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EXPANSION SEMIGROUPS IN PROBABILISTIC METRIC
SPACES

A. MBARKI 1∗ A. OUAHAB2 AND I. TAHIRI3

Abstract. We present some new results on the existence and the approximation
of common fixed point of expansive mappings and semigroups in probabilistic
metric spaces.

1. Introduction and preliminaries

Our terminology and notation for probabilistic metric spaces conform of that B.
Schweizer and A. Sklar [8]. A nonnegative real function f defined on R+ ∪ {∞} is
called a distance distribution function (briefly, a d.d.f.) if it is nondecreasing, left
continuous on (0,∞), with f(0) = 0 and f(∞) = 1. The set of all d.d.f’s will be
denoted by ∆+; and the set of all f in ∆+ for which lims→∞f(s) = 1 by D+.

Example 1.1. For any a in R+ ∪ {∞} the unit step at a is the function εa in ∆+

given by

εa(x) =

{
0, 0 ≤ x ≤ a, for 0 ≤ a < ∞
1, a < x ≤ ∞.

ε∞(x) =

{
0, 0 ≤ x < ∞,
1, x = ∞.

Definition 1.2. Let f and g be in ∆+ , let h be in (0, 1], and let (f, g; h) denote
the condition

0 ≤ g(x) ≤ f(x + h) + h

for all x in (0, 1
h
).

The modified Lévy distance is the function dL defined on ∆+ ×∆+ by

dL(f, g) = inf{h : both (f, g; h) and (g, f ; h) hold}.

Note that for any f and g in ∆+, both (f, g; 1) and (g, f ; 1) hold, whence dL is
well-defined function and dL(f, g) ≤ 1. Moreover we have

Lemma 1.3. [8] The function dL is a metric on ∆+.
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Definition 1.4. A sequence {Fn} of d.d.f’s converges weakly to a d.d.f. F ( will
be denoted by Fn ⇀ F ) if and only if the sequence {Fn(x)} converges to F (x) at
each continuity point x of F .

Lemma 1.5. [8] Let {Fn} be a sequence of functions in ∆+, and let F be in ∆+

Then {Fn} converges weakly to F if and only if dL(Fn, F ) → 0.

Lemma 1.6. [8] The metric spaces (∆+, dL) is compact.

Definition 1.7. We say that τ is a triangle function on ∆+ if assigns a d.d.f. in
∆+ to every pair of d.d.f’s in ∆+ ×∆+ and satisfies the following conditions:

τ(F, G) = τ(G, F ),

τ(F, G) ≤ τ(K,H) whenever F ≤ K, G ≤ H,

τ(F, ε0) = F,

τ(τ(F, G), H) = τ(F, τ(G, H)).

A commutative, associative and nondecreasing mapping T : [0, 1]× [0, 1] → [0, 1] is
called t-norm if and only if

(i) T (a, 1) = a for all a ∈ [0, 1],

(ii) T (0, 0) = 0.

Example 1.8. One can easily to check that T (a, b) = Min(a, b) is a t-norm, and
that for any t-norm T we have T (a, b) ≤ Min(a, b) and if more T is left-continuous,
then the operation τT : ∆+ ×∆+ → ∆+ such that

τT (F, G)(x) = sup{T (F (u), G(v)) : u + v = x}

is a triangle function.

Lemma 1.9. [8] If T is continuous, then τT is continuous.

Definition 1.10. A probabilistic metric space (briefly, a PM space) is a triple
(M, F, τ) where M is a nonempty set, F is a function from M ×M into ∆+, τ is a
triangle function, and the following conditions are satisfied for all p, q, r in M :
(i) Fpp = ε0

(ii) Fpq 6= ε0 if p 6= q
(iii) Fpq = Fqp

(iv) Fpr ≥ τ(Fpq, Fqr).
If τ = τT for some t-norm T , then (M, F, τT ) is called a Menger space.

Definition 1.11. Let (M, F ) be a probabilistic semimetric space (i.e. (i), (ii) and
(iii) are satisfied). For p in M and t > 0, the strong t-neighborhood of p is the set

Np(t) = {q ∈ M : Fpq(t) > 1− t}.

and the strong neighborhood system for M is

{Np(t); p ∈ M, t > 0}.

Lemma 1.12. [8] Let t > 0 and p, q in M . Then

q ∈ Np(t) if and only if dL(Fpq, ε0) < t
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Lemma 1.13. [8] Let (M, F, τ) be a PM space. If τ is continuous, then the family
= consisting of ∅ and all unions of elements of strong neighborhood system for M
determines a Hausdorff topology for M .

An immediate consequence of Lemma1.13 is that the family {Np(t) : t > 0} is a
neighborhood system of p for the topology =.

Lemma 1.14. [8] Let {pn} be a sequence in M . Then

pn → p iff dL(Fpnp, ε0) → 0.

Similarly, {pn} is a strong Cauchy sequence if and only if

lim
n,m→∞

dL(Fpnpm , ε0) = 0.

Lemma 1.15. [8] If {pn} and {qn} are sequences such that pn → p and qn → q
(resp, are Cauchy sequences in M), then dL(Fpnqn , Fpq) → 0, i.e., Fpnqn converges
weakly to Fpq (resp, {Fpnqn} is a Cauchy sequence in (∆+, dL)).

Here and in the sequel, when we speak about a probabilistic metric space (M, F, τ),
we always assume that τ is continuous and M be endowed with the topology =.

Recall the definition of probabilistic diameter of a set in PM space.

Definition 1.16. Let (M, F, τ) be a PM space and A a nonempty subset of M .
The probabilistic diameter is the function DA defined on R+ ∪ {∞} by

DA(x) =

{
limt→x− ϕA(t), for 0 ≤ x < ∞
1, x = ∞.

where
ϕA(s) = inf{Fpq(s) : p, q ∈ A}.

It is immediate that DA is in ∆+ for any A ⊂ M .

Lemma 1.17. [8] The probabilistic diameter DA has the following properties:
i. DA = ε0 iff A is a singleton set.
ii. If A ⊂ B, then DA ≥ DB.
iii. For any p, q ∈ A, Fpq ≥ DA.

Definition 1.18. A nonempty set B in a PM space is bounded if DB is in D+.

Example 1.19. Let (M, d) be a metric space. Define F : M ×M → ∆+ by

Fpq = εd(p,q)

It is easy to check that (M, F, τMin) is a PM (Menger) space, and

Np(t) = {q ∈ M : d(p, q) < t},
for t ∈ (0, 1). So (M, F, τMin) is a complete PM space if and only if (M, d) is a
complete metric space. Moreover, for A a nonempty subset of M we have

DA = εdiam(A),

where
diam(A) = sup{d(p, q) : p, q ∈ A}.
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Our main purpose in this paper is to present some new results on the existence
and the approximation of fixed point of expansive mappings and semigroups in
probabilistic metric spaces. These results are of interest in view of analogous results
in metric spaces (see for example [3], [4] and [5])

2. Main results

Throughout this note, (M, F, τ) denotes a complete PM space such that Ran F ⊂
D+, and T is a map from M into itself. Powers of T are defined by T 0x =
x and T n+1x = T (T nx) , n ≥ 0. Occasionally, j is the identity function on
R+. The set {T nx : n = 0, 1, 2, ...} is called an orbit ( starting at x ) and denoted
by OT (x). Further Φ is the set of functions φ satisfying

(A′
1) φ : [0,∞] → [0,∞] is lower semi-continuous from the left,

nondecreasing and φ(0) = 0;
(A′

2) For each t ∈ (0,∞), φ(t) > t.

We shall make frequent use of the followings Lemma and definition

Lemma 2.1. [4] Let {Fn} be a sequence of functions in ∆+. If there exist
k in N, φ in Φ and G in D+ such that

Fn ≥ G(φn(j)) for any n ≥ k.

Then {Fn} converges weakly to ε0.

Definition 2.2. Let f and g be two selfmaps on a complete PM space (M, F, τ),
f and g are said to be compatible if, whenever {xn} is a sequence of point in M
such that lim fxn = lim gxn = x, then Ffgxngfxn ⇀ ε0.

we have the following main result.

Theorem 2.3. Let f and g be two selfmaps on a complete PM space (M, F, τ) such
that the following conditions (i), (ii) and (iii) are satisfied

i. f and g are compatible, f continuous;
ii.There exists {xn} in M for some x0 ∈ M , such that fxn+1 = gxn,
{fxn} is bounded and;

iii. There is a function φ ∈ Φ such that Ffxfy(φ(j)) ≤ Fgxgy(j).

Then f and g have a unique common fixed point z and, moreover, the sequence
{fxn} converges to z.

Notice that the condition-hypothesis that f is continuous clearly implies that g is
continuous, which, since f and g are compatible implies if, there exists a sequence
{xn} ⊂ M such that lim fxn = lim gxn = z, for some z ∈ M, that fz = gz.
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Proof. Let x0 ∈ M such that fxn+1 = gxn and B = {fxn} is bounded. The
condition (iii) implies that

DB(φn(j)) ≤ Ffx0fxm(φn(j))

≤ Fgx0gxm(φn−1(j))

= Ffx1fxm+1(φ
n−1(j))

...

≤ Ffxnfxm+n(j).

Letting n →∞, and using the Lemma 2.1, we obtain

Ffxnfxm+n ⇀ ε0.

It follows from Lemma 1.14 that {fxn} is a Cauchy sequence. Since (M, F, τ) is
complete, there is a point z ∈ M such that fxn → z as n → ∞ then lim gxn = z.
Now we shall show that fz = z. Since f is continuous then lim fgxn = fz, which,
since f and g compatible implies that lim gfxn = gz = fz. From (iii),

Ffzfx0(φ
n(j)) ≤ Fgzgx0(φ

n−1(j))

= Ffzfx1(φ
n−1(j))

...

≤ Ffzfxn(j).

Taking the limit as n →∞, and using the Lemma 2.1 yields

Ffzfxn ⇀ ε0,

which, since Ffzfxn ⇀ Ffzz implies that Ffzz = ε0, that is fz = z, then z = fz = gz.
Next, let y ∈ M is also a common fixed point of f and g. Again from (iii),

Fzy(φ
n(j)) = Ffzfy(φ

n(j))

≤ Fgzgy(φ
n−1(j))

= Fzy(φ
n−1(j))

...

≤ Fzy(j).

Since Ran F ⊂ D+ by Lemma2.1, as n → ∞ we obtain Fzy = ε, whence z = y
which is a contradiction. This completes the proof of the Theorem �

Remark 2.4. Notice that the condition-hypothesis (ii) the Theorem 2.3 is necessary
condition of the existence the fixed point as the following Sherwood’s example show

Example 2.5. [9] Let G be the distribution function defined by

G(t) =

{
0, t ≤ 4
1− 1

n
, 2n < t ≤ 2n+1 n > 1.

Consider the set M = {1, 2, ...., n, ...} and define F on M ×M as follows:

Fnm(t) = Fmn(t) =

{
0, t ≤ 0
Tm

L (G(2nt), G(22n+1t), ...G(2n+mt)), t > 0.
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with TL is the Lukasiewicz t-norm defined by:

TL(x, y) = max{x + y − 1, 0}
Then (M, F, τTL

) is a complete Menger space and the mapping g(n) = n + 1 is fixed
point free mapping, satisfying

Fg(n)g(m)(t) ≥ Fnm(2t)

for all n, m ∈ M and t > 0. Since there does not exist n in M , such that Og(n) is
bounded.

As a direct consequence of Theorem 2.3, if f = idM i.e g is a φ-contractive
mapping we have the following [4]

Corollary 2.6. Suppose that g is a selfmap on a complete PM space (M, F, τ) such
that the following conditions (i) and (ii) are satisfied

i. There exists x in M , its orbit Og(x) is bounded;
ii. There is a function φ ∈ Φ such that g is φ-contractive.

Then g has a unique fixed point z and, moreover, for any x ∈ M , the sequence of
iterates {gn(x)} converges to z.

If we replace the condition (i) of Theorem 2.3 by f is bijective and commute with
g. Firstly, remark in this case that gf−1 is φ-contractive selfmap of M , which implies
that lim gnf−nx = z, for any x ∈ M , with z is the unique fixed point of gf−1 in M .
Notice also that fz = gz. Using the argument on above proof of Theorem2.3, we
obtain

Theorem 2.7. Let f and g be two selfmaps on a complete PM space (M, F, τ) such
that the following conditions (i), (ii) and (iii) are satisfied

i. f and g commute, f bijective selfmap of M ;
ii. There exists x in M , its orbit Ogf−1(x) is bounded; and;
iii. There is a function φ ∈ Φ such that Ffxfy(φ(j)) ≤ Fgxgy(j).

Then f and g have a unique common fixed point z and, moreover, for any x ∈ M ,
the sequence {gnf−nx} converges to z.

The following Example illustrates Theorem2.3.

Example 2.8. Let M = [0,∞) and define F : M ×M → ∆+ as follows

Fpq = ε|p−q|.

It is easy to check that (M, F, τMin) is a complete PM space and, let g and f be two
selftmaps on M defined by g(x) = x and f(x) = 2x. Then f is bijective continuous
commute with g and Ogf−1(0) is bounded. In addition, put φ : (0,∞] → (0,∞] :
φ(s) = 2s. we have Ff(x)f(y)(2j) ≤ Fgxgy(j), for any x, y ∈ M. However, for each
ϕ ∈ Φ, Fxy(ϕ) ≥ Fgxgy(j), so g do not satisfy the condition of the Corollary.

3. Fixed Point Theorem For A Semigroup

Let S be a semigroup of selfmaps on (M, F, τ). For any x ∈ M , the orbit of x
under S starting at x is the set O(x) defined to be {x} ∪ Sx, where Sx is the set
{g(x) : g ∈ S}. We say that S is left reversible if, for any f, g in S, there are a, b
such that fa = gb. It is obvious that left reversibility is equivalent to the statement
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that any two right ideals of S have nonempty intersection.
As an extension of Elamrani et al. [4] we have the following

Theorem 3.1. Suppose S is a left reversible semigroup and f be a selfmap of M
such that the following conditions (i), (ii) and (iii) are satisfied

i. For g ∈ S, f and g commute, f bijective;
ii.There exists x in M , such that for each g ∈ M, Ogf−1(x)

and O(x) are bounded; and;
iii. There is a function φ ∈ Φ such that Ffxfy(φ(j)) ≤ Fgxgy(j), for each g ∈ S.

Then S and f have a unique common fixed point z and, moreover, the sequence
{gnf−nx} converges to z for each g ∈ S.

Proof. It follows Theorem2.3 that each g ∈ S, g and f have a unique fixed point zg

in M and for any x ∈ M , the sequence of iterates {gnf−n(x)} converges to zg. So,
to complete the proof it suffices to show that zT = zg for any T, g ∈ S. Let n be
any positive integer. The left reversibility of S shows that are an and bn in S such
that T nan = gnbn then T nf−nan = gnf−nbn, and so

FzT zg ≥ τ(FzT T nf−nan(x0), Fgnf−nbn(x0)zg) (∗).

Also, since gf−1 is φ-contractive we then have

Fgnf−n(x0)gnf−nan(x0) ≥ Fx0an(x0)(φ
n(j)) ≥ DO(x0)(φ

n(j)).

Letting n → ∞ in the last inequality and using the fact that DO(x0) is in D+ we
obtain

Fgnf−n(x0)gnf−nan(x0) ⇀ ε0. (∗ ∗).
Since

Fzggnf−nan(x0) ≥ τ(Fzggnf−n(x0), Fgnf−n(x0)gnf−nan(x0)) (∗ ∗ ∗).
Letting n →∞ in (∗ ∗ ∗) and using Fzggnf−n(x0) ⇀ ε0, we get

Fzggnf−nan(x0) ⇀ ε0.

Likewise, we also have FzT T nf−nbn(x0) ⇀ ε0 which implies that, as n →∞ in (∗) we
obtain

FzT zg = ε0.

This completes the proof of the Theorem. �

Here, we like give a concrete example for the above Theorem.

Example 3.2. Let M = R and define F : M ×M → ∆+ as follows

Fpq = ε|p−q|.

It is easy to check that (M, F, τMin) is a complete PM space and, let S be the
semigroup generated by

α : M → M : α(p) =

{
2
3
, for p ≥ 0

0, for p < 0.

and

β : M → M : β(p) = p.
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In addition, put φ : [0,∞] → [0,∞] : φ(s) = 2s. f selfmap on M defined by
f(x) = 2x. Then S is left reversible, f is bijective commute with S, Ogf−1(0) and
O(0) are bounded and, for any x, y ∈ M and any g ∈ S,

Fg(x)g(y) ≥ Ffxfy(2j).

However, for each ϕ ∈ Φ, S is not ϕ-contractive.

4. Relative Results In Metric Spaces

Let (M, d) be a complete metric space, and F : M × M → ∆+ Fpq = εd(p,q).
It is easy to see that (M, F, τMin) is a complete PM space, Ran F ⊂ D+ and for
any nonempty subset A of M, DA = εdiam(A) which implies that if A is bounded
in (M, d) then it is in (M, F, τMin). Let f be a selfmap and T is a selfmap (a
semigroup S ) on (M, d) and ϕ : [0,∞) → [0,∞) is a gauge function i.e., upper
semi-continuous function such that ϕ(0) = 0 and ϕ(s) < s for s > 0. Suppose
that T ( S ) satisfies d(Tx, Ty) ≤ ϕ(d(fx, fy)) for any x, y in M (C1) ( d(gx, gy) ≤
ϕ(d(fx, fy)) f for any S and x, y in M .) It is not hard to prove that there exists
φ : [0,∞] → [0,∞] such that FTxTy ≥ Ffxfy(φ(j)) for any x, y ∈ M .( Fgxgy ≥
Ffxfy(φ(j)) for any f in S and x, y ∈ M .) Moreover, the function φ ∈ Φ. For
example, using the same construction as in [4]. Which yields the following results

Corollary 4.1. Suppose that T and f are two compatible (commute) selfmaps of a
complete metric space (M, d) such that f continuous and T (M) ⊆ f(M) (f bijec-
tive). If there exists a gauge function with the propriety that T and f satisfy (C1).
Then T and f have a unique common fixed point z.

Special cases of Corollary4.1 are [3], [7] and [1].

Corollary 4.2. Suppose S is a left reversible semigroup and f be a selfmap of M
such that the following conditions (i), (ii) and (iii) are satisfied

i. For g ∈ S, f and g commute, f bijective;
ii.There exists x in M , such that for each g ∈ M, Ogf−1(x)

and O(x) are bounded; and;
iii. There exists a gauge function with the propriety that

d(gx, gy) ≤ ϕ(d(fx, fy)), for each g ∈ S.

Then S and f have a unique common fixed point z and, moreover, the sequence
{gnf−nx} converges to z for each g ∈ S.

Special case of Corollary4.2 is [3].
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