
تعداد نشریات | 21 |
تعداد شمارهها | 655 |
تعداد مقالات | 9,581 |
تعداد مشاهده مقاله | 68,523,351 |
تعداد دریافت فایل اصل مقاله | 47,973,861 |
مدیریت شارژ باتری لیتیوم-یونی بر مبنای کاهش تلفات روند شارژ | ||
مدل سازی در مهندسی | ||
دوره 23، شماره 82، مهر 1404، صفحه 127-142 اصل مقاله (1.99 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jme.2025.27214.2278 | ||
نویسندگان | ||
موید محسنی* 1؛ علیرضا نیکنام کومله2 | ||
1شرکت برق منطقه ای خوزستان، اهواز، ایران | ||
2دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)، دانشکده برق، تهران، ایران | ||
تاریخ دریافت: 28 اردیبهشت 1401، تاریخ بازنگری: 15 اردیبهشت 1404، تاریخ پذیرش: 27 اردیبهشت 1404 | ||
چکیده | ||
باتریهای لیتیوم-یون به دلیل چگالی توان بالا، عمر طولانی و قابلیت اطمینان مناسب، به طور گسترده در خودروهای الکتریکی مورد استفاده قرار میگیرند. روش رایج شارژ این باتریها مبتنی بر الگوی جریان ثابت-ولتاژ ثابت است که طی آن ابتدا باتری با جریان ثابت شارژ شده و سپس با رسیدن به ولتاژ معین، با ولتاژ ثابت و جریان کاهشی به شارژ ادامه میدهد. با توجه به تغییر مقاومت داخلی باتری در طول فرآیند شارژ، اعمال جریان شارژ متغیر میتواند تلفات انرژی را کاهش داده و کارایی کلی سیستم را افزایش دهد بدون آنکه عمر باتری کاهش یابد. در این مقاله، یک روش بهینه برای شارژ باتریهای لیتیوم-یون ارائه شده که در آن پارامترهای لحظهای باتری و ارتباط آنها با وضعیت شارژ در نظر گرفته شده است. فرآیند شارژ بر اساس مدلسازی دقیق و به کمک ابزار YALMIP و الگوریتمهای مبتنی بر روش ریشه و ساقه تحلیل شده است. در این مدل، شاخصهایی همچون وضعیت نهایی شارژ، دمای نهایی سلولها و میزان تلفات انرژی به عنوان معیارهای بهینهسازی لحاظ گردیدهاند. نتایج شبیهسازیها نشان میدهد که استفاده از جریان تطبیقی در مقایسه با جریان ثابت، منجر به کاهش تلفات شارژ و افزایش طول عمر باتری میشود، چراکه زمان کافی برای فرایند پلاریزاسیون ولتاژی در هر چرخهی شارژ فراهم میآورد. این یافتهها بر اهمیت توسعهی استراتژیهای هوشمند شارژ در بهبود عملکرد باتریهای لیتیوم-یون در کاربردهای پیشرفته تأکید دارد. | ||
کلیدواژهها | ||
الگوریتم شارژ؛ شارژ تطبیقی؛ باتری لیتیوم-یون؛ کاهش تلفات شارژ | ||
عنوان مقاله [English] | ||
Lithium-ion Battery Charge Management Based on Reducing Charging Process Losses | ||
نویسندگان [English] | ||
Moaiad Mohseni1؛ Alireza Niknam Kumle2 | ||
1Khuzestan Regional Electric Company, Ahvaz, Iran | ||
2Faculty of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran | ||
چکیده [English] | ||
Lithium-ion batteries, owing to their high power density, long lifespan, and reliable performance, are widely utilized in electric vehicle applications. The conventional charging method for these batteries is based on the constant current–constant voltage (CC-CV) protocol, in which the battery is initially charged with a constant current until a predefined voltage threshold is reached, followed by constant voltage charging with gradually decreasing current. Considering the variation in the internal resistance of the battery during the charging process, applying a variable charging current can reduce energy losses and enhance overall system efficiency without compromising battery lifespan. In this study, an optimized charging method for lithium-ion batteries is proposed, taking into account real-time battery parameters and their relationship with the state of charge (SOC). The charging process is modeled accurately and analyzed using the YALMIP toolbox and algorithms based on the branch and bound method. In this model, indicators such as the final state of charge, final cell temperature, and energy losses are considered as optimization criteria. Simulation results demonstrate that adaptive current charging, compared to constant current charging, leads to reduced energy losses and increased battery lifespan, as it provides sufficient time for voltage polarization in each charging cycle. These findings highlight the importance of developing intelligent charging strategies to enhance the performance of lithium-ion batteries in advanced applications. | ||
کلیدواژهها [English] | ||
Charging algorithm, Adaptive charging, Lithium-ion battery, Reduce charging losses | ||
مراجع | ||
[1] Sadati, S. Muhammad Bagher, Jamal Moshtagh, Miadreza Shafie-khah. "The Impact of Electric Vehicles and Demand Response Programs on the Optimal Operation of the Distribution Network within a New Bi-Level Model." Journal of Modeling in Engineering 16, no. 54 (2018): 53-68. (in Persian) [2] Alizadeh, Mohammad, Meisam Jaafari, Majid Shahabi. "A Two-Stage Linear Model for Evaluating the Impact of Electric Vehicle Charging Demand at Fast Charging Stations on the Resilience of Active Distribution Networks." Journal of Modeling in Engineering 18, no. 62 (2019): 57-69. (in Persian) [3] Ansari, Mohammad Reza, Iman Hemmat. "Optimization and Control of Hybrid Vehicles Considering Emission Penalties Based on the Particle Swarm Optimization Algorithm." Journal of Modeling in Engineering 17, no. 57 (2019): 227-239. (in Persian) [4] Zarei Jaliani, Mohammad, Mohammad Sarshar, Mohsen Babaei, Abdolmajid Ghasemi. "Experimental Study and Development of an Empirical Model for Capacity Fade of Space Lithium-Ion Batteries." Journal of Modeling in Engineering 16, no. 55 (2018): 35-40. (in Persian) [5] Li, Junhui, Fengjie Gao, Gangui Yan, Tianyang Zhang, and Jianlin Li. "Modeling and SOC estimation of lithium iron phosphate battery considering capacity loss." Protection and Control of Modern Power Systems 3, no. 1 (2018): 5. [6] Li, Xiaokang, Qianqian Wang, Yifu Yang, and Jianqiang Kang. "Correlation between capacity loss and measurable parameters of lithium-ion batteries." International Journal of Electrical Power & Energy Systems 110 (2019): 819-826. [7] Sankarasubramanian, Shrihari, and Balaji Krishnamurthy. "A capacity fade model for lithium-ion batteries including diffusion and kinetics." Electrochimica Acta 70 (2012): 248-254. [8] Hofmann, Andreas F., David N. Fronczek, and Wolfgang G. Bessler. "Mechanistic modeling of polysulfide shuttle and capacity loss in lithium–sulfur batteries." Journal of Power Sources 259 (2014): 300-310. [9] Han, Xuebing, Minggao Ouyang, Languang Lu, and Jianqiu Li. "A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation." Journal of Power Sources 268 (2014): 658-669. [10] Chu, Andrew, Anirudh Allam, Andrea Cordoba Arenas, Giorgio Rizzoni, and Simona Onori. "Stochastic capacity loss and remaining useful life models for lithium-ion batteries in plug-in hybrid electric vehicles." Journal of Power Sources 478 (2020): 228991. [11] Chen, Zheng, Xing Shu, Renxin Xiao, Wensheng Yan, Yonggang Liu, and Jiangwei Shen. "Optimal charging strategy design for lithium‐ion batteries considering minimization of temperature rise and energy loss." International Journal of Energy Research 43, no. 9 (2019): 4344-4358. [12] Liu, Kailong, Xiaosong Hu, Zhile Yang, Yi Xie, and Shengzhong Feng. "Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation." Energy conversion and management 195 (2019): 167-179. [13] Xie, Wenlong, Xinhua Liu, Rong He, Yalun Li, Xinlei Gao, Xinghu Li, Zhaoxia Peng, Suwei Feng, Xuning Feng, and Shichun Yang. "Challenges and opportunities toward fast-charging of lithium-ion batteries." Journal of Energy Storage 32 (2020): 101837. [14] Swernath, Subramanian, Krishnan S. Hariharan, Jason Battle, Anshul Kaushik, Aravinda R. Mandli, Samarth Agarwal, Rajkumar Subhash Patil et al. "A real time adaptive charging approach for cycle life extension of Li ion cells." Journal of The Electrochemical Society 168, no. 5 (2021): 050528. [15] Jiang, Li, Yijia Cao, Yong Li, Yinglong Zhao, Ping Liu, Chun Huang, Yong Xu, Hui Wang, and Yao Sun. "Optimal charging strategy with complementary pulse current control of lithium-ion battery for electric vehicles." IEEE Transactions on Transportation Electrification 8, no. 1 (2021): 62-71. [16] Ahn, Jung-Hoon, and Byoung Kuk Lee. "High-efficiency adaptive-current charging strategy for electric vehicles considering variation of internal resistance of lithium-ion battery." IEEE transactions on Power electronics 34, no. 4 (2018): 3041-3052. [17] Nouri Khajavi, M., and Gh R. Bayat. "Comparison of Li-Ion Battery State of Charge Prediction by Artificial Neural Network and Adaptive Neuro Fuzzy Inference System." Modares Mechanical Engineering 19, no. 1 (2019): 43-52. [18] Li, Yunjian, Kuining Li, Yi Xie, Jiangyan Liu, Chunyun Fu, and Bin Liu. "Optimized charging of lithium-ion battery for electric vehicles: Adaptive multistage constant current–constant voltage charging strategy." Renewable energy 146 (2020): 2688-2699. [19] Jiang, Li, Yuduo Huang, Yong Li, Jiaqi Yu, Xuebo Qiao, Chun Huang, and Yijia Cao. "Optimization of variable-current charging strategy based on SOC segmentation for Li-ion battery." IEEE Transactions on Intelligent Transportation Systems 22, no. 1 (2020): 622-629. [20] Nambisan, Praveen, Pankaj Saha, and Munmun Khanra. "Real-time optimal fast charging of Li-ion batteries with varying temperature and charging behaviour constraints." Journal of Energy Storage 41 (2021): 102918. [21] Du, Jiuyu, and Yizhao Sun. "The influence of high power charging on the lithium battery based on constant and pulse current charging strategies." In 2020 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1-7. IEEE, 2020. [22] Leijon, Jennifer. "Charging strategies and battery ageing for electric vehicles: A review." Energy Strategy Reviews 57 (2025): 101641. [23] Andersson, Malin, Moritz Streb, Venu Gopal Prathimala, Aamer Siddiqui, Andrew Lodge, Verena Löfqvist Klass, Matilda Klett, Mikael Johansson, and Göran Lindbergh. "Electrochemical model-based aging-adaptive fast charging of automotive lithium-ion cells." Applied Energy 372 (2024): 123644. [24] Abo Gamra, Kareem, Philip Bilfinger, Markus Schreiber, Thomas Kröger, Christian Allgäuer, and Markus Lienkamp "Unlocking the full potential of electric vehicle fast-charging over lifetime through model-based aging adaptation," Journal of Energy Storage, vol. 99B, 2024, Art. no. 107168. [25] Mutagekar, Sushant, and Ashok Jhunjhunwala. "Designing small batteries and adaptive charging strategies for operation on rough terrain." Journal of Energy Storage 84 (2024): 111003. [26] Tian, Jiaqiang, Siqi Li, Xinghua Liu, Duo Yang, Peng Wang, and Guoyi Chang. "Lithium-ion battery charging optimization based on electrical, thermal and aging mechanism models." Energy Reports 8 (2022): 13723-13734. [27] Lee, Chih Feng, Kalle Bjurek, Victor Hagman, Yang Li, and Changfu Zou. "Vehicle-to-grid optimization considering battery aging." IFAC-PapersOnLine 56, no. 2 (2023): 6624-6629. [28] de Lima, Tayenne Dias, Pedro Faria, and Zita Vale. "Optimizing home energy management systems: A mixed integer linear programming model considering battery cycle degradation." Energy and Buildings 329 (2025): 115251. | ||
آمار تعداد مشاهده مقاله: 13 تعداد دریافت فایل اصل مقاله: 7 |