
Abstract--Wireless Sensor Networks (WSNs) play a critical 

role in diverse applications, ranging from environmental 

monitoring to military surveillance. Clustering techniques are 

essential for optimizing energy consumption and improving 

data transmission efficiency in WSNs. This paper introduces the 

Intra-Cluster Election (ICE) technique, which enhances 

centralized clustering protocols within the LEACH-C (Low-

Energy Adaptive Clustering Hierarchy-Centralized) 

framework. ICE improves cluster head selection by optimizing 

the cost function value and reducing convergence iterations. 

Although the improvements in energy efficiency and data 

delivery rates are modest compared to LEACH-C, primarily 

because its cost function does not account for the distance 

between cluster heads and the base station, ICE demonstrates 

significant advantages in optimization. The simulation results 

show that ICE substantially improves cluster head selection, 

leading to more efficient network operations across various 

WSN scenarios. It achieves approximately 12–20% 

improvement in the cost function compared to LEACH-C and 

reduces the number of required iterations by a factor ranging 

from 3 to 100, depending on the network conditions. 

Index Terms--Wireless Sensor Networks (WSNs), Intra-

Cluster Election (ICE), Cluster Head Selection, Centralized 

Clustering Protocols, Low-Energy Adaptive Clustering 

Hierarchy (LEACH), LEACH-Centralized (LEACH-C), 

Optimization Techniques, Network Efficiency. 

I.  INTRODUCTION 

ireless Sensor Networks (WSNs) have emerged as a 

pivotal technology in various domains, including 

environmental monitoring, healthcare, military 

applications, and smart cities [1]. These networks consist of 

numerous sensor nodes that gather data from their 

surroundings and transmit it to a central processing unit or 
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base station for analysis. Depending on the application, 

various types of sensors are employed in WSNs, including 

temperature, humidity, chemical, motion, and optical sensors, 

each offering specific advantages in terms of sensitivity, 

responsiveness, and integration capabilities [2], [3], [4]. The 

deployment of sensor nodes in diverse and often remote 

environments poses several challenges, particularly 

concerning energy consumption, data transmission 

efficiency, and network longevity. As sensor nodes are 

typically battery-powered, optimizing energy usage becomes 

critical to prolonging the network's operational lifespan. 

Clustering is a widely adopted strategy in WSNs aimed 

at enhancing energy efficiency and optimizing data 

transmission [5]. By grouping sensors into clusters, where 

each cluster has a designated leader or cluster head, the 

network can reduce the number of transmissions to the base 

station, thus conserving energy. This architecture facilitates 

more organized data collection, as cluster heads can 

aggregate data from their members before sending it to the 

base station, minimizing communication overhead and 

extending the network's lifetime [6], [7]. 

Among the various clustering protocols, the Low-Energy 

Adaptive Clustering Hierarchy (LEACH) has been a 

pioneering model that significantly improves energy 

efficiency in WSNs [8]. LEACH employs a distributed 

approach, where cluster heads are selected randomly, 

ensuring balanced energy consumption throughout the 

network. This method helps prevent premature node 

depletion; however, it has limitations, particularly regarding 

scalability and energy management, especially as network 

density and size increase. 

To address these challenges, an enhanced version of 

LEACH called LEACH-C (Centralized LEACH) has been 
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developed [9], [10]. (LEACH-C) protocol enhances the 

clustering process by considering both the energy levels of 

nodes and their distances from the cluster heads when 

selecting CHs [10]. While LEACH-C effectively balances 

energy consumption among nodes, it still faces challenges in 

achieving optimal performance due to the number of 

iterations required for convergence [11]. 

In this paper, we introduce a novel technique called Intra-

Cluster Election, which enhances the cost function value in 

the clustering process, leading to improved optimization 

results with fewer iterations. This approach can be applied to 

nearly any centralized protocol to increase optimization 

efficiency with lower iteration counts. We use LEACH-C to 

implement our technique and assess its performance with an 

intra-cluster election variant, LEACH-C-ICE. The 

comparison criteria include cost function value, remaining 

energy in nodes, network longevity, and overall data delivery 

rate. Results show that the proposed scheme delivers slightly 

better performance, particularly as network scale increases, 

while reducing the number of iterations in the optimization 

algorithm. 

II.  RELATED WORKS 

Wireless Sensor Networks (WSNs) rely heavily on 

efficient data transmission and energy conservation due to the 

limited battery life of sensor nodes. Clustering has been 

recognized as an effective strategy to improve these factors 

by reducing communication overhead and extending network 

lifespan. This section reviews several notable clustering 

protocols and enhancements in WSNs. 

A.  LEACH Protocol 

LEACH is one of the earliest and most influential 

clustering protocols designed for WSNs. Proposed by 

Heinzelman et al. (2000), this protocol employs a randomized 

rotation of cluster heads to evenly distribute energy 

consumption across the network [6]. While LEACH has 

demonstrated significant improvements in energy efficiency, 

its reliance on random selection of cluster heads can lead to 

inefficiencies in densely populated networks, where energy 

usage may not be optimally balanced. 

B.  LEACH-C 

To address the limitations of LEACH, Heinzelman et al. 

(2002) introduced LEACH-C (Centralized LEACH), which 

determines cluster heads based on local energy levels and 

their distances to all other nodes. This centralized approach 

allows for better energy management and cluster formation 

but may require multiple iterations to converge on an optimal 

configuration. As a result, network performance can suffer 

with increased iteration counts, impacting real-time data 

transmission [10]. 

C.  HEED Protocol 

Younis and Fahmy (2004) proposed HEED (Hybrid 

Energy-Efficient Distributed Clustering), which balances 

energy consumption by considering residual energy and 

communication costs when electing cluster heads [7]. Unlike 

LEACH and LEACH-C, HEED uses a hybrid approach to 

cluster formation, improving scalability and robustness in 

network performance. It ensures that energy-efficient paths to 

the base station are utilized, thus enhancing network 

longevity. 

D.  Enhanced Clustering Techniques 

Various enhancements to clustering protocols have been 

proposed to optimize energy usage and improve performance.  

An extension of the original LEACH protocol, LEACH-

F incorporates feedback mechanisms to provide an additional 

layer of energy efficiency. By allowing cluster heads to 

communicate their energy levels back to the nodes, the 

protocol can adjust the selection criteria dynamically based 

on real-time data [10]. This adaptation helps prolong network 

lifetime by preventing the premature death of nodes. 

Ramesh et al. (2020) explored a fuzzy logic-based 

clustering approach that dynamically adjusts the criteria for 

selecting cluster heads based on energy levels, distance, and 

node mobility [12]. This method allows for a more nuanced 

selection process that considers multiple factors, enhancing 

the adaptability and efficiency of the clustering process 

amidst changing network conditions. 

Hatamian et al. (2015) introduced a Centralized 

Evolutionary Clustering Protocol (CECP), utilizing a Genetic 

Algorithm (GA) to select optimal CHs based on residual 

energy, outlier nodes exclusion, and total edge weight [13]. 

Gupta and Jana (2015) proposed a genetic algorithm-based 

clustering method considering nodes’ residual energy and 

distance from CHs [14]. Zhang et al. (2014) used SA and GA 

algorithms for clustering nodes. The CH selection technique 

is based on the average cluster energy comparison [15]. 

Latiff et al. (2007) implemented a distributed clustering 

algorithm using Particle Swarm Optimization (PSO) [16]. 

This method focuses on optimizing the placement of cluster 

heads by simulating social behavior patterns. The PSO-based 

approach yielded substantial improvements in both energy 

efficiency and network longevity, particularly in scenarios 

with high node densities. 

Guru et al. (2005) introduced a clustering scheme using 

PSO that selects CHs based on distance from the BS and 

intra-cluster distance, but neglects nodes’ residual energy 

[17]. Also, Singh et al. (2012) introduced PSO Semi-

Distributed (PSO-SD), which considers residual energy, 

distance, and node density in clustering [18]. Rao et al. (2017) 

presented a PSO-based Energy Efficient Cluster Head 

Selection (PSO-ECHS) algorithm, which considers the 

distance to BS, intra-cluster distance, and residual energy for 

CH selection and cluster formation to enhance network 

lifetime [19]. Ali et al. (2021) introduced ARSH-FATI CH 

selection and novel ranked-based clustering (NRC) for cluster 

formation, emphasizing residual energy, distances, and 

workload on CHs for enhancing network lifetime [20]. 

E.  Hybrid Memetic Algorithms 

Chawda and Gupta (2020) proposed a composite cost 

function based on node parameters such as degree, intra-

cluster communication cost, and residual energy. This 

approach aims to improve load balancing and prolong 

network lifetime, with the advantage of incorporating 

multiple key metrics in the cluster head selection process. 

However, one major drawback is its computational 

complexity; repeated evaluations of the cost function exhibit 

a time complexity of approximately 𝒪(N × 𝐾), which tends 

toward 𝒪(N2) in large-scale networks, posing a significant 

challenge for practical deployment [21]. 

Ahmad and Shah (2021) presented a clustering 

framework based on a memetic algorithm for wireless sensor 

networks. Their approach considers a combination of residual 

energy, node degree, and mobility to create stable and energy-

efficient clusters. A key advantage lies in its adaptability to 
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dynamic topology changes and its ability to prevent 

premature convergence. Nevertheless, evaluating the cost 

function and executing the local search phase, both with 

complexity around 𝒪(N × 𝐾), introduces significant 

computational overhead, especially in larger networks [22]. 

Zhang and Lan (2025) introduced an adaptive routing 

protocol that combines Multi-Parent Differential Evolution 

(MPDE) with Variable Step-Size Local Search (VSSLS). 

This hybrid strategy improves cluster head selection accuracy 

and mitigates premature convergence by leveraging both 

global and local search capabilities. However, the main 

limitation is the computational burden: complex cost function 

calls and nested loops in the local search phase significantly 

increase execution time, particularly in large-scale sensor 

networks [23]. 

Building on existing work in WSN clustering, our 

proposed technique, Intra-Cluster Election, enhances energy 

optimization within the clustering process of LEACH-C by 

refining the selection of cluster heads based on intra-cluster 

dynamics. This method reduces the number of iterations 

required for convergence, resulting in better performance 

metrics such as remaining energy in nodes, network 

longevity, and overall data delivery rate as evidenced in our 

comparative analysis with LEACH-C-ICE. In terms of 

complexity, the proposed method is also compared to the 

approach introduced by Zhang and Lan (2025) [23]. 

The growing body of research in clustering protocols for 

WSNs demonstrates the importance of developing efficient 

algorithms that both conserve energy and facilitate reliable 

data transmission. Our work aims to contribute to this field 

by introducing the Intra-Cluster Election technique, which 

improves upon traditional methods by minimizing iteration 

counts while maximizing network efficiency. 

III.  PRELIMINARIES 

This section briefly presents the network model, energy 

model, Leach-c, and simulated annealing used in this study. 

 

 
Fig.  1. A cluster based WSN model utilized in this study. 

A.  Network Model 

The study focused on a two-hop WSN with BS and 𝑁 

uniformly distributed sensors. The network structure is 

illustrated in Fig.  1 and key assumptions are as follows:   

● BS has unlimited energy and high computing power for 

calculations.  

● Sensors know their position and BS’s position and can 

directly communicate with BS.  

● All sensors start with the same energy and can adjust 

transmission power based on distance.  

● Sensors use TDMA (Time Division Multiple Access) to 

prevent collisions and decrease energy usage [24].  

● No data aggregation was applied to the cluster header. 

But it can be considered to reduce energy consumption.  

● Sensors measure surroundings within a fixed radius and 

then send data to their CH. 

B.  Energy Model 

The energy model in this study is based on [6]. Sensors 

consume the most energy in their transmitter and receiver 

circuits. This energy is divided into three categories: the 

required energy of power amplification for the transmitter, 

the transmitter’s electronic circuits, and the receiver’s 

electronic circuits. The energy required during transmission 

includes the transmitter’s electronic circuits and signal 

amplification, while during reception, it refers to the energy 

used by the receiver’s electronic circuits. The corresponding 

equations are as follows: 

 

𝐸Tx(𝑙, 𝑑) = {
𝑙𝐸elec + 𝑙𝜖fs𝑑2, 𝑖𝑓      𝑑 < 𝑑0

𝑙𝐸elec + 𝑙𝜖mp𝑑4, 𝑖𝑓      𝑑 ≥ 𝑑0.
   ( 1 ) 

 

where 𝑙 is the number of bits to be transmitted and 𝐸elec 

is the energy consumed by the electronic circuits for 

receiving/sending one bit of information. 𝜖fs represents the 

energy required to amplify one bit of transmitted data, when 

the distance between the transmitter and receiver is less than 

𝑑0 and 𝜖mp represents the energy required to amplify one bit 

of transmission when the distance is greater than or equal to 

𝑑0. 𝑑0 is the threshold diffusion distance is equal to:  

𝑑0 = √
𝜖fs

𝜖mp
                 ( 2 ) 

The energy consumption of a sensor in the receiving mode for 

receiving 1 bit of data is calculated as follows: 

𝐸Rx(𝑙) = 𝑙𝐸elec               ( 3 ) 
 

where 𝐸elec is the energy required by electronic circuits to 

receive one bit of data. 

C.  Leach-c Overview 

LEACH-C (Centralized LEACH) is an improved version 

of the LEACH protocol, specifically designed to enhance 

energy efficiency and extend the operational lifetime of 

wireless sensor networks (WSNs). Unlike its predecessor, 

LEACH-C employs a centralized approach for selecting 

cluster heads, taking into account the energy levels and 

distances of the sensor nodes to CH's. This section outlines 

the structural components of LEACH-C and its optimization 

algorithm (Simulated Annealing (SA)) as a method for 

optimizing cluster head selection. 

During the setup phase of LEACH-C, each node sends 

information about its current location and energy level to the 

base station. The base station runs an optimization algorithm 

to determine the clusters for that round. The clusters formed 

by the base station will in general, be better  than those formed 

using the distributed algorithm. [10]  

Determining optimal Cluster Heads from the nodes is a 

problem that is known to be NP-Hard [25]. Optimization 

algorithms, such as tabu search [26] or simulated annealing 

[27], can be used to approach the optimal solution in 

polynomial time. LEACH-C uses simulated annealing to 

determine CHs [10].  

In addition to determining good clusters, the base station 

needs to ensure that the energy load is evenly distributed 

among all the nodes. To do this, the base station computes the 

average node energy, and whichever nodes have energy 

below this average cannot be cluster-heads for the current 
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round. Using the remaining nodes as possible cluster-heads, 

the base station runs a simulated annealing algorithm to 

determine the best k nodes to be cluster-heads for that round. 

Once the cluster heads are identified, the remaining nodes 

join the nearest cluster based on the total sum of squared 

distances between all the non-cluster-head nodes and the 

closest cluster-head to minimize the amount of energy the 

non-cluster-head nodes.  

The cost function of LEACH-C 𝑓(𝐶) is as follows: 

 

𝑓(𝐶) =  ∑ min
𝑐∈𝐶

𝑑2(𝑖, 𝑐)𝑁
𝑖=1                 ( 4 ) 

 
where 𝑑(𝑖, 𝑐) is the distance between nodes 𝑖 and CH 𝑐. 

Once the optimal cluster-heads and associated clusters 

are found, the base station transmits this information back to 

all the nodes in the network. This is done by broadcasting a 

message that contains the cluster-head ID for each node. If a 

node's cluster-head ID matches its own ID, that node takes on 

the cluster-head role; otherwise, the node determines its 

TDMA slot for data transmission and goes to sleep until it is 

time to transmit data to its cluster-head. The steady-state 

phase of LEACH-C is identical to LEACH. 

Cluster heads are responsible for gathering data from 

their member nodes and aggregating it. This aggregation 

process effectively reduces data redundancy, and the 

consolidated information is subsequently transmitted in a 

single packet to the base station, significantly conserving 

energy compared to transmitting individual packets. 
In the following, the simulated annealing is described. 

D.  Stimulated Annealing  

Simulated Annealing (SA) is a probabilistic technique 

used for approximating the global optimum of a given 

function. It is particularly effective for large search spaces 

where traditional optimization methods may struggle.  

The SA algorithm is inspired by the annealing process in 

metallurgy, where a material is heated and then slowly cooled 

to remove defects and optimize its structure. The algorithm 

can be summarized as follows: 

● Initialization: 

- Start with an initial solution (𝐶0). 

- Set the initial temperature (𝑇0). 

● Iteration (Repeat until the stopping criterion is met): 

- Generate a new candidate solution (𝐶′) by making a 

small random change to the current solution (𝐶). 

o Calculate the change in the cost function (Δ𝑓 =
𝑓(𝐶′) −  𝑓(𝐶)). 

o If (Δ𝑓 < 0), accept the new solution (𝐶′). 

o If (Δ𝑓 ≥ 0), accept the new solution (𝐶′) with a 

probability (𝑃 = exp (−
Δ𝐸

𝑇
)). 

o Decrease the temperature (𝑇) according to a cooling 

schedule. 

● Cooling Schedule: 

o A common cooling schedule is ( 𝑇 =  𝑇0 ⋅ 𝛼𝑘 ), 

where (𝛼) is a constant (0 <  (𝛼) <  1) and (𝑘) is 

the iteration number. 

Detailed information about the SA algorithm is provided 

in [27].  

The proposed technique aims to enhance cluster head 

selection in each round of the protocol by achieving more 

optimal values with fewer iterations. It is designed to be 

independent of specific clustering protocols and optimization 

algorithms, making it applicable to various centralized 

clustering protocols that utilize evolutionary optimization 

methods. The paper will focus on applying and comparing 

this scheme with the LEACH-C protocol. The proposed 

technique will be presented in the next section. 

IV.  PROPOSED TECHNIQUE  

One issue with WSN clustering algorithms is the vast 

search space, which often prevents the optimization 

algorithm from achieving the desired optimal value, despite 

numerous iterations and particles. For instance, consider a 

WSN comprising 200 nodes that need to be clustered into 15 

clusters. The total number of possible states is: 

 

𝐶𝐾(𝑁) = (
𝑁

𝐾
) =

𝑁!

𝐾! (𝑁 − 𝐾)!
⇒ 𝐶15(200) ≈ 1.462 × 1022 

 

A SA algorithm with 1000 iterations explores about 1000 

states, and the likelihood of achieving a global optimum value 

is negligible. 

In response to this challenge, the article introduces an 

innovative method termed intra-cluster election, which 

operates in the following subsection for each CH derived from 

the SA algorithm. Before explaining the proposed scheme, 

key terms were defined for clarity. 

A.  Definitions 

The definitions used in this study will be defined as 

follows: 

1. 𝕊: is a set of sensor nodes such that 𝕊 =
{𝑠1, 𝑠2, … , 𝑠𝑁}. 𝑁 represents the number of sensors, 

and 𝑠𝑖 represents the sensor 𝑖 witch 0 <  𝑖 ≤ 𝑁. 

2. ℂℍ: is a set of cluster heads in such a way that ℂℍ =
{ch1, ch2, … , ch𝐾}. 𝐾 represents the number of 

clusters, and 𝐾 <  𝑁. Also, 𝑐ℎ𝑗 represents the 

cluster head 𝑗 and 0 < 𝑗 < 𝐾. 

3. ℂ: The set of clusters in such a way that ℂ =
{C1, C2, … , CK}. Similarly, 𝐶𝑗 also represents the 

cluster 𝑗, and its cluster head is 𝑐ℎ𝑗. 

4. 𝑑0: The threshold distance of the sensors in the 

transmission energy calculation. 

After defining the terms used in this study, the next 

section will introduce the intra-cluster election. 

B.  Intra-Cluster Election 

In the proposed scheme, since each solution is equivalent 

to a selected 𝐶𝐻 and each CH of this set has several members, 

an additional step called intra-cluster election is considered. 

In this way, for each solution, after calculating a cost, an intra-

cluster election is conducted. In this selection, for each 

cluster, the cluster cost function if any member of that cluster 

becomes a CH is calculated using (5), and the member with 

the highest value is selected as the CH of that cluster. After 

updating the 𝐶𝐻, the clustering process is re-executed with 

the updated 𝐶𝐻 and then the best value is considered as the 

final solution for that iteration. 

𝑓(𝐶𝑗) |𝑐𝑚 = sum{𝑑2(𝑠𝑖 , 𝑐𝑚): ∀ 𝑠𝑖 ∈ 𝐶𝑗}      ( 5 ) 

The intra-cluster election causes the search space to be 

split into smaller spaces. This work allows the local points of 

the range of each particle to be checked more precisely, and 

the best CH is selected to achieve more optimal solutions with 

a lower number of iterations and particles.  

C.  Proposed Scheme 

Similar to LEACH and LEACH-C, the proposed scheme 

has two phases: setup and steady-state [28]. The setup phase 
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involves CH selection, cluster formation, and sending cluster 

information to CHs, which are performed at BS. Also, in the 

setup phase CHs store member lists, establish TDMA 

schedules, and share these with members. Then sensors wait 

for their turn to transmit data. In the steady-state phase, 

sensors perform sensing tasks and transmit data to CHs at 

predetermined intervals. CHs collect and relay data to BS 

without aggregation, although considering aggregation could 

reduce energy consumption. After data transmission, CHs 

switch to idle mode until the next scheduled interval. The 

cycle continues until the steady-state phase ends.  

The proposed scheme is implemented at the start of each 

round during the setup phase. The full procedure of the 

scheme is depicted in Fig.  2 and includes the following steps: 

• Setup Phase 

- Receive nodes' information: Sensors send their 

location and residual energy to BS. 

- Calculate 𝑵𝒕𝒑𝒓: BS calculates the number of 

transmissions per round during the initial round. 

This work reduces overhead by minimizing the 

setup phase counts and improves network QoS by 

adjusting transmission counts based on the nodes 

[10]. BS computes the number of transmissions per 

round (Ntpr) using (6), which is taken from [10]. 

𝑁tpr =
𝐸Init

𝑙
𝑁0
𝐾

(𝐸elec+ϵmp𝑑BS
4 )+(

𝑁0
𝐾

−1)(2𝐸elec+ϵfs
𝑀2

2π𝐾
)

    ( 6 ) 

 

Where 𝐸Init is the initial energy of sensor nodes, 𝑁0 is the 

initial number of sensors, 𝐾 is the number of clusters and is 

calculated using (7), 𝑀 is the network area, and 𝑑𝐵𝑆 is the 

average distance of the sensors from BS. 

- Calculate the number of clusters (𝑲): Then BS 

calculates the number of clusters using (7) which is 

taken from [29]. 

-  

𝐾 = √
𝑁

2π
×

2

0.765
                                    ( 7 ) 

 

Where 𝑁 is the number of sensors.  

- SA: Such as LEACH-C, BS utilizes SA to find 

optimal clusters. This part includes the following 

steps. 

 Initialize section: The first step is to initialize 

SA parameters. A random ℂℍ will be generated, 

ℂ  obtained by joining nodes to the nearest CH 

and then 𝑓(ℂ) will be calculated using (4). After 

that, a new ℂℍ′ will be generated by randomly 

changing some of the CHs from ℂℍ, then ℂ′ is 

obtained with these ℂℍ′. 

 Calculate ∆𝒇: In this step, 𝑓(ℂ′) and ∆𝑓 =
𝑓(ℂ′) −  𝑓(ℂ) will be calculated and the solution 

stored as Fit 1. 

 Intra-cluster election: After cluster formation, 

an election is performed in each cluster to select 

the best CHs. 

 Best Solution: after updating ℂℍ′, ℂ′ and 𝑓(ℂ′) 

are calculated again, and the solution is stored as 

Fit 2. The best solution for that iteration is 

arg min (Fit1, Fit2). Then, the next iteration 

begins, and upon reaching the maximum 

iterations, SA outputs the optimal ℂℍ and ℂ. 

- Transmit clustering information: After 

completing the clustering process, BS distributes 

this information across the network along with 𝑁𝑡𝑝𝑟. 

Then, the network enters the steady-state phase 

based on this clustering. 

• Steady-state Phase: The steady-state phase consists 

of measuring and transmitting data frames to the 𝐵𝑆 at 

scheduled intervals through designated ℂℍ. This 

phase will continue until the number of transmitted 

frames reaches 𝑁𝑡𝑝𝑟, at which point the current round 

ends, and a new round begins with the setup phase. 

This process repeats until all nodes exhaust their 

energy. 

In the next section, the complexity of the proposed 

scheme will be calculated. 

D.  Computational Complexity 

In this section, the computational complexity of LEACH-C 

and the proposed scheme, will be calculated. 

• LEACH-C 
 

The complexity of each iteration (I) in LEACH-C 

involves generating up to K points and identifying the closest 

nodes, which has a complexity of 𝒪(𝑁 × 𝐾). Additionally, it 

includes forming clusters using candidate cluster heads and 

computing 𝑓(𝐶′), with a complexity of 𝒪(𝑁 × 𝐾). Therefore, 

the overall complexity of LEACH-C is as follows: 

 

Complexity of LEACH-C = 𝒪(𝐼 × (𝑁 × 𝐾)) 

 

In this paper, since 𝐾 is a function of 𝑁 and calculated 

using (7), it can be approximated as √𝑁, and the overall 

complexity can be rewritten as follows: 
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Fig.  2. Complete procedure of the proposed scheme 

 

Complexity of LEACH-C = 𝒪 (𝐼 × (𝑁√𝑁)) 

 

Typically, the number of iterations in SA is several times 

greater than 𝑁. For example, in a WSN with 100 nodes, the 

SA algorithm may run around 500 iterations [27]. 

• Proposed scheme 

The complexity of the proposed scheme is similar to 

LEACH-C, except for the intra-cluster election. The intra-

cluster election occurs 𝐾 times, and since there are, on 
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average, 
𝑁

𝐾
 members in each cluster, this election involves all 

cluster members. For each cluster head calculation, 
𝑁

𝐾
 

operations are required. Therefore, the complexity of the 

intra-cluster election is: 

complexity of intra-cluster election = 𝐾 ×
𝑁

𝐾
×

𝑁

𝐾

= 𝒪 (
𝑁2

𝐾
) 

 

By approximating 𝐾 as √𝑁, the complexity will be: 

 

complexity of intra-cluster election =
𝑁2

√𝑁
= 𝒪(N√N) 

The overall complexity in each round involves 

generating CH candidates, forming clusters with these CHs, 

and calculating 𝑓(𝐶′) with a total complexity of 𝒪(𝑁√𝑁); 

updating the CHs through intra-cluster elections, also with a 

complexity of 𝒪(𝑁√𝑁); and re-forming clusters with the 

updated CHs while calculating 𝑓(𝐶′) again with a total 

complexity of 𝒪(𝑁√𝑁). Therefore, the overall complexity is: 

𝒪 (𝐼 × (𝑁√𝑁 +  𝑁√𝑁 +  𝑁√𝑁)) 

 

Complexity of proposed scheme ⇒ 𝒪 (𝐼 × (𝑁√𝑁)) 

In the proposed algorithm  in [23], the local improvement 

phase is implemented using the Variable Step-Size Local 

Search (VSSLS) method, where one or more dimensions of 

the solution are randomly modified in each iteration, followed 

by a re-evaluation of the cost function. The time complexity 

of this phase is estimated as 𝒪(𝑁 × 𝐾). Therefore, total 

complexity is: 

 

Complexity of VSSLS ⇒ 𝒪(𝑁√𝑁) 

 

While the computational complexity of the local search 

phase in our proposed approach is similar to that of VSSLS, 

the incorporation of the Intra-Cluster Election mechanism 

substantially reduces the number of evolutionary iterations, 

reducing it by a factor of between 3 and 94, depending on the 

network size and sensor deployment, thereby accelerating 

convergence and reducing overall processing overhead. 

In the next section, the proposed scheme will be compared 

with LEACH-C across various aspects. 

V.  SIMULATION RESULTS 

This section presents the performance evaluation of the 

proposed scheme, conducted across three different scenarios. 

This evaluation compares the proposed scheme with 

LEACH-C, and the results will be discussed. 

A.  Simulation Parameters 

The proposed scheme and the compared protocols were 

simulated using Omnet++ 6.0.1 [30]. These simulations were 

performed on a system with an Intel Core 𝑖3 − 12100 

3.3 GHz processor, 16 GB of RAM, and the Microsoft 

Windows 11 operating system. The number of sensors in the 

simulations varied from 100 to 400, and they were 

distributed in simulation environments with dimensions of 

100 × 100, 200 × 200, and 400 × 400. In all simulations, 

BS is positioned at the center of the simulation environment. 

Three scenarios are considered for various values and their 

parameters are detailed in Table I. The number of clusters (𝐾) 

for each scenario is calculated using (7). Also, the 

transmission counts in each round have been calculated using 

(6) for each scenario. 

 

 

TABLE I 

Simulation Parameters 

Parameter 
Scenario 

1 

Scenario 

2 

Scenario 

3 

Network Environment (𝑴) 
100

× 100 

200

× 200 

400

× 400 

Number of Sensors (𝑵) 100 200 400 

BS Location (𝒙𝒎, 𝒚𝒎) 50 × 50 
100

× 100 

200

× 200 

Initial Energy (𝑱) 2 2 2 

Number of clusters (𝑲) 10 15 21 

Data packet length (𝐛𝐢𝐭) 1000 1000 1000 

Control packet length (𝐛𝐢𝐭) 200 200 200 

Transmission rate (𝐛𝐩𝐬) 1 × 106 1 × 106 1 × 106 

Transmissions per round 

(#) 
1157 643 95 

Iterations (#) 
LEACH-C 647 564 512 

Proposed 271 6 64 

In these simulations, 𝐸elec = 50
nJ

bit
 , 𝜖fs = 10

pJ

bit

𝑚2 , 𝜖mp =

0.0013
pJ

bit

𝑚4  and 𝑑0 =
𝜖fs

𝜖mp
= 87𝑚 are considered. Due to the 

using of intra-cluster election, the optimization algorithm’s 

iterations have been reduced across all scenarios. In these 

scenarios, the length of the data packets is 1000 bits, the 

control packets 200 bits, and the data transmission rate is 

1 × 106 bps. The main goal of the proposed scheme is to 

achieve better optimization values in less time and with fewer 

algorithm iterations. 

The performance of the proposed scheme will be assessed 

based on the following metrics: 

- Optimization value: This study aims to achieve 

better optimization values in less time, indicating 

that protocols with superior optimization are more 

efficient in this comparison. 

- Residual energy: This metric evaluates the average 

energy remaining in the sensors after each 

transmission, with protocols that have higher 

average energy at any moment considered more 

efficient. 

- Number of alive nodes: In this assessment, 

protocols are evaluated by the number of alive nodes 

in the network. 

- Number of received packets: This metric 

represents the number of packets received by the BS. 

An increase in the number of packets received at any 

given moment and a steeper slope observed on the 

graph signifies better performance. 

B.  Results 

Below, we will discuss the proposed scheme's 

performance evaluation and comparison with LEACH-C 

based on the mentioned criteria. 

    1)  Comparing optimization results 

Fig.  3 displays the results of evaluating and comparing 

the optimization values for both cases. This comparison 

presents the value of the cost function per iteration across all 

scenarios, calculated using (4). The results are based on 

running the algorithm 300 times and averaging the outcomes. 
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Fig.  3. Comparing optimization results of proposed scheme and LEACH-C 
across all scenarios. 

 

Table II presents the optimization values after 1000 

iterations for both LEACH-C and the proposed method, along 

with the achieved improvement. In this paper, the 

optimization values represent the sum of intra-cluster 

distances across all clusters. 

 

TABLE II 

Optimization Values After 1000 Iterations for LEACH-C 

and the Proposed Method 

Parameter Scenario 1 Scenario 2 Scenario 3 

LEACH-C 20553 117359 487140 

Proposed Method 17501 93890 428940 

Improvement ratio 15% 20% 12% 

The results indicate that LEACH-C-ICE achieves 

significantly better optimization with approximately 12–20% 

improvement, while also reducing the number of required 

iterations by 3× to 94×, depending on the network size and 

sensor deployment, compared to LEACH-C. All results are 

presented for 1,000 iterations in each scenario. This paper 

evaluates protocols based on the number of iterations 

required to reach 96% of their optimal value from the last 

iteration. However, the proposed scheme achieves a more 

optimal value than LEACH-C in the first iterations. 

The number of iterations for LEACH-C in scenarios 1 to 

3 is 647, 564, and 512, respectively, while the proposed 

scheme requires only 271, 6, and 64 iterations, as shown in 

Table I. This indicates that the proposed scheme significantly 

reduces the number of iterations compared to LEACH-C, 

allowing it to achieve better optimization value in a much 

shorter time. 

    2)  Comparing the average residual energy in nodes 

Fig.  4 shows the comparison results of the average remaining 

energy of all sensors in different scenarios. 

 

 

 

Fig.  4. Average residual energy in sensors across all scenarios 

 

The results indicate that the proposed scheme performs 

similarly to LEACH-C, with only a slight improvement in 

average remaining energy in nodes. This minor enhancement 

is attributed to the cost function used in LEACH-C, which 

does not account for the distance of the cluster head from the 

base station. Consequently, even with a reduced cost function 

value, better outcomes cannot be achieved, as the highest 

energy consumption occurs in the cluster heads, leading them 

to be the first nodes to deplete their energy in the network. 

    3)  Comparing alive nodes 

Fig.  5 displays the number of alive nodes according to 

the compared protocols across all scenarios. The horizontal 

axis indicates the frame number, and the vertical axis denotes 

the number of nodes with sufficient energy for data 

transmission. 

 

The results indicate that the proposed scheme shows a 

slight improvement in the number of alive nodes. However, 

it is important to note that it was implemented with 

significantly fewer iterations than LEACH-C, allowing it to 

achieve better results in a shorter time. 

    4)  Comparing number of received packets at BS 

This section analyzed the amount of data transmission to 

BS in LEACH-C, and the proposed scheme. A notable feature 

of LEACH-C is the amount of data transmitted to BS. 

Fig.  6 shows packet delivery to BS. The vertical axis 

shows the number of packets and the Horizontal axis shows 

the frame number. Each node sends one data packet per 

frame, except during the setup phase. 
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Fig.  5. Number of alive nodes per transmission for all scenarios 

 

 

 

 

Fig.  6. Number of packets delivered to BS per frame number across different 
scenarios 

 

The results indicate that the proposed scheme performs 

similarly, with a slight improvement as network size 

increases, demonstrating better performance with larger 

networks. 

VI.  CONCLUSION 

In this paper, we introduced the Intra-Cluster Election 

(ICE) technique, which enhances the performance of 

centralized clustering protocols in Wireless Sensor Networks 

(WSNs), particularly within the LEACH-C framework. By 

optimizing the cluster head selection process and reducing 

convergence iterations, ICE demonstrates improved 

optimization value despite only modest gains in energy 

efficiency and data delivery rates compared to LEACH-C. 

Simulation results indicate that the implementation of ICE 

significantly enhances the efficiency of network operations, 

with an approximate 12 − 20% improvement in the cost 

function compared to LEACH-C, while also reducing the 

number of required iterations by a factor ranging from 3 to 

94, especially as the scale of the network increases. Future 

work can explore further refinements to the cost function and 

investigate the applicability of ICE in various WSN 

configurations and scenarios. Overall, ICE presents a 

promising approach for optimizing cluster head selection, 

thereby contributing to the advancement of effective data 

transmission and energy conservation in WSNs. 
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