
 Abstract-chnology scaling becomes increasingly aggressive, 

lifetime reliability has emerged as a critical challenge for 

modern digital circuits, exacerbated by manufacturing process 

variations and aging effects. This paper introduces GenSO, a 

Genetic algorithm-based multi-objective Sequential circuit 

Optimization framework designed to enhance the lifetime 

reliability of sequential circuits modeled as Finite State 

Machines (FSMs), while simultaneously addressing initial delay 

and power consumption. The framework leverages a cross-layer 

approach, utilizing a gate-level delay degradation model that 

accounts for process variations and aging to estimate circuit 

lifetime reliability. A novel metric, termed Guardband-Aware 

Reliability (GAR), is proposed to provide a fair assessment of 

FSM lifetime reliability in relation to the guardband and timing 

yield specified by the designer. A multi-objective genetic 

algorithm is then employed to optimize delay, power 

consumption, and lifetime reliability in FSM-based sequential 

circuits. Experimental results demonstrate that GenSO 

successfully identifies non-dominated solutions for sequential 

circuit designs, achieving simultaneous optimization of initial 

delay, power consumption, and lifetime reliability. With a 15% 

delay overhead for a 6-year lifetime and a 10% variation ratio, 

GenSO improves circuit reliability by an average of 64.34%, 

significantly outperforming state-of-the-art reliability 

optimization frameworks, which typically achieve less than 30% 

improvement in lifetime reliability.  

 

Index Terms—Finite State Machines, Lifetime Reliability, 

Multi-objective Optimization, Process Variations, BTI. 

I. INTRODUCTION 

ITH ever-increasing downscaling of CMOS devices, 

aging techniques (such as Bias Temperature Instability 

(BTI)) have been manifested as an important reliability issue 

in nano-scale technologies. [1]-[4]. BTI causes the circuit 
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delay to increase over the operation time which in turn, may 

result in timing constraints violation of digital circuits [5], 

[6]. This affects the correct functionality of the nano-scale 

digital circuits and systems which leads to timing failure of 

the system before its targeted lifetime.  Hence, lifetime 

reliability has been added to the traditional design challenges 

of digital systems in nanometer technology nodes. On the 

other hand, fabrication-induced Process Variations (PV) 

have also emerged in nano-scale digital systems. PV lead to 

significant deviation of timing characteristics in a chip from 

its initial design; i.e. the experiments showed that, PV may 

cause up to 30% variability in timing characteristics and up 

to 20X variation in leakage power of digital circuits. 

Importantly, the interdependency between PV and BTI 

mechanisms motivates the designer to consider both of them 

during the analysis and optimization of nano-scale digital 

systems.  

Basically, digital systems are composed of a control-path 

and a data-path; i.e. the control-path controls the sequence of 

the arithmetic and logical operations performed on the data-

path. The control-path is implemented using sequential 

circuits which are modeled by Finite State Machine (FSM). 

Sequential circuit optimization modelled as FSM through 

efficient state assignment and encoding is a traditional 

problem in sequential circuit design.  

There are some previous works on FSM state assignments, 

most of which focused on optimizing the circuit area and 

power [7]-[15]. In [7], some low power techniques are 

investigated in FSM synthesis methods.  In [8], novel 

approaches to increase the fault resilience FSM encoding is 

proposed. The problem of algebraic synthesis of a FSM is 
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solved by matrix approach in [9]. In [10], transforming group 

codes in mealy finite state machines is introduced to optimize 

synthesized sequential circuits. In [11], a multi-objective 

genetic algorithm was proposed to find the optimal state 

assignment considering area and power consumption in 

sequential circuit designs. However, the reliability metric is 

ignored in this work. In [12], binary particle swarm 

optimization algorithm was proposed to optimize the 

sequential circuit area by solving the state assignment 

problem. However, this method focuses on optimizing circuit 

area. In [13], a majority-based evolution (MBE) Simulated 

Annealing (SA) algorithm was proposed for FSM state 

encoding to optimize both circuit area and power. However, 

this work ignores the impact of PV and BTI in the 

characteristics of the synthesized circuit. In [14], a low power 

FSM synthesis approach based on a Fuzzy c-mean clustering-

based decomposition method is proposed. The proposed 

method partitioned a set of states of FSM into a collection of 

c-fuzzy clusters and decomposed FSM into a set of c-sub 

machines and de-activate some to reduce the power 

consumption. One limitation of this work is that it only 

focuses on optimizing power consumption. This works is also 

focused on A Multi-Population Genetic Algorithm (MPGA)-

based state assignment method was proposed in [15] for FSM 

synthesis to optimize both dynamic and static power 

consumption. MPGA consists of a set of inner-GA as a local 

search for finding low-power state assignment and outer 

loops to optimize the parameters of inner-GAs. This works is 

also focused only on power consumption and ignores other 

properties.  

Despite valuable researches in sequential circuit 

optimization through proper FSM state assignements, less 

attention has been paid to design challenges of nanometer 

technology nodes (i.e. PV and BTI-oriented reliability issues) 

in the optimization of sequential circuit designs. In [16], a 

simulated annealing (SA) based state assignment algorithm 

was proposed for minimization of aging-induced degradation 

in the synthesized circuit. High probability states are re-

encoded to minimize Negative BTI (NBTI) effects because 

FSM operates in these states in majority of lifetime. There 

are some limitations with this work: 1) no statistical model is 

proposed for considering the joint effects of PV and BTI 

which may lead to large inaccuracy due to interdependency 

of PV and BTI [17] they ignore the delay degradation due to 

Positive BTI (PBTI) occurring in NMOS transistors which is 

getting more important in deeper nanometer technology 

nodes [18] the possibility of trapping in local optimum of SA 

algorithm [19] which is used for FSM optimization.    

In this paper, a Genetic algorithm-based multi-objective 

Sequential circuit Optimization framework called GenSO is 

presented considering the impacts of process variation and 

aging. The goal of GenSO is to minimize the decline in 

lifetime reliability, power consumption and the initial delay 

of sequential circuits considering the joint effect of PV and 

BTI. Considering the FSM model of a given sequential 

circuit, GenSO takes advantage of a multi-objective genetic 

algorithm (GA) to find the optimal state assignment for the 

FSM in the objective space of lifetime reliability, power 

consumption, and initial delay. The impacts of PV and BTI 

on the gate delay is modeled using a statistical model while 

the lifetime reliability of the circuit is computed using a 

metric called  Guardband-Aware Reliability (abbreviated as 

GAR). Using an adaptive multi-objective ranking approach 

within GA, GenSO performs a wide design space exploration 

to optimize the antagonistic objectives simultaneously, 

instead of converting all objective functions into one based 

on a weighted sum approach, as is often carried out. The 

output of GenSO is a collection of non-dominated solutions 

which provides a wider picture of design space enabling the 

designer to pick out the best solution according to their 

design considerations. Experimental results show that, 

GenSO can find the non-dominated solutions for sequential 

circuit design whose initial delay, power consumption, and 

lifetime reliability are simultaneously optimized. In terms of 

reliability improvement, the results show that, GenSO 

averagely increases the reliability more than 69% compared 

to about 29% reliability improvement achieved by the only 

sequential circuit optimization technique. GenSO helps 

sequential circuit designers in making wise trade-offs in their 

design decisions and avoid suboptimal solutions. By 

imposing 15% delay overhead for 6-year life time and also 

10% variation ratio, GenSO, on average, outperforms 

reliability of the circuit by 64.34% comparing to the state-of-

the-art reliability optimization framework for sequential 

circuits which achieves less than 30% improvement in 

lifetime reliability.  

Briefly, the main contributions of this paper is as follows:  

1) To the best of our knowledge, GenSO is the first 

methodology for multi-objective optimization of 

sequential circuits in the objective space of lifetime 

reliability, power consumption, and initial delay, 

2) It uses a metric called Guardband-Aware Reliability 

(abbreviated as GAR) to evaluate the lifetime 

reliability of circuits considering a guardband and 

timing yield specified by the designer, 

3) GenSO takes advantage of an adaptive multi-

objective ranking approach within GA to achieve the 

set of non-dominated solutions instead of converting 

all objective functions into one based on a weighted 

sum approach, its optimization process is accelerated 

using GPGPU to provide a faster statistical sequential 

circuit optimization during the sequential circuit 

synthesis. 

The rest of this paper is organized as follows. Section II 

brings some backgrounds in the area of reliability concepts 

around the digital circuits, the power model and the statistical 

model for BTI an aging-aware statistical gate delay. Section 

III describes Guardband-aware Reliability (abbreviated as 

GAR. In section IV, GenSO framework is described in 

addition to the parallel computation of proposed framework. 

Section V presents the experimental results and finally, 

section VI concludes the paper. 

II. BACKGROUND 

Some necessary basic information in the area of statistical 

static timing analysis and the aging effects on transistor 

delays are presented in this section. 

 Statistical Model for BTI 

A common aging mechanism in nanoscale technologies is 

BTI [2]. Two types of BTI effects exist: Negative BTI 

(NBTI) and Positive BTI (PBTI), which affect PMOS 
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transistor under negative and positive gate-to-source bias, 

respectively. Although NBTI was traditionally considered as 

the major BTI reliability issue, PBTI has recently introduced 

as another important problem due to the high-k metal gate 

dielectric used in deeper nanoscale technologies [20]. These 

mechanisms lead to the gradual increase in transistor 

threshold voltages where mainly depends of the time 

percentage for which the device is at stress, named as stress 

probability (SP) [5]. In order to calculate BTI-induced Vth 

degradation, Eq. (1) is proposed in  [21]-[24], as follows: 

Δ𝑉𝑡ℎ,𝐵𝑇𝐼 = 𝐾. 𝑡𝑜𝑥 . √𝐶𝑜𝑥. (𝑉𝐺𝑆 − 𝑉𝑡ℎ0). 𝑒
𝐸𝑜𝑥
𝐸0 . 𝑒

−𝐸𝑎
𝑘.𝑇 . 𝑎𝑛 . 𝑡𝑛 (1) 

where Table I shows the definitions of the parameters.  
 

TABLE I 

 The Definition of the Parameters in Eq. (1) 
Parameter Definition 

K A technology-dependent fitted 

constant 

n Time exponent 

t0x Gate oxide thickness 

E0x Vertical electric field 

T Temperature 

k Boltzmann constant 

Cox Oxide capacitance per unit of area 

V_th0 Initial threshold voltage value 

Ea Constant 

E0 Constant  

a Stress probability 

 

 In nano-scale integrated circuits, the presence of PV makes 

𝑉𝑡ℎ0 to become a random variable. A first-order Taylor 

approximation of Eq. (2) can be used to show the effect of 

PV in the long-term degradation of Vth [24]: 

 

∆𝑉𝑡ℎ,𝐵𝑇𝐼 = 𝐴. (1 − 𝛾. ∆𝑉𝑡ℎ.𝑃𝑉). 𝑎𝑛 . 𝑡𝑛 

 
(2) 

where ∆𝑉𝑡ℎ.𝑃𝑉  shows the degradation in 𝑉𝑡ℎ0  caused by PV, 

and A and 𝛾  are fitting parameter. Then, the total Vth 

variation of a transistor m can be obtained by summing the 

contributions due to BTI (∆𝑉𝑡ℎ,𝐵𝑇𝐼  ) and PV (∆𝑉𝑡ℎ.𝑃𝑉 ), as 

given by Eq. (3) [24][25]: 

 

∆𝑉𝑡ℎ,𝑚 = 𝐴𝑚. 𝑎𝑚
𝑛 . 𝑡𝑛 

+(1 − 𝛾. 𝐴𝑚. 𝑎𝑚
𝑛 . 𝑡𝑛). 𝛽𝑘 . ∑ ∆𝑉𝑡ℎ(𝑖)

𝑖
 

(3) 

 

It is notable that, at the beginning (t = 0), only PV causes 

the total variation in Vth while, as circuit ages, both the mean 

value and the variance of Vth is also affected by BTI 

mechanisms [26]. 

  Statistical Aging-Aware Gate Delay Model  

In order to statistically analyze the delay of the 

combinational circuit, the gate delay is modeled as a linear 

function of random variables with normal distribution 

describing the process parameters [25], as given in Eq. (4): 

 

𝐷𝑘 = 𝐷𝑛𝑜𝑚(𝑘) + 𝐵𝑘 . 𝑎𝑘
𝑛 . 𝑡𝑛 + 

(1 − γ. 𝐴. 𝑎𝑘
𝑛 . 𝑡𝑛). 𝛽𝑘. ∑ Δ𝑉𝑡ℎ(𝑖)

𝑖

 (4) 

 

    where  𝐷𝑛𝑜𝑚(𝑘) indicates the nominal gate delay, 𝐵𝑘 is a 

fitting constant corresponding to the effects of Vth increase 

on the gate delay under nominal condition induced by BTI, 

and β𝑘 is a fitting coefficient which reflects the gate delay 

change caused by PV-originated Vth shift without the BTI 

effect. 

Note that Vth is consisted of two variation components; 

i.e. a time-zero variability component and runtime BTI 

originated one (See Eq. (3)).  Since computational 

complexity remains low and the error that propagated by 

discarding high order terms can be ignored, this linear model 

is sufficient for small enough variations [27].  

The PV & BTI-aware statistical gate delay can be 

integrated into a statistical static timing analysis tool as 

follows: accurate HSPICE electrical simulations is used to 

obtain the parameters in Eq. (4)Then, HSPICE simulations 

are run for each gate type at a comprehensive design 

conditions including different input transition time, gate 

sizes, load capacitances, and the operating temperatures. The 

nominal gate delay and sensitivities of the delay to 

parameters are computed. Finally, the fitting parameters of 

Eq. (4) are obtained using polynomials. 

 Power Model 

Dynamic power is classically modeled as given in Eq. 

(5): 

 

𝑃𝑑𝑦𝑛 = α × 𝐶𝑡𝑜𝑡 × 𝑉𝑑𝑑
2 ×. 𝑓 (5) 

 

    where α is the average switching activity, 𝐶𝑡𝑜𝑡 shows the 

total capacitance, and 𝑓 indicates the clock frequency. 

Eq. (6) shows how the leakage power is modeled [28]: 

 

𝑃𝑙𝑒𝑎𝑘 = 𝑒𝑎0+𝑎1.𝐿+𝑎2.𝑊+𝑎3.𝑉𝑡ℎ (6) 

 

The total power of logic gate is computed using Eq. (7): 

 

𝑃𝑡𝑜𝑡 = 𝑃𝑑𝑦𝑛 + 𝑃𝑙𝑒𝑎𝑘 (7) 

 Guardband Aware Lifetime Reliability (GAR) Metric 

In order to evaluate the lifetime reliability of the circuits, 

our previously proposed metric called Guardband Aware 

Reliability (GAR) metric was used [25].  

In order to have an operational combinational circuit at 

time 0, the value of the Critical Path (CP) delay should be 

less than a parameter, called timing constraint (𝜏). However, 

due to the process variations, the CP delay is modeled by a 

normally distributed random variable [27]. The PV-aware 

timing constraint for combinational circuits is traditionally 

considered based on the concept of p-percentile point of CP 

delay Cumulative Density Function (CDF) (Fig. 1.).  

 

Fig. 1. p-percentile point of CP delay 

In high reliable circuits, a common practice is to consider 

a guardband for the CP delay (i.e. p-percentile point value of 

CP CDF) to guarantee the given reliability. Hence, for a high 

reliable circuit design, 𝜏 is obtained as shown in Eq. (8): 
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𝜏 = (1 + 𝑔) × 𝜑0
−1(𝑝/100) (8) 

 

    where 𝑔 indicates the guardband value (0 ≤ 𝑔 ≤ 1)  and 

𝜑0
−1 is the inverse CDF of CP delay distribution. So, the GAR 

value for the lifetime reliability of the combinational circuit 

at a given time 𝓉 with a given guardband of 𝑔 for the 𝑝-

percentile point value of CP CDF can be computed as given 

in Eq. (9) [25]: 

 

ℛ𝑔
𝑝(𝓉) =

𝜑𝓉((1 + 𝑔) × 𝜑0
−1(𝑝/100))

𝜑0((1 + 𝑔) × 𝜑0
−1(𝑝/100))

 (9) 

where,  𝜑𝓉  and 𝜑0  show the CDF of CP delay distribution at 

time 𝓉 and 0, respectively. More details on GAR metric can 

be found [25].  

Eq. (10) shows how to compute the GAR degradation 

considering a given guardband 𝑔 at time 𝓉 for a specific 𝑝-

percentile point value (Δℛ𝑔
𝑝(𝓉)): 

 

∆ℛ𝑔
𝑝(𝓉) =

ℛ𝑔
𝑝(𝓉) − ℛ𝑔

𝑝(0)

ℛ𝑔
𝑝(0)

 (10) 

III. GENSO FRAMEWORK 

     In this section, we present the GenSO framework, 

including the details of the GA implementation. First, we 

provide a motivational example to show the impacts of 

different FSM state encodings on the lifetime reliability of 

the synthesized sequential circuits. Then, we provide the 

overview of the GenSO framework. The details of the multi-

objective GA-based optimization engine used in GenSO is 

also presented.  

 Motivational Example 

    A run time BTI optimization technique for finite state 

machines is proposed. FSMs operate in multiple states at 

different points of time. Output of state registers drive a 

number of MOSFET transistors in a circuit, some of which 

might be on the critical path. The number of transistors on 

critical paths subject to stress varies based on the encoded 

state representation. So, using different state coding may 

reduce GAR degradation. Here we provide an example. 

Table II shows train4.kiss2 benchmark. 

 

TABLE II  

 Train4.Kiss2 Benchmark 
Input Current state Next state Output 

00 ST0 ST0 0 

10 ST0 ST1 - 

01 ST0 ST1 - 

10 ST1 ST1 1 

01 ST1 ST1 1 

00 ST1 ST2 1 

11 ST1 ST2 1 

00 ST2 ST2 1 

11 ST2 ST2 1 

01 ST2 ST3 1 

10 ST2 ST3 1 

10 ST3 ST3 1 

01 ST3 ST3 1 

00 ST3 ST0 - 

We then use two different coding for synthesis as Table III. 
 

TABLE III  

Different State Encoding Assigned to Kiss4 Benchmark 
 ST0 ST1 ST2 ST3 

A 00 01 10 11 

B 10 01 11 00 

 

Fig. 2.(a) and Fig.  2.(b) show synthesized circuit by using 

state encoding A and B according to Table III, respectively. 

Synthesized circuit’s critical path is highlighted. For accurate 

analysis, we simulate both circuit in HSPICE simulation for 

9 years lifetime. Table IV shows initial delay (ns) (using Eq. 

(4)), delay degradation (%), and average power consumption 

(using Eq. (5)-(7)) of these two different encodings. In this 

example, state encoding B has better delay, delay degradation 

during lifetime and power than state encoding A. So, 

different state encoding can result in different reliability, 

delay and power.  

TABLE IV  

Initial delay (ns), Delay Degradation (%) and Average 

Power Consumption (nW) of Different State Encodings 

in Table III 
State 

Encoding 

Initial  

Delay (ns) 

Delay Degradation 

(%) 

Average 

Power (nW) 

A 64.9 42 376 

B 40.2 34 279 

 

On the other hand, the re-encoding of states changes 

hamming distance during the state transitions. This in turn 

can incur power overhead. So, in this work, we introduce 

multiobjective GA. 

 
(a) train4 benchmark synthesized circuit by using state 

encoding A that is 00 for ST0, 01 for ST1, 10 for ST2, and 11 

for ST3 

 
(b) train4 benchmark synthesized circuit by using state 

encoding B that is 10 for ST0, 01for ST1, 11 for ST2, and 00 

for ST3 
Fig. 2. train4.kiss2 benchmark synthesized circuit by different state 
encoding 

 Overall Overview of GenSO 

GenSO is on the basis of a multi-objective GA. In GA, the 

solutions are modeled as an array of binary values called as 

chromosomes [29]. GA starts by generating an initial solution 

pool (step ❶). In GA, each solution is known as individual 

in a population and represented by a chromosome, or an array 

of binary values. For each population, GA evaluates the 

individuals based on defined fitness functions (step ❷) and 

then finds the optimized solutions up-to this generation using 

a non-dominated sorting approach (step ❸).  Then, GA 

selects two chromosomes as the parents (step ❹) in order to 

reproduce chromosomes for the next generation. Then, the 
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genetic operations (i.e. crossover and mutation) are applied 

to the chromosomes (step ❺). Crossover refers to partial 

exchange of genes so that the children chromosomes may 

inherit good features from both parents. In the mutation, 

some random alterations may happen in the genes of parent 

chromosome with a certain probability, known as the 

mutation rate. This evolution cycle may iterate for some 

generation to reach to a halting condition to end the GA; i.e. 

the algorithm will be stopped when the number of 

generations reaches to a pre-specified value. In the following, 

we explain the details of each step in the GenSO.   

1) Step ❶: Chromosome representation and Initial 

Population 

In GenSO, each child shows a possible state encoding for 

the FSM of the sequential circuit; i.e. genes in child shows a 

sequence of bits which represents current state encoding of 

the FSM. For an FSM which has n states, a chromosome 

includes n number of genes where each gene is composed of 
⌈𝑙𝑜𝑔2 𝑛⌉ bits. Fig. 3. shows a state encoding for a sequential 

circuit with 2 state flip-flops (i.e. a FSM with 4 states). 

 

 

Fig. 3. Chromosome structure for GenSO 
 

The first population is generated with a number of 

preliminary solutions randomly. 

2) Step ❷: Fitness Function Evaluation  

In this paper, a multiobjective GA is used to make the 

opportunity for designer to choose the solution with the 

preferred tradeoff among various metrics. GenSO considers 

three fitness functions; i.e. initial delay (briefly referred as 

‘delay’ in the rest of paper), power consumption, and aging-

induced reliability degradation (GAR degradation based on 

Eq. (18)). So, the fitness functions of each child is defined as 

follows; 

𝐹(𝐷𝑖) =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐷𝑒𝑙𝑎𝑦(𝐶ℎ𝑖𝑙𝑑𝑖)

𝑀𝐴𝑋
𝑖=1:𝑁𝑜𝑃

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐷𝑒𝑙𝑎𝑦 (𝐶ℎ𝑖𝑙𝑑𝑖))
 

(11) 

and  

𝐹(𝑃𝑖) =
𝑃𝑜𝑤𝑒𝑟(𝐶ℎ𝑖𝑙𝑑𝑖)

𝑀𝐴𝑋
𝑖=1:𝑁𝑜𝑃

(𝑃𝑜𝑤𝑒𝑟 (𝐶ℎ𝑖𝑙𝑑𝑖))
 (12) 

and  

𝐹(𝐺𝐴𝑅𝑖) =
𝐺𝐴𝑅 (𝐶ℎ𝑖𝑙𝑑𝑖)

𝑀𝐴𝑋
𝑖=1:𝑁𝑜𝑃

(𝐺𝐴𝑅 (𝐶ℎ𝑖𝑙𝑑𝑖))
 (13) 

 

   where 𝐹(𝐷𝑖), 𝐹(𝑃𝑖), and 𝐹(𝐺𝐴𝑅𝑖) respectively represent 

the fitness functions used for the delay, power consumption, 

and   guardband-aware reliability degradation of the 

combinational circuit corresponding to the state encoding of 

𝐶ℎ𝑖𝑙𝑑𝑖 .  𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐷𝑒𝑙𝑎𝑦(𝐶ℎ𝑖𝑙𝑑𝑖), 

𝑃𝑜𝑤𝑒𝑟(𝐶ℎ𝑖𝑙𝑑𝑖), 𝐺𝐴𝑅 (𝐶ℎ𝑖𝑙𝑑𝑖) respectively show the delay,  

power consumption, and guardband-aware reliability 

degradation of the combinational circuit of the corresponding 

state encoding. 𝑀𝐴𝑋
𝑖=1:𝑁𝑜𝑃

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐷𝑒𝑙𝑎𝑦 (𝐶ℎ𝑖𝑙𝑑𝑖)), 

𝑀𝐴𝑋
𝑖=1:𝑁𝑜𝑃

(𝑃𝑜𝑤𝑒𝑟 (𝐶ℎ𝑖𝑙𝑑𝑖)), and 𝑀𝐴𝑋
𝑖=1:𝑁𝑜𝑃

(𝐺𝐴𝑅 (𝐶ℎ𝑖𝑙𝑑𝑖)) are 

the result of applying the statistical maximum operation on 

the statistical distribution of the delay (using Eq. (4)), power 

consumption (using Eq. (5)-(7)), and guardband-aware 

reliability (using Eq. (8)-(10)) of all combinational circuits of 

the state encodings of the current population, respectively. 

Note that, the distributions of the parameters are evaluated by 

statistical analysis methods and then, p-percentile point 

values are used to find the fitness function value.  

These fitness functions are evaluated individually and then, 

ranked in a 3-D space through a non-domianted sorting 

approach explained as following.  

3) Step ❸: Non-dominated Sorting (Pareto Ranking) 
In multiobjective optimizations, the goal is to optimize 

more than one metrics. In such cases, non-dominated sorting 

is used; i.e. a solution dominates another if it is not worse in 

any metric and is better in at least one. Based on this sorting, 

each solution will receive a rank called the Pareto rank, 

defined as the number of other solutions that do not dominate 

that solution.  

In GenSO, we are interested in optimizing the delay, 

power consumption, and lifetime reliability of the sequential 

circuits. The Pareto rank of the solutions are computed based 

on the values of these metrics obtained from the defined 

fitness functions. 

4) Step ❹: Parent selection 
After finding the Pareto ranking of the solutions 

(individuals), a certain number of the lowest-rank solutions 

should be removed and new solutions (offsprings) will be 

reproduced from selected parents. In order to avoid local 

optimum at the beginning cycles of GA, GenSO takes 

advantage a variable called equity for parent selection step. A 

higher equity means that an individual with a lower rank has 

still high chance of being selected as the parent. As evolution 

cycles progresses, equity reduces by a ratio called edr. The 

equity variable helps GenSO to converge faster as it becomes 

gradually greedier.  

Algorithm 1 shows the selection and reproduction of 

GenSO. The variables r1,r2 represent a random number 

between 0 and population array length. The initial values for 

variables and initial population are addressed in Lines L1–

L3. Lines L4–L11 shows the main process of selection and 

reproduction. In line L5 and L6 two random number are 

generated. Line L7 and L8 select two individuals as parents. 

Whatever fairness is smaller, higher-ranked individuals are 

selected to mate. In line L9, selected parents mate through 

genetic operations (i.e. crossover and mutation) to produce 

new offspring and replace them for the least Pareto rank 

individuals. Crossover and mutation are described in details 

in the following.  Regarding the runtime complexity of this 

algorithm, there is a loop which iterates for the number of 

new children. The number of new children is a fraction of the 

total number of population which in its turn, is a small 

fraction of the number of all possible combinations of state 

assignment; i.e. 2𝑛 log(𝑛) where 𝑛 shows the number of states 

of the FSM.  

It is notable that, the iteration number is much smaller that 

the number of all possible combinations; for example for the 

largest benchmark circuit “tbk” with 32 state flip-flops, the 

circuit is optimized for only 20 iterations of algorithm 1.  
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Algorithm 1: Selection and reproduction Algorithm 
Pseudocode 

Input: Population, fdr Output: Next Generation 
L1: Sort Population in order of decreasing Pareto rank 
L2: fairness = initial value * fdr 
L3: Set index_to_replace to maximum index of 

population 
L4: For i:1 to num_new_child 
L5: r1= Random (0, max_array_index) 
L6: r2= Random (0, max_array_index) 
L7: parent1 = population [fairness*r1] 
L8: parent2 = population [fairness*r2] 
L9: population [index_to_replace]= 

Mutation(Crossover(parent1, parent2)) 
L10: index_to_replace = index_to_replace-1 
L11: End 

5) Step ❺: Crossover and Mutation 

Each gene in a chromosome represents a case of the state 

encoding in the FSM. In this work, one-point crossover is 

used, in which a random crossover point is selected and the 

tails of its two parents are swapped to get new off-springs. 

Algorithm 2 show crossover procedure. By using one-

point crossover, head and tail obtained for parent1 and 

parent2 (Line L1, L2). Here, we consider head and tail length 

as half of total states. Then, head1 is added to the new child 

(offspring). To complete child encoding, we define a set 

called remained which contains the encoding that exist in 

parent2 (ENC2) and not used in head1. Finally, the encoding 

from remained will be added to new child randomly. The 

complexity of this algorithm is O(1) as there is no loop in it.    

 

Algorithm 2: Crossover procedure  

Input: parent1, parent2 Output: new offspring  

L1: Get head1,tail1 of parent1 

L2: Get head2,tail2 of parent2 

L3: Add head1 to new_child1 

L4: Let remained = {ENC2 – head1} 

L6: Add from remained to the new_child1 randomly 

L11: End 

 

When a new offspring is generated, the mutation is started. 

We use replacing mutation in which a random encoding is 

selected to be replaced with another from the encodings used 

or unused in the selected parent. The rate of genetic 

operations (i.e. crossovers and mutations per generation) are 

pre-specified by the user in GenSO. 

IV. EXPERIMENTAL RESULTS 

In this section, the efficacy of the proposed framework in 

nano-scale sequential circuits is investigated using extensive 

experiments. First, we describe the experiment setup and 

then, various aspects of GenSO in multi-objective FSM 

optimization are investigated.  

 Experiment Setup 

The proposed framework, GenSO, is implemented in C++ 

programming. All experiments are carried out on an Intel 

Core i7 quad-core, with clock frequency of 4.6 GHz and total 

32G RAM. To implement the proposed parallelized 

approach, CUDA is used which a parallel is computing 

platform and application programming interface (API) model 

developed by NVIDIA. The CUDA device is NVIDIA 

GeForce GTX 1080 with 8GB memory and 20 stream 

multiprocessors (SMs). 

FSMs of LGSYSYNTH90 suit benchmarks [30] and ITC’99 

[37] are synthesized with Berkley ABC synthesis tool [31] 

which is an open-source tool used for synthesis and 

verification of binary sequential logic circuits. Scalable logic 

optimization is combined by ABC on the basis of And-

Inverter Graphs (AIGs), optimal-delay DAG-based 

technology mapping for look-up tables and standard cells, 

and innovative algorithms for sequential synthesis and 

verification.  

For timing analysis, parameters A, B, γ,  and β in the 

statistical aging model (i.e. Eq. 4) are fitted by HSPICE 

simulation. In the fitting process, MOSFET Model 

Reliability Analysis (MOSRA) is used and all HSPICE 

simulations are performed with PTM 22nm technology node 

model [32], supply voltage 1.1V, and 354°K temperature. 

The switching activity of the signals are calculated with 

regard to their signal probabilities.  Values of SP for all 

primary inputs’ (PIs) are set to 0.5, and for internal nodes, SP 

is obtained with the help of approach proposed in [36]. 

In order to model the spatial correlation between different 

gates in the circuit, a 3-level quad-tree partition [33] is used. 

Each gate is randomly allocated on the 4×4 grid at the bottom 

level and then, random variables related to the gate along the 

hierarchy are determined. The random variables at the same 

level have the same probability distribution. The total PV 

effect on Vth is assumed 10% which is divided into 6% 

systematic variation and 8% random variations. 

GA configuration parameters values used in the simulation 

are shown in Table V. The number of new solutions is the 

number of the low-rank solutions replaced by the newly 

generated children. After performing crossover and mutation, 

one evolution cycle finishes. 

 

TABLE V 

 GA Configuration Parameters Values 
Parameter Value 

Population 100 
Mutation rate 0.5 

#mutation 5 

#cross over 10 
#new child 20 

#halt condition 20 

fairness 1 
fdr 0.9 

 Validation of GAR metric 

In order to validate the GAR metric, an experiment is carried 

out, in which the delay degradation of two randomly selected 

sequential circuits form kiss2 benchmark are analyzed using 

the HSPICE simulation: a circuit from the first population 

(SC1) and another one from the final population (SC2). It is 

notable, that the BTI-induced delay degradation of a circuit 

is inversely related to its lifetime reliability; i.e. a circuit with 

less delay degradation has higher lifetime reliability. The 

obtained results presented in Table V shows that the delay 

degradation of SC2 is less than SC1. This means that the GAR 

metric incorporated in fitness function of GenSO can 

effectively guide it to find the FSM encoding with better 

lifetime reliability.  
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TABLE VI 

 Delay Degradation, Initial Delay, and Power 

Consumption of Two Circuits From the First and Final 

Population Generated by GenSO  

Circuit 
Delay 

Deg. 

Delay 

(ps) 
Avg. Power (nW) 

SC1 48% 41.3 392 

SC2 22% 15.7 288 

 Lifetime reliability analysis 

Fig. 4. shows the reliability of six LGSYNTH90 

benchmarks (Kiss2 format) and two ITC’99 benchmarks 

(b12 and b15) during their lifetime under 15% PV ratio 

(3𝜎/𝜇). FSM synthesized with optional coding. As shown in 

Fig. 4., FSM reliability is decreased during its operational 

lifetime. For example, the reliability of beecount is reduced 

to 0.8222, 0.6492, and 0.5188 for 3-, 6- and 9-year lifetime. 

Fig. 5. shows circuit reliability with different PV ratios 

(3𝜎/𝜇) during 6-year lifetime. It is observed that increasing 

PV decreases the circuit lifetime reliability. For instance, the 

reliability for beecount is 0.6935, 0.6492 and 0.6295 for 5%, 

7% and 10% PV. 

 Multi-objective Optimization Results 

In order to investigate the multi-objective optimization 

provided by GenSO, Fig. 6. (a-d) show the initial and final 

population for some representative benchmarks (i.e. 

dk27.kiss2, sand.kiss2, tbk.kiss2, and b15).  As can be 

observed, the power consumption, GAR degradation, and the 

initial delay of the final population (shown by the blue stars) 

are less than the initial one (indicated by the red circles). This 

acknowledges that GenSO improves the populations (i.e. 

state encoding of sequential circuits) in terms of all objectives 

simultaneously. 

 

 

Fig. 4.  FSM reliability during different lifetimes (under 15% 

PV ratio).   

 

 
Fig. 5.  FSM Reliability for different PV ratios (operation time 

of 6 years). 
  

 
(a) dk27.kiss2.kiss2 

 
 (b) sand.kiss2 

 
(c) tbk.kiss2 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

 
(d) b12 

Fig. 6. The initial and final population generated by  GenSO for four 

representative benchmarks  
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In order to compare the initial and final populations, we 

choose the solutions with the best fitness value from the 

initial and final populations. Since GenSO is a multi-

objective framework, we choose the solutions with a fitness 

value computed by a weighted sum with the equal weights 

for the objectives. Table VII compare the solution with the 

best fitness value from the initial and final population. 

Column 1 shows the benchmark name and column 2 indicates 

whether the initial population is shown in the row or the final 

one. Column 3 shows the initial delay and power 

consumption. The following three columns show the GAR 

degradation for 3-, 6-, and 9-year lifetime. As can observed, 

GenSO improves all parameter values of the solutions and 

find the solutions which are better in all respect compared 

with initial ones.  

Table VIII shows the efficacy of GenSO in terms of aging-

induced timing for lifetime reliability of 99% for 6-year 

operation time and 15% process variation ratio. The first 

column indicates the benchmark circuit while the second, 

third, and fourth columns respectively show the timing 

margin without GenSO, timing margin with GenSO, and the 

improvement achieved by GenSO. 

 

TABLE VII  

 Comparison of the Initial and Final Generation 

Bench. Gen. Initial 

∆
𝓡

𝟎
.𝟏

𝟎
.𝟗

𝟗(𝟑
) 

∆
𝓡

𝟎
.𝟏

𝟎
.𝟗

𝟗(𝟔
) 

∆
𝓡

𝟎
.𝟏

𝟎
.𝟗

𝟗(𝟗
) 

 
 Delay 

(ps) 

Power 

(nW) 
% % % 

beecount 
Initial 2640 221974 17.76 35.07 48.10 

Final 1741 213368 5.89 15.60 25.98 

cse 
Initial 5289 145123 10.50 21.90 32.83 

Final 4471 128387 4.83 10.69 17.29 

dk27 
Initial 1227 12590 19.03 37.49 51.31 

Final 805 11801 2.42 6.31 10.56 

lion9 
Initial 2153 44423 9.88 22.26 33.90 

Final 1388 41777 2.71 8.25 14.70 

planet 
Initial 17843 528562 13.98 30.10 42.58 

Final 11267 494259 3.42 8.71 15.50 

sand 
Initial 9238 59861 12.44 24.17 33.68 

Final 7320 56750 3.37 7.35 12.00 

sse 
Initial 4210 102172 15.74 33.43 48.77 

Final 3181 91861 5.72 12.98 21.52 

tbk 
Initial 12310 179815 18.85 35.53 49.89 

Final 8235 173878 6.21 14.16 20.74 

b12 
Initial 20451 2328032 17.89 31.01 42.85 

Final 15392 1893267 6.24 10.17 18.05 

b15 
Initial 36740 14919274 21.67 47.70 48.01 

Final 27941 11423568 11.98 22.06 25.89 

 

 

Table IX compares GenSO with the method proposed 

in [34] in terms of improvement in delay, power 

consumption, and GAR (∆ℛ0.1
0.99(6)) for 6-year operation 

time and 15% process variation ratio. The temperature 

considered in SA-based optimization is set to 105 °C with 

the cooldown factor of 0.2.  

 

 

 

TABLE VIII  

 Comparison of Aging-Induced Timing Margin Without 

and With GenSO 

Bench. 

Timing margin 
without 

GenSO (ps) 

Timing margin 
with GenSO 

(ps) 

Improvement 
(%) 

beecount 3247 2355 27.4 

cse 6082 5096 16.2 

dk27 1386 985 28.9 

lion9 2497 1879 24.7 

planet 20697 14754 28.7 

sand 10716 8251 23.0 

sse 4925 3658 25.8 

tbk 15018 11650 22.4 

b12 22970 17512 23.7 

b15 34451 25967 24.6 

AVG. - - 24.5 

In order to have a fair comparison, the initial solution is set 

to be similar in both methods and we choose the solutions 

with a fitness value computed by a weighted sum with the 

equal weights for the objectives as the first and final steps. 

On average, GenSO improves the circuit reliability by 

30.03% while 16.04% reliability improvement is achieved by 

[34]. Also, 14.45% improvement in delay and 3.28% 

improvement in power consumption is achieved by GenSO 

while the SA-based optimization improves the delay and 

power by 6.86% and 1.70%, respectively. Although the 

runtime of the method presented in [34] much less that 

GenSO, it is based on SA algorithm which is weaker in global 

optimizations while GenSO is based on GA which can 

appropriately searches the global solution space. Moreover, 

[34] ignores PBTI effects on the circuit timing reliability 

leading to less reliability improvement than GenSO. 
 

TABLE IX 

 Comparison of GenSO and the SA-based Optimization 

Method Proposed in [34] in Terms of Improvement in 

Delay, Power, and GAR 

Bench. 

SA-based Opt. Method 

[34] 
GenSO 

Delay  Power GAR Delay Power GAR 

beecount 8.29 1.09 14.68 17.09 1.93 26.01 

cse 3.62 2.76 12.75 7.72 5.74 22.78 

dk27 7.05 1.56 18.94 17.14 3.13 39.94 

lion9 8.63 1.88 16.32 17.73 2.97 28.71 

planet 8.32 1.57 17.05 18.42 3.25 33.48 

sand 3.04 0.76 11.74 10.32 2.59 32.25 

sse 5.13 2.97 17.12 10.71 5.05 28.74 

tbk 10.88 1.04 19.79 16.54 1.65 28.34 

AVG.  

(%) 
6.86 1.70 16.04 14.45 3.28 30.03 

V. CONCLUSION  

In this paper, a framework called GenSO is introduced for 

multi-objective optimization of FSM models of sequential 

circuits. GenSO is the first framework in which the lifetime 

reliability parameter is improved during the state encoding 

step of FSM synthesis. GenSO takes advantage of a genetic 

algorithm based optimization engine to explore the state 

encoding solutions in the objective space of initial delay, 

power consumption, and lifetime reliability.  The efficacy of 

GenSO is investigated through vast experiments on 

LGSYNTH90 benchmark suits. As an example, the 
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experimental results show that GenSO provides 64.3% 

reliability improvement for 6-year lifetime and 10% PV with 

15% initial delay overhead. 

 Future Work 

There are some new avenues to extend GenSO in the 

future. The lifetime reliability evaluation engine can be 

extended to consider workload-aware BTI modeling. 

Moreover, GenSO can be expanded to include additional 

parameters such as Carrier mobility, Sub-threshold slope 

(SS), Gate-drain capacitance (Cgd). Also, since BTI is highly 

sensitive to operating temperature, techniques such as

 Dynamic supply voltage scaling (DVS) or factors such as 

temperature variations can be included in future works of this 

framework.  Also, we plan to incorporate workload-aware 

BTI recovery models that account for periods of reduced 

stress or idle modes and include stress relaxation effects. We 

believe that adding these recovery mechanisms will provide 

a more realistic and balanced estimation of circuit lifetime 

reliability, especially in designs optimized for power 

efficiency through frequent low-power modes.  
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