
Abstract-- Fatigue is a significant factor in unexpected 

incidents that incur considerable economic and human losses for 

societies. Consequently, various methods have been developed to 

detect fatigue, among which gait features analysis is one of the 

most common. Gait features can be assessed by several 

techniques, but the most prevalent ones include force plates, 

wearable sensors, and image processing. This review paper has 

revealed the different techniques for fatigue detection by 

categorizing the different methods of gait feature measurement. 

It has evaluated the strengths and weaknesses of each technique 

and identified the challenges and future directions for fatigue 

detection research. The final goal of this study is to investigate 

and determine the gait features that vary significantly with 

fatigue and are relevant for fatigue assessment. The study aims 

to establish the relationship between gait features and fatigue 

level and to evaluate the reliability of these features and methods 

for fatigue detection. It also discusses whether further research 

is needed to develop more valid methods based on gait analysis. 

 
Index Terms-- Fatigue, Fatigue detection, Force plates, Gait 

features, Image processing, Wearable sensors 

I.  INTRODUCTION 

atigue is a frequent concern that impacts subjective and 

objective aspects of human performance, such as 

perceived tiredness, exhaustion, lack of energy, and cellular, 

tissue, or organ function after repeated or excessive 

stimulation, stress, or activity[1]. It has been examined in 

various domains as an everyday construct [2,3] that can also 

entail economic consequences by impairing efficiency and 

production [4-6], especially in labor societies [7]. Fatigue in 

the workplace [8] results in mishaps and permanent injuries 

in construction [9], transportation (implicated in 13% of truck 

crashes and up to 21% of fatal crashes [1]), and healthcare, 

where fatigue among medical professionals can lead to 

critical errors during surgeries and patient care [11]. 

Fatigue encompasses both physical and mental 

  
1 Department of Electronic Engineering, Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran. 

• Corresponding author Email: h_soltanizadeh@semnan.ac.ir 

 

Cite this article as: 

Yazdani, P, Soltanizadeh, H and, and Akbari, A, 2025, A Review of Fatigue Detection Methods by Identifying Gait Features. Journal of Modeling & 

Simulation in Electrical & Electronics Engineering (MSEEE), 5(1), pp. 43-53. 

 
https://doi.org/10.22075/MSEEE.2025.34096.1157 

 

 
 

components, each with distinct characteristics and detection 

challenges. Physical fatigue results from prolonged physical 

activity or medical conditions such as hypothyroidism, 

autoimmune disorders, liver or renal diseases, or cancer. 

Mental fatigue occurs after prolonged periods of cognitively 

demanding activity and is defined by a general sense of 

exhaustion [12]. While several studies have investigated 

fatigue and low energy as separate categories with biological 

overlaps [13–18], both types of fatigue can be detected 

through gait analysis, as walking patterns reflect both 

physical and cognitive states. 

Walking is a common daily activity [19–21] and benefits 

health [22]. Gait analysis has proven effective for identifying 

various medical conditions, including Parkinson's disease 

(PD) [23–27], multiple sclerosis (MS) [28–32], and joint 

arthrosis [27, 33–35]. The emerging field of fatigue detection 

through gait analysis builds upon these established 

methodologies, offering potential for both physical and 

mental fatigue assessment. 

This study provides a comprehensive review and 

classification of gait analysis methods specifically for fatigue 

detection. While existing literature has explored gait analysis 

for various purposes, a focused review on fatigue detection 

methods addressing both physical and mental fatigue is less 

common. This research aims to establish a foundation for 

developing more accurate and reliable fatigue detection 

systems by extracting and analyzing gait parameters that vary 

with different types of fatigue. 

     According to the type of gait features measured, the 

methods for detecting fatigue are analyzed and categorized 

into three groups: detection using force plates, wearable 

sensors, and image processing. This review aims to ascertain 

the gait features that are susceptible to fatigue-induced 

changes so that both physical and mental fatigue can be 

detected during walking by assessing these parameters.
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II.  REVIEW METHODOLOGY 

A.  Search Strategy 

      A systematic literature search was conducted in 

September 2024 using multiple electronic databases, 

including PubMed, IEEE Xplore, Web of Science, and 

Google Scholar. The search strategy employed a combination 

of relevant keywords and Medical Subject Headings (MeSH) 

terms related to fatigue detection and gait analysis. The search 

terms included: ("fatigue detection" OR "fatigue assessment" 

OR "fatigue monitoring") AND ("gait analysis" OR "gait 

features" OR "walking pattern" OR "locomotion") AND 

("force plate" OR "wearable sensor" OR "image processing" 

OR "computer vision" OR "biomechanics"). 

B.  Inclusion and Exclusion Criteria 

Inclusion Criteria: 

• Studies published in peer-reviewed journals and 

conference proceedings 

• Research focused on fatigue detection or assessment 

using gait analysis methods 

• Studies employing force plates, wearable sensors, or 

image processing techniques for gait feature 

extraction 

• Articles published in the English language 

• Studies involving human subjects 

• Research published from September 2000 onwards 

to ensure comprehensive coverage of contemporary 

methodologies 

Exclusion Criteria: 

• Editorial articles and opinion papers 

• Studies not specifically addressing fatigue detection 

through gait analysis 

• Research focusing solely on pathological gait 

without fatigue assessment 

• Animal studies 

• Studies with insufficient methodological details 

• Conference abstracts without full-text availability 

C.  Study Selection Process 

     The systematic search process followed the guidelines 

outlined in Fig. 1. A total of 307 studies were initially 

identified through database searches. Following screening of 

titles and abstracts for relevance against the inclusion and 

exclusion criteria, 111 studies were selected for detailed 

review and inclusion in this comprehensive analysis. The 

complete selection process is illustrated in Fig. 1. 

D.  Data Extraction and Analysis 

     From each included study, the following information was 

systematically extracted: study design, participant 

characteristics, fatigue induction methods, gait analysis 

techniques employed, specific gait parameters measured, key 

findings related to fatigue detection, and study limitations. 

The extracted data was then categorized according to the 

three primary gait analysis approaches: force plates, wearable 

sensors, and image processing techniques. 

 
Fig. 1. Flow diagram illustrating the literature search and selection process 

for identifying relevant studies on fatigue detection methods based on gait 

features. 

III.  FATIGUE DETECTION ACCORDING TO GAIT 

FEATURES 

Previous studies have shown how fatigue affects human 

physical condition [41-44], with balance impairment being 

the most common consequence [45-49]. Fatigue may induce 

alterations in gait patterns [41-44,50-57], particularly in the 

presence of lower limb fatigue [42,58]. These gait parameter 

modifications are more noticeable in older adults [12,59-61] 

and [62,63]. Moreover, these studies indicate that these 

alterations are more prominent in the spatiotemporal aspects 

of gait, such as stride length, speed, and cadence [64-66], 

especially when gait dynamics change due to muscle fatigue 

[67-69], which impairs muscle coordination and 

responsiveness [70]. 

A.  Comparison of Gait Analysis Methods for Fatigue 

Detection 

In the field of gait analysis for fatigue detection, three 

primary methods are commonly employed: force plates, 

wearable sensors, and image processing. Each method has its 

own set of advantages and limitations: 

Force Plates: These measure ground reaction forces using 

pressure sensors in platforms. They are highly accurate 

(e.g., ±0.1% of load) but expensive (€4,000–€54,000) and 

limited to laboratory settings, capturing only a few steps, 

which may not reflect natural walking. 

Wearable Sensors: These include devices like inertial 

measurement units (IMUs) and pressure sensors worn on the 

body. They are portable, cost-effective (e.g., €91.30 for 

inertial sensors), and suitable for real-world use, but require 

battery management and complex data processing. 

Image Processing: This uses cameras to analyze gait non-
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intrusively, offering high-resolution data but being 

computationally intensive and costly (e.g., €160–€18,440), 

with challenges like calibration issues.[71] 

 
TABLE I 

 Summary of Gait Analysis Methods[71] 

Method Accuracy Cost (€) Limitations 

Force Plates High (±0.1% 

of load) 

4,000–

54,000 

Expensive, limited 

to a few steps, may 

alter natural gait 

Wearable 

Sensors 

Varies (R > 

0.95 for 

some) 

91.30–

350 

Power 

consumption, 

complex 

algorithms, 

potential noise 

Image 

Processing 

Varies 

(2.66%–

9.25% EER 

for ToF) 

160–

18,440 

Expensive, 

computationally 

intensive, 

calibration issues 

 

Each method faces unique challenges in data collection, 

particularly concerning experimental conditions, 

environmental variables, and individual differences. 

Force Plates: The primary challenge is ensuring 

participants step fully on the plate without altering their gait 

pattern. This targeting effect can lead to unnatural walking, 

potentially skewing the data [72]. Additionally, the laboratory 

setting may not reflect real-world walking conditions, 

limiting the ecological validity of the findings. 

Wearable Sensors: Data collection with wearable sensors 

is influenced by sensor placement, which must be consistent 

across participants to ensure comparability. Environmental 

factors such as magnetic interference can affect sensor 

accuracy, and individual differences in gait patterns may 

require personalized calibration to achieve accurate 

measurements [73]. Recent advancements, such as those by 

Dai et al., highlight machine learning-assisted wearable 

electromechanical sensors improving gait recognition 

accuracy [74], while Mu et al. emphasize real-time 

monitoring capabilities. [75] 

Image Processing: For image-based systems, 

environmental variables like lighting and background 

complexity can significantly impact data quality. Proper 

camera calibration is essential, and variations in clothing or 

body shape can affect the accuracy of pose estimation [5]. 

Moreover, individual differences in gait kinematics 

necessitate robust algorithms that can account for variability 

among subjects. 

In summary, while each method offers distinct advantages 

for gait analysis in fatigue detection, researchers must 

carefully consider their specific needs, including the required 

accuracy, cost constraints, and the context in which data will 

be collected. Force plates provide high accuracy but are 

limited to laboratory settings, wearable sensors offer 

portability at the cost of potentially lower accuracy, and 

image processing provides detailed kinematic data but 

requires significant computational resources and controlled 

environments. 

While each method offers distinct advantages for fatigue 

detection through gait analysis, a critical evaluation reveals 

significant trade-offs that influence their practical utility. 

Force plates, with their superior accuracy (±0.1% of load), 

provide a reliable benchmark for controlled studies, making 

them ideal for establishing baseline gait parameters under 

fatigue. However, their high cost (4,000-54,000 €) and 

confinement to laboratory settings severely limit their 

scalability and real-world applicability, particularly for 

continuous monitoring or large-scale population studies. 

Wearable sensors, in contrast, excel in portability and 

affordability (91.30-350 €), enabling real-time data collection 

in naturalistic environments, which is critical for detecting 

fatigue in occupational or clinical contexts. Yet, their variable 

accuracy (e.g., <5% error in stride length) and susceptibility 

to noise introduce challenges in achieving the precision 

needed for diagnostic purposes, often requiring advanced 

signal processing to mitigate these drawbacks. Image 

processing offers a middle ground, with its non-intrusive 

nature and potential for detailed kinematic analysis, but its 

wide cost range (160 € to 18,440 €) and environmental 

sensitivity (e.g., lighting issues) make it less practical for 

widespread deployment outside controlled settings [71]. The 

computational burden further complicates its use in real-time 

applications. Thus, while force plates provide unmatched 

precision in controlled research, wearable sensors stand out 

for their practical versatility despite accuracy trade-offs, and 

image processing holds promise for detailed analysis if cost 

and environmental challenges can be addressed. Future 

advancements, such as integrating wearable sensors with 

machine learning to enhance accuracy, may bridge these 

gaps, offering a balanced solution for fatigue detection. 

B.  Using force plates to extract gait features to assess 

fatigue 

In numerous papers, force plates are used to measure 

various gait features [76–78]. Fabio et al. conducted a 

detailed investigation into the effects of fatigue on gait 

characteristics by examining both free walking and obstacle-

adapted walking modes along an 8-meter path. Participants 

walked at a self-selected speed, with gait parameters 

measured using a force plate and an EMG sensor to capture 

biomechanical and neuromuscular data. To induce fatigue, 

participants performed repeated sit-to-stand movements, 

which are known to target lower body musculature and 

simulate real-life fatigue scenarios. Following the induction 

of fatigue, several notable changes in gait parameters were 

observed. Specifically, walking speed increased, stance time 

decreased, and step length was reduced. These findings 

suggest that fatigue significantly alters the biomechanical 

efficiency and control of gait. 

In addition, the study revealed important insights into the 

role of physical activity levels in fatigue resistance. It was 

observed that young, active individuals displayed a higher 

resistance to fatigue compared to their inactive counterparts, 

underscoring the protective effects of regular physical 

activity on physical performance. Furthermore, the obstacle-

adapted walking mode introduced additional challenges to 

participants' gait. Compared to free walking, the obstacle 

mode was associated with a noticeable decrease in step 

length, walking time, and speed, alongside an increase in 

double support time. This suggests that navigating obstacles 
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while fatigued further amplifies the challenges posed to gait 

stability and coordination, providing valuable information for 

designing interventions aimed at minimizing fatigue-related 

risks in complex walking environments. [78].  Similarly, 

Fabio et al. utilized the same testing protocol to examine and 

compare the effects of knee muscle fatigue on gait parameters 

in both young and older adults within a controlled 

experimental setting. The study provided valuable insights 

into how age-related physiological differences influence the 

impact of fatigue on gait. The findings revealed that while 

stride length remained relatively unchanged in younger 

participants, it increased significantly in older adults, 

suggesting a compensatory mechanism in the elderly to 

maintain stability or efficiency under fatigue. Stride time, on 

the other hand, decreased in both groups, but this reduction 

was more pronounced among the older participants, 

highlighting their altered temporal gait patterns under fatigue. 

Moreover, the study observed an increase in stride speed 

across all age groups, although the change was more 

substantial in the elderly. This may indicate an age-related 

difference in motor strategies or energy expenditure in 

response to fatigue. Interestingly, the crossing step length, an 

essential parameter for gait stability and obstacle negotiation, 

decreased for all participants regardless of age, underscoring 

the universal impact of knee muscle fatigue on specific 

aspects of gait. Beyond these findings, the study also 

emphasized the variability of knee muscle fatigue effects with 

age, reflecting the complex interplay between aging, muscle 

function, and motor control. These insights are crucial for 

understanding how fatigue impacts gait differently across the 

lifespan and may inform the development of tailored 

interventions to mitigate fatigue-related risks in both young 

and older populations [79]. Behmaram et al. conducted an 

insightful study to explore the differences in fatigue induced 

by backpack carrying between students with flat feet and 

those with normal foot arches. The research aimed to 

investigate how varying backpack weights influence fatigue 

levels and gait parameters in these two groups. Backpacks 

weighing 7.5%, 10%, 12.5%, and 15% of the participant’s 

body weight were used in the experiment, with the fatigue 

level being assessed after 10 minutes of walking at a 

standardized mean backpack weight of 10% of body weight. 

The study primarily focused on ground reaction force (GRF), 

a critical parameter that reflects the force exerted by the 

ground on a body in contact with it, as a key indicator of gait 

changes due to fatigue. 

The findings revealed significant differences in how 

fatigue affected students with flat feet compared to those with 

normal feet. In participants with flat feet, GRF decreased after 

fatigue when carrying backpacks weighing 15% of their body 

weight, indicating a possible decline in gait stability or 

efficiency under heavier loads. Conversely, GRF did not 

show significant variations in students with normal feet under 

the same conditions, suggesting better fatigue resistance and 

load adaptability in this group. However, when comparing 

pre-fatigue and post-fatigue states, GRF in students with flat 

feet exhibited a substantial increase, highlighting the 

pronounced impact of fatigue on their gait dynamics. These 

results underscore the importance of considering individual 

biomechanical differences, such as foot arch structure, when 

evaluating the effects of load-induced fatigue, particularly in 

contexts like school or daily activities where backpack 

carrying is common. This research provides valuable insights 

for designing ergonomically appropriate load limits and 

interventions for individuals with varying foot structures. 

[80]. 

The document provides a thorough overview of fatigue 

detection methodologies with a focus on gait-based features, 

highlighting the significant impact of fatigue on human 

performance and safety in areas like healthcare, 

transportation, and workplace environments. As a unique 

biometric indicator, Gait is particularly sensitive to physical 

and mental states, making it a promising avenue for objective, 

non-invasive fatigue detection. The study emphasizes the use 

of wearable sensors, computer vision, and machine learning 

for precise fatigue assessment. Wearable devices such as 

accelerometers and gyroscopes offer detailed kinematic data, 

while computer vision techniques enable non-contact 

analysis through video-based gait pattern recognition. 

Machine learning models further enhance these methods by 

providing real-time and predictive capabilities. 

During testing, ground reaction force (GRF) data 

collection played a key role in analyzing gait features. 

Participants were required to avoid actively aiming their feet 

toward the force plate to ensure accurate data. The trial was 

excluded if the right foot failed to land in the middle of the 

plate or participants displayed active aiming behavior (Fig. 

2A1). Once a successful trial was completed for the right foot, 

the same process was repeated for the left foot until three 

valid GRF datasets were collected for each side (Fig. 2A2). 

This meticulous data collection process highlights the 

precision necessary in evaluating fatigue-induced changes in 

gait parameters. 

 

 
Fig. 2. Bilateral data collection process: (A1) Procedure for collecting GRF 

data from the right foot. (A2) Procedure for collecting GRF data from the 
left foot. (B) Implementation process of the running-induced fatigue 

protocol test [81] 

Changes in gait features, such as reduced stride length, 

increased variability, and altered joint angles, are highlighted 

as key indicators of fatigue. These insights find applications 

in diverse domains, including monitoring worker fatigue in 

industrial settings, diagnosing fatigue-related health 

conditions, and ensuring the safety of drivers and pilots by 

identifying early fatigue signs. The document also discusses 

the challenges in this field, such as the need for diverse 

datasets, generalization across populations, sensor 
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limitations, and ethical concerns surrounding data privacy. 

Despite these challenges, it concludes that advancements in 

sensor technology and computational methods will continue 

to enhance the efficacy and practicality of gait-based fatigue 

detection systems [81]. Table II includes a summary of these 

studies. 
TABLE II 

 Summary of Studies using Force Plates to Extract Gait 

Features 

Study Objective Methods Key 

Findings 
Effect of muscle 

fatigue and 

physical activity 

level on motor 

control of the gait 

of young adults. 

[78] 

To investigate the 

effects of fatigue 

on gait in free 

and obstacle-

adapted walking 

modes. 

Force plate, 

EMG; fatigue via 

sit-to-stand; 8-

meter path at 

self-selected 

speed. 

Post-fatigue: ↑ 

walking speed, ↓ 

stance time, ↓ 

step length in 

free walking; 

obstacle walking: 

↓ step length, ↓ 

speed, ↑ double 

support vs. free 

walking; active 

individuals more 

resistant. 

Interactions of 

age and leg 

muscle fatigue on 

unobstructed 

walking and 

obstacle crossing. 

[79] 

To compare knee 

muscle fatigue 

effects on gait in 

young and older 

adults. 

Same as [78]; 

force plate, 

EMG, sit-to-

stand for fatigue. 

Older: ↑ stride 

length (young 

unchanged), 

greater ↓ stride 

time, larger ↑ 

stride speed; all: 

↓ crossing step 

length. 

Effects of 

backpack-

induced fatigue 

on gait ground 

reaction force 

characteristics in 

primary school 

children with 

flat-foot 

deformity.[80] 

To explore 

backpack-

induced fatigue 

differences in flat 

vs. normal feet 

students. 

Force plate; 

fatigue from 

walking with 

backpacks 

(7.5%–15% body 

weight); GRF 

assessed after 10 

minutes at 10% 

body weight. 

Flat feet: ↓ GRF 

post-fatigue with 

15% BW; normal 

feet: no 

significant 

change; flat feet 

had a larger pre-

post GRF 

increase. 

C.  Using wearable technologies to extract walking 

parameters to assess fatigue 

In various articles, accelerometer sensors have been 

utilized to analyze gait characteristics [82–88]. In one study, 

Shang et al. investigated the maximum voluntary contraction 

of the knee joint muscles (MVC). In this article, the footwear 

soles functioned as pressure sensors (Fig. 3). 

 

 
Fig. 3.  The layout of the insole’s pressure sensors [89] 

 

This study involved six participants with right-leg 

dominance who wore sensors on their footwear. The 

researchers measured the changes in their gait after 

performing a squat exercise. A single gait cycle was defined 

as the unit of analysis, and the data were used to assess gait 

characteristics. The results showed that the MVC decreased 

under fatigue conditions, and a neural network model (Fig. 4) 

was applied to classify the fatigue level into four stages based 

on the MVC percentage obtained from the sensors [89].  

 
Fig. 4.  The neural network structure [89] 

 

In a study, Guzhin et al. investigated fatigue by analyzing 

gait features using wearable sensors, that is, inertial 

measurement units (IMU) aligned on the back of shoes. In 

this research,18 elderly participants were recruited who 

walked on a treadmill for an hour. The data from the first, 

30th, and 60th minutes were analyzed to identify the effects 

of fatigue on gait features. The results indicated that fatigue 

caused significant changes in the mean acceleration, angular 

velocity, and ankle rotation range. Moreover, this study 

corroborated the parameters obtained in previous studies 

[21,91-94] and revealed that fatigue increased the horizontal 

angle of ankle rotation, which impaired balance and caused 

heel pronation [90]. Zhenghui et al. evaluated the 

effectiveness of an anti-fatigue mat during prolonged 

standing by analyzing gait features using a neural network. 

They recruited 18 adults and adolescents who worked for four 

hours in front of a desk under the same conditions while 

wearing a wearable intelligence analyzer, an accelerometer, 

and a gyroscope. 

 

 
Fig. 5. The devices used in the research included accelerometers and a central 

processing unit (a), location of the main device (b), location of the thigh 
sensor (c), location of the ankle sensor (d), location of the sole sensor (f), 

location of the central sensor (e) [95] 
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TABLE III. 

Summary of Studies using Wearable Technologies to 

Extract Walking Parameters 

Study Objective Methods Key Findings 
Fatigue Level 

Prediction of 

Lower Extremity 

Knee Flexor and 

Extensor 

Muscles using 

Neural Network. 

To investigate 

fatigue effects on 

gait using 

pressure sensors 

in footwear 

soles. 

Pressure 

sensors in 

soles; squat 

exercises for 

fatigue; neural 

networks for 

classification. 

MVC decreased 

with fatigue; fatigue 

classified into four 

stages. 

Identifying 

fatigue indicators 

using gait 

variability 

measures: A 

longitudinal 

study on elderly 

brisk walking. 

To study the 

effects of fatigue 

on gait in the 

elderly using 

IMUs. 

IMUs on 

shoes; 

treadmill 

walking for 1 

hour; data at 

1st, 30th, 60th 

minutes 

analyzed. 

Fatigue caused 

changes in mean 

acceleration, 

angular velocity, 

and ankle rotation 

range; increased 

horizontal angle of 

ankle rotation 

impaired balance. 

Gait 

characteristics 

and fatigue 

profiles when 

standing on 

surfaces with 

different 

hardness: Gait 

analysis and 

machine learning 

algorithms. 

To evaluate the 

effectiveness of 

anti-fatigue mats 

using wearable 

sensors during 

prolonged 

standing. 

Accelerometers 

and 

gyroscopes; 4-

hour standing 

test 

with/without 

anti-fatigue 

mat. 

Walking speed 

decreased with 

fatigue; women had 

higher stride length 

before fatigue; the 

anti-fatigue mat had 

more benefits for 

women; men were 

less prone to fatigue 

from standing. 

 

The participants performed the test twice, either on an anti-

fatigue mat or on the ground. The researchers compared 

several gait parameters on both surfaces before and after each 

test. They found that walking speed was slower on the anti-

fatigue mat than on the ground, and both were slower than 

before fatigue. Thus, walking speed decreased with fatigue. 

Women had higher stride length before fatigue, but there was 

no significant difference between the two surfaces. Single 

support/double support, which reflects balance, was highest 

before fatigue and lowest on the mat. The next parameter, 

swing work, which measures the leg swing during walking, 

was highest before fatigue and lowest on the mat. Finally, leg 

strength decreased the most after standing on the ground. This 

difference was more pronounced in women than in men. This 

study revealed that using a mat had more benefits for women 

than men. Men walked faster and with longer strides than 

women, and they were less prone to fatigue from standing for 

long periods. The authors suggested that gait parameters were 

useful indicators of fatigue caused by standing and that using 

an anti-fatigue mat could reduce fatigue from prolonged 

standing. Research has shown that females are more 

vulnerable to fatigue-induced gait changes, particularly in 

stride length and leg falling strength, when standing for long 

periods, compared to males who show higher resistance. This 

supports our finding that women benefited more from using 

an anti-fatigue mat [95]. The summary of these studies is 

included in Table III.  

D.  Using Image processing to extract walking parameters 

to assess fatigue 

Many studies have evaluated gait features using image 

processing, specifically by recruiting depth sensors like the 

Kinect sensor [96–100].  

 

 
Fig. 6.  A summary of the suggested method [101] 

 

Kota et al. conducted a study using the Kinect sensor and 

deep learning techniques to assess the fatigue level. The 

overview of the proposed method is depicted in Figure 6. The 

method utilizes a recurrent neural network (RNN) that 

outputs the probabilities of fatigue and non-fatigue states 

based on a walking cycle of 3D joint positions. The data 

analysis required determining the participants’ resting heart 

rates before walking four times for five minutes, with one-

minute breaks between each walk. The intensive activity 

stage involved repeated box climbing until fatigue onset. 

Heart rate indicated extreme exhaustion. The participant 

walked for 10 minutes and reported their fatigue level again. 

Finally, the data collected by Kinect at each stage underwent 

analysis and training. The figure below (Fig. 7) shows the 

sensor setup. 

 

 
Fig. 7.  The gait captures space from a top perspective. Kinect sensors 

are located at both ends of the route. A T-shaped marker signifies the start 

position, and an arrow marker signifies the walk direction [101] 

 

In this research, the supporting foot is used as the neural 

network's input. Since this foot is static during a step, the 

ankle joint is considered as the support, and the neural 

network identifies fatigue by processing its features [3]. 

Another study using image processing aimed to 

investigate the effects of carrying a load on fatigue and gait 

characteristics. This was done using reflective spherical 

markers and an eight-camera motion capture system to 

monitor whole-body kinematics in three dimensions at a 

frequency of 100 Hz. The study included three test levels: no 

load, 7.5 kg, and 15 kg, during which participants walked on 

a treadmill at their preferred speed.  

Following three pre-fatigue trials, participants underwent 

fatigue training to induce fatigue. During this training, they 

were instructed to run on the treadmill at a speed of 8 mph, a 

pace determined from observations made in a pilot study. Fig. 

8 and 9 illustrate the participant setup and the placement of 

the markers on the body, respectively. In the pilot study, all 

healthy male participants reached fatigue within 2 to 10 

minutes of running at this speed. The Borg Rating of 

Perceived Exertion (RPE) scale was employed to assess 

fatigue levels, specifically the Borg 6-20 scale, where “6” 
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indicates “no effort at all” and “20” signifies “maximum 

effort.” 

 

 
Fig. 8. Participant and test setup [102] 

 
Fig. 9. Placement of markers on the body [102] 

At each 30-second interval during the fatigue exercise, 

participants rated their fatigue level using the RPE scale. The 

exercise was halted when a participant first rated their RPE at 

or above 17, indicating “very intense, and you are very tired” 

on the Borg scale. Measures of gait variability included stride 

length variability and stride width variability. Stride length 

was defined as the anterior-posterior distance between 

consecutive left and right heel strikes, while stride width was 

the medial-lateral distance between these strikes.  

Additionally, the dynamic range of motion (ROM) for the 

knee, hip, and trunk in the sagittal plane was calculated as the 

difference between the maximum and minimum joint angles 

during a gait cycle. The ankle and knee joint centers were 

determined as the midpoints of markers located on the 

corresponding lateral and medial bony landmarks. The study 

found that fatigue significantly impacted the variability of 

stride width, hip ROM, and trunk ROM. Specifically, after 

fatigue was induced, stride width variability, hip ROM, and 

trunk ROM all increased compared to the pre-fatigue 

condition. Furthermore, the post-fatigue condition was 

associated with a trend towards greater knee ROM, as the 

difference in knee ROM between the post-fatigue and pre-

fatigue conditions approached significance. [102] Table IV 

summarizes the objectives, methods, and key findings of 

these studies.  

 
TABLE IV 

 Summary of Studies using Image Processing to Extract 

Walking Parameters 

Study Objective Methods 
Key 

Findings 
Physical Fatigue 

Detection from 

Gait Cycles via a 

Multi-Task 

Recurrent Neural 

Network 

To assess fatigue 

levels using the 

Kinect sensor and 

deep learning 

techniques. 

Kinect sensor; 

RNN with 3D 

joint positions; 

walking cycles 

(4x5 min with 

breaks) followed 

by box climbing 

for fatigue; heart 

rate monitoring. 

RNN output 

probabilities of 

fatigue vs. non-

fatigue states; 

ankle joint 

features indicated 

fatigue levels. 

Effects of load 

carriage and 

fatigue on gait 

characteristics. 

To investigate the 

effects of load 

carrying on 

fatigue and gait 

characteristics 

using motion 

capture. 

8-camera system 

with reflective 

markers; 

treadmill walking 

at preferred 

speed with loads 

(0, 7.5, 15 kg); 

fatigue induced 

by running at 8 

mph; Borg RPE 

scale (stopped at 

≥17). 

 

Post-fatigue: 

increased stride 

width variability, 

hip ROM, trunk 

ROM; trend 

toward greater 

knee ROM. 

 

IV.  DISCUSSION 

A.  Critical Analysis of Gait Parameters Under Fatigue 

The analysis of fatigue detection through gait parameters 

reveals both convergent and divergent findings across 

different measurement modalities, highlighting the 

complexity of fatigue-induced biomechanical changes and 

the methodological challenges inherent in this research 

domain. 

B.  Contradictory Findings and Methodological 

Implications 

A critical examination reveals significant contradictions in 

reported gait parameters under fatigue conditions. Force plate 

studies by Barbieri et al. [42] demonstrated increased stride 

length with fatigue, while wearable sensor research by 

Helbostad et al. [41] reported unchanged stride length despite 

other significant gait modifications. Zhang et al., using 

machine learning and inertial sensors, found consistent stride 

length reductions [21], whereas other studies showed variable 

patterns dependent on fatigue progression stages [90]. 

These contradictions likely stem from fundamental 

methodological differences rather than conflicting 

physiological responses. The variations in experimental 

designs, fatigue induction methods (physical exercise vs. 

mental tasks), measurement techniques, and participant 

characteristics contribute to these inconsistencies, suggesting 

that standardized protocols are essential for reliable 

comparison of findings. 
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C.  Methodological Quality and Evidence Synthesis 

Each measurement modality presents distinct advantages 

and limitations that influence detection accuracy and practical 

applicability: 

Force plates provide high measurement precision but 

suffer from limited ecological validity due to laboratory 

confinement and expensive infrastructure requirements 

[71,72]. Wearable sensors offer superior real-world 

applicability but exhibit variable accuracy rates (67-75%) and 

require sophisticated signal processing [103]. Image 

processing approaches show promise for detailed kinematic 

analysis but remain computationally intensive and 

environmentally sensitive [5,71]. 

The heterogeneity in study design and fatigue induction 

protocols presents significant challenges for evidence 

synthesis. Studies employing different fatigue induction 

methods demonstrate varying gait parameter responses, 

suggesting that the mechanism of fatigue induction critically 

influences observed biomechanical changes [12]. 

D.  Population-Specific Responses and Research Gaps 

Despite methodological variations, specific gait 

parameters demonstrate consistent fatigue-induced changes 

across studies. Step width variability and mediolateral trunk 

acceleration represent robust indicators of fatigue-induced 

biomechanical changes [41,42]. Helbostad et al. [41] 

demonstrated significant increases in step width and 

variability with fatigue, findings confirmed by other studies 

[21,104,90]. 

The literature reveals significant gaps in population-

specific responses, with older adults demonstrating more 

pronounced gait alterations under fatigue conditions [12,59-

61]. Gender-based differences indicate that women exhibit 

greater knee joint flexion reductions under fatigue [105], 

suggesting detection algorithms may require population-

specific calibration. 

E.  Technological Integration and Future Directions 

Recent advances in machine learning applications show 

promise for enhancing detection accuracy by identifying 

complex parameter interactions [106,107]. The development 

of personalized fatigue detection models that account for 

individual differences in gait patterns represents a critical 

advancement need. This personalized approach could 

enhance generalizability and reliability across diverse 

populations, enabling tailored interventions in healthcare and 

occupational safety. Studies have demonstrated that walking 

rhythms can effectively reveal work fatigue patterns among 

young adults [108], while research on specific populations 

shows that fatigue effects on knee kinematics and kinetics 

during walking vary significantly, particularly in individuals 

with flat feet [109]. 

Integrating microelectromechanical systems (MEMS) 

accelerometers with neuromorphic computing enables real-

time gait pattern identification with high accuracy and low 

power consumption [110]. Machine learning algorithms, such 

as Bidirectional Long Short Term Memory Networks (BD-

LSTM), have been successfully applied to estimate ground 

reaction force waveforms from inertial measurement unit data 

[111]. 

Based on the gaps identified in this review, several 

specific research priorities emerge that require immediate 

attention. Researchers should prioritize developing 

standardized protocols for fatigue induction, measurement 

procedures, and parameter definitions to enable meaningful 

meta-analyses and systematic comparisons across studies. 

Longitudinal studies tracking fatigue progression over weeks 

to months are critically needed, particularly in real-world 

occupational settings among healthcare workers, construction 

personnel, and transportation operators, rather than relying on 

acute fatigue induction protocols. 

Population-specific algorithm development represents 

another crucial priority, requiring dedicated studies with 

adequate sample sizes from older adults, individuals with 

chronic conditions, and high-risk occupational groups to 

establish population-specific detection thresholds. The 

investigation of hybrid measurement approaches that 

integrate force plate precision with wearable sensor 

practicality should be pursued to leverage the strengths of 

each measurement modality while mitigating individual 

limitations. 

For practitioners and technology developers, evidence-

based clinical implementation guidelines are essential for 

integrating gait-based fatigue detection into existing 

healthcare workflows. Priority applications include 

developing workplace-specific fatigue monitoring systems 

for shift workers, long-haul drivers, and construction 

workers, with systems designed to trigger intervention 

protocols before safety-critical performance degradation 

occurs. Technology developers should focus on creating user-

friendly interfaces incorporating machine learning 

algorithms, adapting to individual baseline patterns, and 

providing personalized fatigue thresholds rather than 

universal detection criteria. 

Research should also identify the minimum set of gait 

parameters required for accurate fatigue detection across 

different populations and fatigue types, including 

determining optimal sensor placement configurations and 

sampling frequencies for wearable devices. Studies 

investigating the optimal timing for fatigue-based 

interventions by establishing the relationship between gait 

parameter changes and performance degradation are needed 

to determine when interventions become most effective. 

Finally, economic evaluation studies should assess the cost-

effectiveness of different fatigue detection approaches in 

healthcare monitoring, occupational safety, and sports 

performance optimization applications. 

F.  Limitations and Quality Assessment 

• Literature Limitations 

The heterogeneity in study designs, sample sizes, and 

outcome measures across included studies prevents 

meaningful meta-analysis and limits evidence synthesis. The 

predominance of cross-sectional studies over longitudinal 

designs restricts understanding of fatigue progression 

patterns over time. Additionally, methodological 

inconsistencies exist across studies, including variations in 

fatigue induction methods and measurement protocols, 

contributing to the contradictory findings observed in specific 

gait parameters. 

Limited research on specific occupational or clinical 

populations restricts the generalizability of findings to real-

world applications. The absence of standardized fatigue 

detection thresholds across studies also impedes the 

development of universal detection algorithms. 

• Review Process Limitations 

Our systematic review was limited to English-language 

publications and conducted at a single time point in 
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September 2024. The categorization of studies into three 

measurement modalities, while providing organizational 

clarity, may not capture the full complexity of hybrid 

approaches that combine multiple measurement techniques. 

Additionally, the subjective nature of study selection and data 

extraction introduces potential for reviewer bias despite 

following systematic protocols. 

V.  CONCLUSION  

This systematic review examined fatigue detection 

methods through gait analysis, categorizing approaches into 

three primary methodologies: force plates, wearable sensors, 

and image processing techniques. The comprehensive 

analysis of 111 studies revealed that both physical and mental 

fatigue induce significant gait parameter changes, with 

monitoring these features providing a promising approach to 

fatigue assessment. 

Several gait parameters demonstrate consistent variations 

across studies, including step width, gait speed, and knee joint 

angles, representing reliable indicators of fatigue-induced 

biomechanical changes. However, substantial discrepancies 

exist in how specific parameters are reported to change with 

fatigue, particularly stride length measurements, highlighting 

the need for standardized protocols. 

The findings indicate substantial potential for developing 

more precise and reliable detection techniques. Future 

research should prioritize refining measurement 

methodologies, exploring novel gait features, and addressing 

current inconsistencies. Integrating advanced technologies, 

particularly machine learning with wearable sensors, presents 

significant opportunities for creating real-time, user-friendly 

tools deployable across clinical, occupational, and everyday 

settings. 

The development of personalized fatigue detection models 

accounting for individual differences represents a critical 

advancement need. The systematic classification and analysis 

presented provide a foundation for developing next-

generation fatigue detection technologies while addressing 

identified methodological challenges, ultimately contributing 

to better health outcomes and injury prevention through 

accurate, accessible, and reliable fatigue detection systems. 
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