
  Progress in Physics of Applied Materials 6 (2026), Serial Number 10, 69–76 

 

 
 

 

 
 

Semnan University 

Progress in Physics of Applied Materials 

journal homepage: https://ppam.semnan.ac.ir/  
 

* Corresponding author.  
E-mail address: ehsani@semnan.ac.ir 

Cite this article as: 

Sabzevar, M., Ehsani, M.H, and Solaimani, M., 2026. Tunable Superarrival in Fractional Quantum Media. Progress in Physics of Applied Materials, 6(1), 
pp.69-76. DOI: 10.22075/ppam.2025.38523.1162   
© 2025 The Author(s). Progress in Physics of Applied Materials published by Semnan University Press. This is an open access article under the CC-BY 4.0 
license. (https://creativecommons.org/licenses/by/4.0/) 
 

Tunable Superarrival in Fractional Quantum Media 

Maryam Sabzevara , Mohammad Hossein Ehsania* , Mehdi Solaimanib  

aFaculty of Physics, Semnan University, Semnan 35195-363, Iran 
bDepartment of Physics, Qom University of Technology, Qom 1519-37195, Iran 

 
A R T I C L E  I N F O  

 

A B S T R A C T  

Article history: 

Received: 31 July 2025 

Revised: 2 September 2025 

Accepted: 11 September 2025  

Published online: 30 September 2025 

In this study, we present a numerical investigation of wave packet dynamics in a nonlinear and 

dispersive medium described by the space-fractional Schrödinger equation, with direct relevance to 

quantum electronic device applications. Employing the Split-Step Finite Difference (SSFD) method, 

we analyse the superarrival phenomenon, where the arrival time of a Gaussian wave packet is 

accelerated due to the presence of a decelerating potential barrier. Two key configurations are 

explored: a barrier approaching the wave packet and a receding one. We show that the superarrival 

response is highly sensitive to system parameters such as the fractional order, nonlinearity, 

dispersion, and the barrier's motion profile. Our findings demonstrate that superarrival can be 

effectively tuned, offering new design strategies for emerging quantum electronic components such 

as ultrafast signal switches, wave-based logic gates, and controllable tunneling junctions in nano-

engineered systems. This work bridges fundamental quantum transport with the functionality of 

next-generation electronic devices. 
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1. Introduction 

Recent advances in condensed matter physics and 
quantum engineering have highlighted the need to 
understand wave packet dynamics in complex media. In 
particular, controlling wave transport through tailored 
potential profiles has become a key goal in designing novel 
materials and functional nanoscale devices [1].  

Over the past few decades, the behavior of quantum 
systems under time-dependent potentials has attracted 
considerable interest.  

Time-dependent potentials have important applications 
across various quantum systems, including atom 
interferometry [2], quantum cascade lasers [3], laser pulse 
shaping [4], electron dynamics in silicon-based 
heterojunctions for solar cells [5], and quantum 

metamaterials [6]. Therefore, numerous functional forms of 
time-dependent potentials have been examined, including 
rotating and oscillating fields [7], moving random potentials 
[8], and time-dependent harmonic or Gaussian potentials 
[9,10]. In particular, the behavior of Gaussian wave packets 
in the presence of such potentials has been extensively 
studied in various contexts, such as photon-assisted 
quantum transport [11], tunneling processes [12], and wave 
packet scattering [13], highlighting their relevance in 
understanding and manipulating quantum transport 
mechanisms.  

Since Laskin introduced the fractional Schrödinger 
equation [14], the field of fractional quantum mechanics has 
provided a powerful framework for exploring nonlocal and 
anomalous quantum phenomena. This nonlocal extension of 
quantum theory has enabled the exploration of systems 
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governed by time-dependent and even PT-symmetric 
potentials [15], providing deeper insights into complex 
quantum behaviors. Numerical approaches such as the split-
step finite difference method [16] and Crank-Nicolson 
schemes [17] have proven effective in simulating these 
dynamics, particularly for solving the space-fractional 
forms of the Schrödinger equation. More recently, the 
fractional Schrödinger equation has transcended its 
theoretical roots and found experimental validation. Liu et 
al [18] demonstrated an experimental realization of the 
fractional Schrödinger equation in the temporal domain 
using femtosecond laser pulses and holographic gates, 
successfully manipulating the Lévy index and confirming 
several theoretical predictions. 

Among the numerical methods employed, the split-step 
finite difference (SSFD) method is a powerful tool for 
simulating complex quantum dynamics, offering significant 
advantages for solving fractional and nonlinear Schrödinger 
equations. The SSFD method works by splitting the linear 
and nonlinear parts of the equation, which makes the 
complex calculations easier to manage. This approach 
allows for more efficient and accurate simulations, 
especially in systems that change over time or involve 
nonlocal interactions, like those described by fractional 
equations [16,19]. Additionally, SSFD preserves key 
conservation properties such as mass and energy, which are 
essential for the physical reliability of long-term 
simulations. Its non-iterative nature at each time step 
significantly reduces computational cost, making it well-
suited for large-scale and multi-dimensional simulations 
[20,21]. 

Superarrival is a remarkable and counterintuitive 
phenomenon in time-dependent quantum systems, where 
the probability density of a transmitted wave packet briefly 
surpasses that of its freely propagating counterpart. 
Although this effect has been examined in specific contexts, 
such as systems with transient barriers [22], nonlinear 
Schrödinger equations [23], and within the Bohmian 
framework [24], it remains relatively unexplored and not 
yet fully understood. 

The study of moving, accelerating, or decelerating 
potential barriers in quantum mechanics is motivated by 
both theoretical and practical considerations. Time-
dependent potentials more accurately reflect realistic 
quantum systems subjected to dynamic external fields or 
time-varying interactions [25], offering a natural 
framework to study the evolution of quantum states in non-
static environments. These systems allow for precise 
control over quantum transport and give rise to complex 
phenomena such as superarrivals, enhanced or suppressed 
tunneling, and quantum pumping. These systems also 
provide important insights into the dynamics of quantum 
particles in non-stationary, accelerating, and fractional 
environments. Consequently, research in this area is 
becoming increasingly significant for the development of 
emerging quantum technologies, such as atom 
interferometers [2], nanoscale electronic devices [26], and 
quantum information systems [27].  

Recent progress has also highlighted the role of 
fractional dynamics and potential asymmetry in shaping 
wave packet transport. In previous work [28], the 
superarrival phenomenon of Gaussian wave packets in 

nonlinear fractional media with triangular potential 
barriers was investigated, demonstrating that fractional 
order, nonlinearity, and barrier asymmetry strongly 
influence the magnitude and occurrence of superarrival. 
These findings underscore the importance of fractional-
order effects in early arrival phenomena and provide a 
complementary perspective to the present study, which 
focuses on decelerating barriers in a fractional 
environment. 

In this study, we focus on the transport of a Gaussian 
wave packet through a decelerating rectangular potential 
barrier in a fractional medium. While quantum trapping in 
such barriers has been previously examined in classical 
settings [29], to the best of our knowledge, the superarrival 
phenomenon in a fractional context involving a decelerating 
barrier has not yet been addressed. As a result, we decided 
to study such a potential profile and investigate how the 
barrier’s motion, either toward or away from the wave 
packet, affects the occurrence and characteristics of 
superarrival. Our numerical results are of particular 
relevance considering recent experimental realizations of 
the FSE [18], suggesting that such anomalous wave packet 
behavior might soon be observed in practice as well. The 
results may provide new insights into transport phenomena 
within nonlocal quantum systems. These insights could play 
a pivotal role in the design of next-generation quantum 
electronic components, especially where tunneling and 
nonlocal transport characteristics are required [30]. 

2. Formalism 

      We begin our analysis with the one-dimensional space-
fractional nonlinear Schrödinger equation, given by: 

𝑖
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) =  [−𝜅

𝜕𝛼

𝜕|𝑥|𝛼 + 𝛾|𝜓(𝑥, 𝑡)|2 + 𝑉(𝑥, 𝑡)] 𝜓(𝑥, 𝑡)   (1)   

where 𝜓(𝑥, 𝑡) is the wave function, γ is the nonlinearity 
coefficient, κ denotes the dispersion coefficient, and 𝑉(𝑥, 𝑡) 
represents the time-dependent potential. The parameter 
𝛼 ∈ (1,2] is the fractional (Lévy) index, and the fractional 
derivative operator is defined in the Riesz sense as [31]: 

𝜕𝛼

𝜕|𝑥|𝛼 𝜓(𝑥, 𝑡) =
1

2 cos(
𝛼𝜋

2
)Γ(2−𝛼)

𝑑2

𝑑𝑥2 ∫ |𝑥 − 𝜉|1−𝛼∞

−∞
𝜓(𝜉, 𝑡)𝑑𝜉(2) 

where Γ denotes the gamma function. The initial wave 
function is assumed to be a Gaussian wave packet of the 
form: 

𝜓(𝑥, 𝑡 = 0) = exp [−
(𝑥 − 𝑥0)2

𝜎
+ 𝑖𝑘𝑥] (3) 

where 𝑥0, 𝜎, and 𝑘 are the initial center, width, and wave 
vector of the wave packet, respectively. 

The time evolution of the wave packet was computed 
using the Split-Step Finite Difference (SSFD) method, which 
offers both stability and computational efficiency for 
equations involving fractional dispersion and nonlinear 
interactions [16, 32, 33]. By separating the linear and 
nonlinear contributions at each time step [19], the method 
accurately captures the essential wave dynamics while 
avoiding the instabilities and high computational costs 
often associated with alternative schemes for fractional 
operators [20]. 
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Rigid (Dirichlet) boundary conditions were imposed so 
that the wave packet was reflected at the edges of the 
computational domain. To suppress boundary-induced 
artifacts, the spatial domain was chosen large enough for 
the wave packet to interact with the potential barrier 
before reaching the boundaries. Consequently, the 
reflected components from the edges remained distinct 
from the transmitted portion of the wave packet, ensuring 
reliable computation of transmission probabilities and 
related dynamical quantities. 

The time-dependent potential barrier is modeled 
following [34] as a rectangular barrier with a time-
dependent position, defined by: 

𝑉(𝑥, 𝑡)  =  {

0                                         𝑥 < −𝑎 + 𝑓(𝑡)
𝑉0                − 𝑎 + 𝑓(𝑡) < 𝑥 < 𝑎 + 𝑓(𝑡)

0                      𝑎 + 𝑓(𝑡) < 𝑥                     
 (4.1) 

where 𝑉0 is the barrier height, and 𝑓(𝑡)  ≡  [𝑣𝑐𝑡 −
1

2
𝑎𝑐𝑡2] 

denotes the position shift of the barrier as a function of 
time. Here, 𝑣𝑐  and 𝑎𝑐  are the initial velocity and 
deceleration of the barrier, respectively. The barrier 

motion stops at time 𝑡𝑓 =
𝑣𝑐

𝑎𝑐
, after which the potential 

becomes time-independent: 

𝑉(𝑥)  =  {
0                                           𝑥 < −𝑎 + 𝑐  
𝑉0                      − 𝑎 + 𝑐 < 𝑥 < 𝑎 + 𝑐   
0                            𝑎 + 𝑐 < 𝑥                   

 (4.2) 

with 𝑐 =
𝑣𝑐

2

2𝑎𝑐
= 𝑓(𝑡𝑓) being the total distance traversed by 

the barrier. 
Following the approach in Bandyopadhyay et al. [35], 

we analyse the time-dependent transmission probability 
𝑇(𝑡) by comparing the evolution of the wave packet in the 
presence of the decelerating barrier 𝑇𝑝(𝑡) with that of 

propagating through a static rectangular potential barrier 
𝑇𝑠(𝑡). The early arrival time interval is defined as ∆𝑡 = 𝑡𝑐 −
𝑡𝑑, where 𝑡𝑐 marks the intersection point of the two 
transmission curves, and 𝑡𝑑 is the onset of their deviation. 

The integrated transmission probabilities over ∆𝑡 are 
given by: 

𝐼𝑝 =  ∫ 𝑑𝑡𝑇𝑝(𝑡)

 

𝛥𝑡

   (5.1) 

𝐼𝑠 =  ∫ 𝑑𝑡𝑇𝑠(𝑡)
 

𝛥𝑡
, (5.2) 

where 𝑇𝑝(𝑡) and 𝑇𝑠(𝑡) represent the transmission 

probabilities in the presence of the decelerating barrier and 
static barrier, respectively. The transmission probability at 
a given time 𝑡 is calculated as: 

𝑇 = ∫ 𝑑𝑥 |𝜓(𝑥, 𝑡)|2

+∞

𝑎+𝑓(𝑡′)

 (6) 

where 𝑡′ corresponds to the time used to locate the 
instantaneous position of the moving barrier. 

Finally, the superarrival parameter 𝜂, which quantifies 
the relative enhancement of the transmission probability 
due to the presence of the time-dependent barrier, is 
defined as: 

𝜂 =
𝐼𝑝 − 𝐼𝑠

𝐼𝑠

 (7) 

3. Results and Discussion 

In this study, we investigated the superarrival 

phenomenon of a Gaussian wave packet interacting with a 

decelerating rectangular potential barrier in a fractional 

nonlinear medium. The space-fractional Schrödinger 

equation was solved using the Split-Step Finite Difference 

(SSFD) method to compute the time-dependent 

transmission coefficient, from which the superarrival 

magnitude was evaluated. A parametric analysis was 

conducted to examine the effects of key system parameters, 

including the dispersion coefficient (κ), fractional order 

(α), nonlinearity (γ), and both the initial velocity and 

acceleration of the barrier. Calculations were performed in 

dimensionless units by setting ℏ=1 and m=1.  

The physical roles of these parameters can be 

interpreted in the broader context of quantum mechanics 

and optics. The fractional order 𝛼 (1 < α ≤ 2) controls the 

degree of nonlocality in the system: for 𝛼 =  2, the 

dynamics reduce to the standard Schrödinger equation 

with Gaussian diffusion, whereas smaller values of 𝛼 

introduce Lévy-type spreading and long-range tunneling 

effects. The nonlinearity parameter 𝛾 characterizes the 

strength of interactions, analogous to Kerr nonlinearity in 

optics or mean-field interactions in quantum systems; 

positive values of γ induces self-focusing and localization of 

the wave packet, while negative values enhance spreading 

through self-defocusing. Since superarrival is associated 

with constructive interference and enhanced transmission 

probability, we focused on positive nonlinear coefficients 

(γ > 0), which sustain wave packet localization and 

coherence during the interaction, thereby amplifying the 

observable superarrival effect. The dispersion coefficient 𝜅, 

which plays a role similar to ħ²/2𝑚 in quantum mechanics 

or group velocity dispersion in optics, sets the rate of wave 

packet spreading. Larger κ values of 𝜅 lead to stronger 

dispersion and reduced coherence during barrier 

interactions, while smaller values preserve localization and 

enhance the visibility of the superarrival effect. 

Two barrier configurations were examined: one in 

which the potential barrier moves toward the incoming 

wave packet and another in which it moves away from it. 

The results obtained from these two scenarios were 

compared to evaluate the influence of the barrier’s 

direction of motion on the superarrival behavior and 

overall transmission dynamics. 

Preliminary simulations were conducted to identify an 

appropriate wave packet initial velocity that produces a 

noticeable superarrival effect, which is essential for the 

subsequent analysis. Among various tested values, an 

initial velocity of 1.5 was found to yield clear and consistent 

superarrival behavior. Additionally, the height and width of 

the potential barrier were set to 0.7 and 50, respectively, as 

these values provided a suitable balance between partial 

transmission and reflection. The influence of barrier 

geometry is particularly significant for superarrival. A very 

shallow or narrow barrier allows nearly free transmission 

of the wave packet, suppressing the interference necessary 
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for superarrival. On the other hand, an excessively tall or 

wide barrier suppresses tunneling almost entirely, thereby 

reducing the transmitted signal and diminishing the 

superarrival effect. The strongest superarrival emerges for 

intermediate barrier heights and widths, where partial 

transmission is accompanied by appreciable phase shifts 

that enhance constructive interference at the detector. On 

this basis, barrier parameters were chosen near their 

optimal values to maximize the visibility of the effect while 

preserving physically realistic tunneling dynamics. For 

brevity, the detailed preliminary simulation results are not 

presented here. 

The superarrival phenomenon seen in our simulations 

mainly arises from the time-dependent behavior of the 

potential barrier. In our model, the barrier either moves 

toward or away from the wave packet as it propagates. 

When the barrier moves toward the wave packet, it acts 

like a potential that is gradually widening. On the other 

hand, when the barrier moves away, it behaves like a 

potential whose width is shrinking over time. These kinds 

of dynamic, time-dependent potentials can cause part of 

the wave packet to arrive earlier than expected, which is 

known as superarrival. This interaction between the 

moving barrier and the wave packet creates complex 

transmission dynamics, which help explain why we 

observe the superarrival effect under different conditions. 

To better understand how this phenomenon depends 

on system properties, we explored how various parameters 

affect it. Specifically, we studied the influence of the 

nonlinearity coefficient, the dispersion strength, the 

fractional order of the medium, the initial velocity of the 

wave packet, and the deceleration rate of the potential 

barrier. 

We first investigated the influence of the nonlinear 

coefficient on the magnitude of the superarrival effect in 

the system. The results, presented in Figure 1, show the 

variation of superarrival as a function of the nonlinear 

coefficient γ. Panels (A) and (B) correspond to scenarios in 

which the potential barrier moves toward and away from 

the propagating wave packet, respectively. As illustrated in 

Figure 1, the superarrival phenomenon exhibits a strong 

sensitivity to the system’s nonlinearity. In both cases, the 

superarrival magnitude initially increases with γ, reaching 

a maximum at γ = 0.6 in Panel (A) and at γ = 0.5 in Panel 

(B), followed by a sharp decline. 

A comparison of the two panels reveals that the 

superarrival magnitude is significantly greater when the 

potential barrier moves toward the wave packet than when 

it moves away from it. Moreover, Panel (A) indicates that, 

in the case where the potential barrier decelerates toward 

the propagating wave packet, the superarrival effect is 

most pronounced in a fully fractional medium (α = 1). In 

contrast, Panel (B) shows that when the barrier decelerates 

away from the wave packet, the superarrival effect is 

strongest for a Lévy index of α = 1.5. Based on these 

findings, we set the nonlinear coefficient to γ = 0.5 for the 

remainder of the simulations. 

This behavior may be attributed to the influence of 

nonlinearity on the properties of the wave packet. 

Nonlinearity can alter the wave packet’s shape, speed, and 

stability, giving rise to phenomena such as pulse reshaping, 

self-focusing, or self-healing. These effects can lead to a 

more localized and concentrated wave packet, which 

facilitates easier transmission through the potential 

barrier. As a result, under certain nonlinear conditions, the 

superarrival effect may become more pronounced. Further 

analysis is warranted to deepen the understanding of these 

nonlinear-dispersive interactions. 

To better understand how the dispersion parameter 

affects the superarrival phenomenon, we present Figure 2, 

which shows the results for a nonlinear medium with γ = 

0.5. Panel (A) illustrates the case in which the potential 

barrier moves toward the wave packet, and Panel (B) 

shows the case in which it moves away. As seen in both 

panels, the superarrival magnitude fluctuates when the 

dispersion coefficient κ increases. 

In Panel (A), where the barrier moves toward the wave 

packet, the superarrival effect is strongest when κ = 0.5. As 

the dispersion coefficient increases, the effect reduces 

sharply. This may be because stronger dispersion in a 

medium can weaken the influence of nonlinearity. 

Therefore, the wave packet becomes less localized and 

moves more slowly. As a result, it becomes less able to pass 

through the barrier efficiently, and the superarrival effect 

weakens. 

 
Fig. 1. Variation of the superarrival parameter η as a function of the nonlinearity coefficient γ for different fractional orders α, with a fixed dispersion 

coefficient κ=1.0.  
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Fig. 2. Variation of superarrival as a function of the dispersion coefficient for different values of the 𝛼 parameter. 

 

 

      In the next stage of the analysis, we investigated the 

effect of the Lévy index on the magnitude of the 

superarrival parameter to get a better understanding of 

how the spatial fractionality of the medium influences the 

propagation of a Gaussian wave packet in the presence of a 

decelerating potential barrier. The results are presented in 

Figure 3. Panel (A) represents the scenario where the 

potential barrier moves toward the wave packet, while 

Panel (B) corresponds to the case where the barrier moves 

away from it. 

      As shown in both panels, the superarrival effect 

becomes more pronounced as the Lévy index decreases, 

which indicates that increasing spatial fractionality 

enhances the phenomenon. In Panel (A), for a decelerating 

barrier approaching the wave packet, the superarrival 

effect is negligible when the Lévy index exceeds 1.4. 

However, as the medium becomes more fractional (i.e., as 

the Lévy index decreases), the superarrival magnitude 

increases sharply. It is also worth noting that the maximum 

superarrival in this case occurs when the nonlinearity 

coefficient is set to γ = 0.5. In contrast, Panel (B) shows that 

when the potential barrier decelerates away from the wave 

packet, the superarrival magnitude, while significantly 

lower than in the previous case, exhibits fluctuations as the 

Lévy index increases. The highest superarrival in this 

configuration is observed in a fully nonlinear fractional 

medium with γ = 1.0 and α = 1.01. 

      As previously discussed, the primary mechanism behind 

the emergence of the superarrival phenomenon is the 

presence of a time-dependent potential profile within the 

system. Since the evolution of this potential over time plays 

a critical role in shaping the interaction with the 

propagating wave packet, it is reasonable to expect that the 

rate at which the potential changes—governed by its initial 

velocity and acceleration—could significantly influence the 

strength of the superarrival effect. Therefore, in the next 

stage of our study, we systematically examined how 

variations in the initial velocity of the potential barrier and 

its deceleration rate impact the magnitude and 

characteristics of the superarrival phenomenon. 

      Fig. 4. presents the variation of the superarrival 

parameter (η) as a function of the initial velocity of the 

potential barrier for different values of the fractional 

coefficient α, in a medium with fixed nonlinearity γ = 0.5. 

Panels (A) and (B) correspond to scenarios in which the 

potential barrier moves toward and away from the 

propagating wave packet, respectively. In both cases, the 

acceleration of the barrier is kept constant at 𝑎𝑐 = 0.1. 

 
Fig. 3. Variation of superarrival as a function of the Lévy index for different values of the nonlinearity parameter γ. 
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Fig. 4. Variation of superarrival as a function of the barrier’s initial velocity for different values of the fractional parameter 𝛼. 

      Magnitude increases rapidly with the initial velocity of 

the potential barrier, reaching a peak at 𝑉𝑐 = 3.0, beyond 

which it declines. This indicates that an initial velocity of 

𝑉𝑐 = 3.0 results in the strongest superarrival effect in both 

scenarios. Additionally, in the case where the potential 

barrier decelerates toward the wave packet [Panel (A)], 

increasing the Lévy index leads to a decrease in the 

superarrival magnitude. In contrast, for the configuration 

where the barrier decelerates away from the wave packet 

[Panel (B)], a notable superarrival effect is observed only 

for α = 1.5. For other values such as α = 1.01 and α = 2.0, the 

effect is significantly reduced or absent. This behavior can 

be explained by considering the role of the barrier's initial 

velocity in shaping the temporal evolution of the potential. 

When the initial velocity is very low, the barrier changes 

slowly over time, effectively behaving as a static or weakly 

time-dependent potential. In such cases, the dynamic 

influence necessary to induce a significant superarrival 

effect is minimal. As the initial velocity increases and 

reaches an optimal value (in this case, 𝑉𝑐 = 3.0), the time-

dependent modification of the potential becomes more 

substantial, enhancing the interaction with the wave packet 

and leading to a pronounced superarrival effect. However, 

beyond this critical velocity, the rapid change in the 

potential may disrupt the coherence of the wave packet–

barrier interaction. The results suggest that higher rates of 

barrier perturbation reduce the efficiency of the 

superarrival mechanism. In contrast, a slower and more 

gradual evolution of the potential profile allows for 

stronger superarrival during the quantum tunneling 
process [36]. 

      In the final part of our investigation, we examined how 

the deceleration rate of the potential barrier influences the 

superarrival phenomenon. For this purpose, the initial 

velocity of the barrier was fixed at 𝑉𝑐 = 3.0, the value 

previously identified as producing the most pronounced 

superarrival effect, and the deceleration rate was varied. 

The corresponding results are presented in Figure 5. Panels 

(A) and (B) depict the cases in which the potential barrier 

decelerates toward and away from the propagating wave 

packet, respectively. 

      As shown in both panels, the superarrival magnitude 

decreases progressively with increasing deceleration and 

eventually vanishes. This trend is consistent with the 

interpretation discussed in the previous section: as the rate 

of change in the potential profile becomes more rapid, the 

system deviates further from the conditions that favor 

coherent wave packet–barrier interaction. In other words, 

higher rates of barrier perturbation diminish the 

effectiveness of the superarrival mechanism. Conversely, 

when the potential evolves more gradually over time, the 

interaction remains more coherent, leading to a stronger 

superarrival effect during the quantum tunneling process 

[36]. 

 
Fig. 5. Dependence of superarrival on the barrier’s acceleration for different values of the fractional parameter α. 



  M. Sabzevar / Progress in Physics of Applied Materials 6 (2026) 69-76                                                75 
 

4. Conclusion 

      This study presented a comprehensive numerical 

analysis of the superarrival phenomenon exhibited by 

Gaussian wave packets interacting with a decelerating 

rectangular potential barrier in a nonlinear, dispersive, and 

space-fractional medium. Using the Split-Step Finite 

Difference (SSFD) method, we simulated the dynamics 

governed by the space-fractional Schrödinger equation and 

investigated how various physical parameters influence 

the emergence and strength of the superarrival effect. 

      The results demonstrate that superarrival is highly 

sensitive to key system parameters, including the fractional 

order (α), nonlinearity coefficient (γ), dispersion 

coefficient (κ), and the barrier’s dynamic characteristics 

(initial velocity and deceleration). Among the two barrier 

configurations examined—approaching and receding from 

the wave packet—it was found that the superarrival 

magnitude is significantly greater when the barrier moves 

toward the wave packet. This directional asymmetry 

highlights the importance of the temporal evolution of the 

potential profile in shaping quantum transport behavior. 

      Nonlinearity was shown to play a critical role in the 

formation of superarrival, with the effect often peaking at 

specific values of γ. Additionally, the spatial fractionality of 

the medium was found to enhance the phenomenon, 

particularly in cases where the Lévy index α is small. The 

dispersion coefficient also influenced the superarrival 

response, with stronger effects generally observed at lower 

values of κ. 

      The motion profile of the potential barrier, particularly 

its initial velocity and deceleration, had a pronounced 

impact on superarrival behavior. An optimal initial velocity 

(e.g., 𝑉𝑐 = 3.0) was identified, at which the superarrival 

effect reached its maximum. Beyond this velocity, 

coherence between the wave packet and barrier 

deteriorated, leading to a reduced superarrival response. 

Similarly, higher deceleration rates diminished the effect, 

suggesting that a gradual evolution of the potential profile 

is more favorable for the occurrence of strong superarrival 

during quantum tunneling. 

      These findings not only enhance our understanding of 

wave packet dynamics in nonlocal and time-dependent 

quantum systems but also offer promising implications for 

future applications. The ability to tune superarrival 

through precise control of system parameters could be 

harnessed in the design of advanced quantum electronic 

components, such as ultrafast signal switches, wave-based 

logic devices, and tunable tunneling junctions. Recent 

experimental studies have demonstrated analogous 

fractional quantum dynamics in photonic systems, where 

femtosecond laser pulses emulate the fractional 

Schrödinger equation and exhibit phenomena such as pulse 

splitting, solitary pulses, and fractional-phase protection. 

These findings provide a direct link between our 

theoretical predictions and observable effects in real 

optical systems, highlighting further potential applications 

in optical signal processing and the control of complex 

pulse dynamics. This study emphasizes the importance of 

incorporating fractional and nonlinear effects in the 

modeling and development of next-generation quantum 

technologies. 
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