotor formation in x-y plane

By placing relations (7.1), (7.2), (7.4), and (7.5) in (7.3), the following relations are obtained:
ėx = −(λdy − ey)ωL − vFx cos eψ + vFy sin eψ + vLx

ėy = (λdx − ex)ωL − vFx sin eψ − vFy cos eψ + vLy

ėψ = ωF − ωL

(7.6)

The State Space Representation can be depicted below:

ẋ =M(x) +N(x)v (7.7)

where x is the state vector and v is the control input, and M(x) and N(x) are all expressed as below.

x =
[
ex ey eψ

]T
(7.8)

v =
[
vFx vFy ωF

]T
(7.9)

M(x) =

 eyωL + vLx − ωLλ
d
y

−exωL + vLy + ωLλ
d
x

−ωL

 (7.10)

N(x) =

− cos eψ
− sin eψ

0

sin eψ
− cos eψ

0

0
0
1

 (7.11)

To guarantee the convergence of the formation error to zero, an integral SMC is a candidate to reach the formation.
The sliding surface is as:

S = kf

∫
x dt+ x (7.12)

which kf is a constant matrix that defines later. The SMC integral consists of two parts: equivalent term and reaching
one as in equation (7.13).

v = veq + vr. (7.13)

The equivalent term is attained in equation (7.14).

veq = N−1(x)(−M(x)− kfx) (7.14)

To ensure that the system is kept at the surface of s = 0 considering the perturbations, it can be deliberated as
follows.

s = ẋ+ kfx =M(x) +N(x)veq + kfx = −L sgn(s) (7.15)
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Figure 33: Quadrotor formation control block diagram

where L is a positive constant. Then the reaching term is achieved as follows:

vr = −L sgn(s) (7.16)

According to the mentioned relations in (7.14), (7.15), and (7.16), the formation control command was gained as
(7.17).

v = N−1(x)(−M(x)− kfx− L sgn(s)). (7.17)

To demonstrate the stability of the formation control, the succeeding Lyapunov function is a candidate: V = 1
2s
T s.

The time derivative of the above Lyapunov function holds below.

V̇ = sT (M(x) +N(x)v + kfx) = sT (−L sgn(s)) < −L|s| < 0. (7.18)

Therefore, if L > 0, it is ensured that V is a definite negative and consequently, the states of the system will reach
to the surface of s = 0 in a limited time and will remain on it. In the following, the results of simulation in three
missions are specified and their specifications are settled in table 32. It is assumed that the wind as disturbances is
considered as follows:

Vx = 0.5 sin(0.1t− π) (7.19)

Vy = 0.5 sin(0.1t− π) (7.20)

Table 8: Characteristics of the three missions
Characteristics of formation geometry Desired position Number of quadrotors{
λ1 = 2, ϕ1 = π/3

λ2 = 2, ϕ2 = 2π/3


xd = 3 sin t

yd = 3 cos t

zd = 1
4
t

3

{
λ1 = 2, ϕ1 = π/3

λ2 = 4, ϕ2 = π/3


xd = 1

4
t

yd = 3 cos t

zd = 1
4
t

3


λ1 = 2, ϕ1 = π/3

λ2 = 4, ϕ2 = π/3

λ3 = 6, ϕ3 = π/3

λ4 = 8, ϕ4 = π/3


xd = 1

4
t

yd = 3 cos t

zd = 1
4
t

5

In the first mission, three quadrotors in a triangular formation shape cross the spiral path. The simulation results
for the first mission, are shown in Figures 34, 35, and 36. Figures 34 and 35 represent the position and attitude of
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Figure 34: The position of the leader and the followers along the spiral path

Figure 35: Response of attitude of three quadrotors along the spiral path

three quadrotors respectively. Figure 36 shows the three-dimensional diagram of three quadrotors. These figures show
that the formation control of these three quadrotors along the spiral path has been magnificently performed.

Moreover, in the second one, the three quadrotors linearly touch the s-shaped path. In this case, both the geometric
shape of the quadrotors and the desired path have been changed compared to the previous mission. The simulation
results for the second mission are shown in Figures 37 through 39. Figures 37 and 38 represent the position and
attitude of three quadrotors, respectively. Figure 39 shows the 3-D scheme of three quadrotors. These simulation
results show that the followers have tracked the leader and the formation has been entirely performed.
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Figure 36: Three-dimensional diagram of three quadrotors along the spiral path

Figure 37: Response of position of three quadrotors along the s-shaped path

Figure 38: Response of attitude of three quadrotors along the s-shaped path
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Figure 39: Three-dimensional diagram of three quadrotors along the s-shaped path

The third mission is the same as the previous mission, with a different number of followers. These simulation results
show in figures 40 through 42. Figures 40 and 41 represent the position and attitude of five quadrotors, respectively.
Figure 42 shows the three-dimensional plan for five quadrotors. These simulation results show that an increasing
number of quadrotors can do the formation task successfully.

Figure 40: Response of position of five quadrotors along the s-shaped path

The results of these three missions with different paths, different geometry, and the different number of agents
indicate that the formation succeeds properly.

8 Conclusion

Sliding mode leader-follower formation strategies for multi-quadrotors are discussed in the present study. A com-
parison of the suggested simulation results shows that the terminal-sliding mode has less convergence time than the
classic SMC does. It decreases in super-twisting but this controller has unwished overshoot. In the nonsingular ter-
minal super twisting SMC, the convergence time was approximately 5% less than that of the super-twisting ones, and
the outputs tracked the reference without any chattering and overshooting. Due to the better results, the nonsingular
terminal super-twisting sliding mode controller was applied to control the position and attitude of the plants in flight
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Figure 41: Response of attitude of five quadrotors along the s-shaped path

Figure 42: Three-dimensional diagram of five quadrotors along the s-shaped path

Figure 43: Three-dimensional diagram of three quadrotors along the linear path

formation. The simulation results for three missions with different numbers of agents and dissimilar paths correspond-
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Figure 44: Three-dimensional diagram of five quadrotors along the linear path

ingly indicate that the formation does properly. The robust formation for MAS with obstacle avoidance and preserve
connectivity can be considered in the future studies of the authors.

References

[1] A. Abdessameud, A. Tayebi, and I. G. Polushin, Motion coordination of thrust-propelled underactuated vehicles
in the presence of communication delays, 19th IFAC Cong., 2014, pp. 3170–3175.

[2] R. Adderson and Y. J. Pan, Terminal sliding mode control for the formation of a team of quadrotors and mobile
robots, IECON 47th Ann. Conf. IEEE Ind. Electron. Soc., 2021, pp. 1–6.

[3] I. Bayezit and B. Fidan, Distributed cohesive motion control of flight vehicle formations, IEEE Trans. Ind. Elec-
tron. 60 (2013), no. 12, 5763–5772.

[4] A. Bemporad and C. Rocchi, Decentralized hybrid model predictive control of a formation of unmanned aerial
vehicles, 18th IFAC World Cong. 44 (2011), no. 1, 11900–11906.

[5] H. Cai and J. Huang, The leader-following consensus of multiple rigid spacecraft systems, Amer. Control Conf.
ACC 13 (2013), 824–829.

[6] T. Dierks and S. Jagannathan, Neural network control of quadrotor UAV formations, Amer. Control Conf. ACC.
9 (2009), 2990–2996.

[7] F. Gao and Y. Jia, Distributed finite-time coordination control for 6dof spacecraft formation using nonsingular
terminal sliding mode, Proc. 2015 Chinese Intell. Syst. Conf., 2016, pp. 195–204.

[8] H. Ghadiri, M. Emami, and H. Khodadadi, Adaptive super-twisting non-singular terminal sliding mode control
for tracking of quadrotor with bounded disturbances, Aerospace Sci. Technol. 112 (2021), 106616.
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