Int. J. Nonlinear Anal. Appl. In Press, 1-6

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2025.34642.5183

Stanley's conjecture on the Cohen-Macaulay simplicial complexes of codimension 2

Seyed Mohammad Ajdani

Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

Let Δ be a simplicial complex on vertex set $\{x_1, \ldots, x_n\}$. It is shown that if Δ is a Cohen-Macaulay simplicial complex of codimension 2, then Δ is partitionable and Stanley's conjecture holds for $K[\Delta]$. As a consequence, we show that if Δ is a quasi-forest simplicial complex, then Δ^{\vee} is shellable.

Keywords: Stanley depth, Cohen-Macaulay, partitionable

2020 MSC: 13A30; 13C12, 13F55

1 Introduction

A simplicial complex Δ over a set of vertices $V = \{x_1, \dots, x_n\}$ is a collection of subsets of V with the property that:

- (a) $\{x_i\} \in \Delta$, for all i;
- (b) if $F \in \Delta$, then all subsets of F are also in Δ (including the empty set).

An element of Δ is called a face of Δ and complement of a face F is $V \setminus F$ and it is denoted by F^c . Also, the complement of the simplicial complex $\Delta = \langle F_1, \dots, F_r \rangle$ is $\Delta^c = \langle F_1^c, \dots, F_r^c \rangle$. The dimension of a face F of Δ , $\dim F$, is |F|-1, where |F| is the number of elements of F and $\dim \varnothing = -1$. The faces of dimensions 0 and 1 are called vertices and edges, respectively. A non-face of Δ is a subset F of V with $F \notin \Delta$. We denote by $\mathcal{N}(\Delta)$, the set of all minimal non-faces of Δ . The maximal faces of Δ under inclusion are called facets of Δ . The dimension of the simplicial complex Δ , $\dim \Delta$, is the maximum of dimensions of its facets. If all facets of Δ have the same dimension, then Δ is called pure.

Let $\mathcal{F}(\Delta) = \{F_1, \dots, F_q\}$ be the facet set of Δ . It is clear that $\mathcal{F}(\Delta)$ determines Δ completely and we write $\Delta = \langle F_1, \dots, F_q \rangle$. A simplicial complex with only one facet is called a *simplex*. A simplicial complex Λ is called a *subcomplex* of Δ , if $\mathcal{F}(\Lambda) \subseteq \mathcal{F}(\Delta)$.

For $v \in V$, the subcomplex of Δ obtained by removing all faces $F \in \Delta$ with $v \in F$ is denoted by $\Delta \setminus v$. That is,

$$\Delta \setminus v = \langle F \in \Delta \colon v \notin F \rangle.$$

 $Email\ address:\ {\tt majdani2@yahoo.com}\ (Seyed\ Mohammad\ Ajdani)$

Received: July 2024 Accepted: February 2025

2 Ajdani

The link of a face $F \in \Delta$, denoted by $link_{\Delta}(F)$, is a simplicial complex on V with the faces $G \in \Delta$ such that $G \cap F = \emptyset$ and $G \cup F \in \Delta$. The link of a vertex $v \in V$ is simply denoted by $link_{\Delta}(v)$.

$$\operatorname{link}_{\Delta}(v) = \{ F \in \Delta \colon v \notin F, F \cup \{v\} \in \Delta \}.$$

Let Δ be a simplicial complex over n vertices $\{x_1,\ldots,x_n\}$. For $F\subseteq\{x_1,\ldots,x_n\}$, we set:

$$\mathbf{x}_F = \prod_{x_i \in F} x_i.$$

We define the facet ideal of Δ , denoted by $I(\Delta)$, to be the ideal of S generated by $\{\mathbf{x}_F \colon F \in \mathcal{F}(\Delta)\}$. The non-face ideal or the Stanley-Reisner ideal of Δ , denoted by I_{Δ} , is the ideal of S generated by square-free monomials $\{\mathbf{x}_F \colon F \in \mathcal{N}(\Delta)\}$. Also we call $K[\Delta] := R/I_{\Delta}$ the Stanley-Reisner ring of Δ .

One of the interesting problems in combinatorial commutative algebra is the Stanley's conjectures. Let $R = K[x_1, \ldots, x_n]$ be a polynomial ring in n variables over a field K and M be a finitely generated \mathbb{Z}^n -graded R-module. Let $m \in M$ be a homogeneous element in M and $Z \subseteq \{x_1, \ldots, x_n\}$. We denote by mK[Z] the K-subspace of M generated by all elements mf where f is a monomial in K[Z]. The \mathbb{Z}^n -graded K-subspace $mK[Z] \subseteq M$ is called a Stanley space of dimension |Z| when mK[Z] is a free K[Z]-module. A Stanley decomposition of M is a presentation of the K-vector space M as a finite direct sum of Stanley spaces

$$\mathcal{D}: M = \bigoplus_{i=1}^{r} m_i K[Z_i].$$

Set $sdepth(\mathcal{D}) = \min\{|Z_i| : i = 1, ..., r\}$. The number

 $sdepth(M) = \max\{sdepth(\mathcal{D}) : \mathcal{D} \text{ is a Stanley decomposition of M}\}\$

is called Stanley depth of M. The Stanley's conjectures are studied by many researchers. Let R be a \mathbb{N}^n -graded ring and M a \mathbb{Z}^n - graded R- module. Then Stanley [8] conjectured that

$$depth(M) \leq sdepth(M)$$
.

He also conjectured in [9] that each Cohen-Macaulay simplicial complex is partitionable. Herzog, Soleyman Jahan and Yassemi in [5] showed that the conjecture about partitionability is a special case of the Stanley's first conjecture. In this paper, we show that if Δ is cohen macaulay simplicial complex of codimension 2, then Δ is partitionable and Stanley's conjecture holds for $K[\Delta]$. Also, it is shown that every k-Cohen-Macaulay simplicial complexes of codimension 3 is partitionable.

2 Preliminaries

In this section we fix some notations and recall some definitions. For a monomial $u = x_1^{a_1} \dots x_n^{a_n}$ in R, we denote the support of u by supp(u) and it is the set of those variables x_i that $a_i \neq 0$. Let m be another monomial in R. If for all $x_i \in supp(u)$, $x_i^{a_i} \nmid m$, then we set [u, m] = 1, otherwise we set $[u, m] \neq 1$.

For a monomial ideal $I \subset R$, we set $I^u = (m_i \in G(I) : [u, m_i] \neq 1)$ and $I_u = (m_i \in G(I) : [u, m_i] = 1)$. The concept of shedding monomial and k-decomposable monomial ideals was first introduced by Rahmati and Yassemi in [7].

Definition 2.1. Let I be a monomial ideal and $G(I) = \{m_1, \ldots, m_r\}$. The monomial $u = x_1^{a_1} \ldots x_n^{a_n}$ is called a shedding monomial of I if $I_u \neq 0$ and for each $m_i \in G(I_u)$ and each $x_l \in supp(u)$ there exists $m_j \in G(I^u)$ such that $\langle m_j : m_i \rangle = \langle x_l \rangle$.

Definition 2.2. Let I be a monomial ideal and $G(I) = \{m_1, \ldots, m_r\}$. Then I is a k-decomposable ideal if r = 1 or else has a shedding monomial u with $|supp(u)| \le k + 1$ such that the ideals I^u and I_u are k-decomposable. Note that since |G(I)| is finite, the recursion procedure will stop.

A 0-decomposable ideal is called *variable decomposable*. Also, a monomial ideal is decomposable if it is k-decomposable for some $k \ge 0$.

Definition 2.3. A simplicial complex Δ is recursively defined to be *vertex decomposable*, if it is either a simplex, or else has some vertex v so that

- (a) Both $\Delta \setminus v$ and $link_{\Delta}(v)$ are vertex decomposable, and
- (b) No face of $link_{\Delta}(v)$ is a facet of $\Delta \setminus v$.

A vertex v which satisfies in condition (b) is called a *shedding vertex*.

Definition 2.4. A simplicial complex Δ is *shellable*, if the facets of Δ can be ordered F_1, \ldots, F_s such that, for all $1 \leq i < j \leq s$, there exists some $v \in F_j \setminus F_i$ and some $l \in \{1, \ldots, j-1\}$ with $F_j \setminus F_l = \{v\}$.

A simplicial complex Δ is called disconnected, if the vertex set V of Δ is a disjoint union $V = V_1 \cup V_2$ such that no face of Δ has vertices in both V_1 and V_2 . Otherwise Δ is connected. It is well-known that

 $vertex decomposable \implies Shellable \implies Cohen-Macaulay$

Definition 2.5. Given a simplicial complex Δ on V, we define Δ^{\vee} , the Alexander dual of Δ , by

$$\Delta^{\vee} = \{ V \setminus F \colon \quad F \notin \Delta \}.$$

It is known that for the complex Δ one has $I_{\Delta^{\vee}} = I(\Delta^c)$. Let $I \neq 0$ be a homogeneous ideal of R and \mathbb{N} be the set of non-negative integers. For every $i \in \mathbb{N}$, one defines:

$$t_i^R(I) = \max\{j : \quad \beta_{i,j}^R(I) \neq 0\},\,$$

where $\beta_{i,j}^R(I)$ is the i,j-th graded Betti number of I as an R-module. The Castelnuovo-Mumford regularity of I is given by:

$$reg(I) = \sup\{t_i^R(I) - i \colon i \in \mathbb{Z}\}.$$

We say that the ideal I has a *d-linear resolution*, if I is generated by homogeneous polynomials of degree d and $\beta_{i,j}^R(I) = 0$, for all $j \neq i + d$ and $i \geq 0$. For an ideal which has a d-linear resolution, the Castelnuovo-Mumford regularity would be d. If I is a graded ideal of R, then we write (I_d) for the ideal generated by all homogeneous polynomials of degree d belonging to I.

Definition 2.6. A graded ideal I is componentwise linear if (I_d) has a linear resolution for all d.

Also, we write $I_{[d]}$ for the ideal generated by the squarefree monomials of degree d belonging to I.

Definition 2.7. A graded S-module M is called sequentially Cohen-Macaulay (over K), if there exists a finite filtration of graded S-modules,

$$0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$$

such that each M_i/M_{i-1} is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:

$$\dim(M_1/M_0) < \dim(M_2/M_1) < \cdots < \dim(M_r/M_{r-1}).$$

The Alexander dual, allows us to make a bridge between (sequentially) Cohen-Macaulay ideals and (componetwise) linear ideals.

Definition 2.8 (Alexander duality). For a square-free monomial ideal $I = (M_1, \ldots, M_q) \subset R = K[x_1, \ldots, x_n]$, the Alexander dual of I, denoted by I^{\vee} , is defined to be:

$$I^{\vee} = P_{M_1} \cap \cdots \cap P_{M_q}$$

where P_{M_i} is prime ideal generated by $\{x_i: x_i|M_i\}$.

Theorem 2.9 ([4, Proposition 8.2.20], [3, Theorem 3]). Let I be a square-free monomial ideal in $R = K[x_1, \ldots, x_n]$.

4 Ajdani

- (i) The ideal I is componentwise linear ideal if and only if R/I^{\vee} is sequentially Cohen-Macaulay.
- (ii) The ideal I has a q-linear resolution if and only if R/I^{\vee} is Cohen-Macaulay of dimension n-q.

A monomial ideal $I \subset R = K[x_1, \dots, x_n]$ generated in a single degree is called polymatroidal if for any $u, v \in G(I)$ such that $\deg_{x_i}(u) > \deg_{x_i}(v)$ there an index j with $\deg_{x_j}(u) < \deg_{x_j}(v)$ such that $x_j(u/x_i) \in G(I)$. A squarefree polymatroidal ideal is called matroidal. Also, a monomial ideal I is called weakly polymatroidal if for every two monomials $u = x_1^{a_1} \dots x_n^{a_n} > v = x_1^{b_1} \dots x_n^{b_n}$ in G(I) such that $a_1 = b_1, \dots, a_{t-1} = b_{t-1}$ and $a_t > b_t$, there exists j > t such that $x_t(v/x_j) \in I$. It is clear from the definition that a polymatroidal ideal is weakly polymatroidal.

The following results from [7] are crucial in this paper.

Theorem 2.10 ([7, Theorem 2.10]). Let Δ be a (not necessarily pure) d-dimensional simplicial complex on vertex set $\{x_1, \ldots, x_n\}$. Then Δ is k-decomposable if and only if $I_{\Delta^{\vee}}$ is k-decomposable, where $k \leq d$.

Proposition 2.11 ([7, Lemma 3.8]). If I is an squarefree monomial ideal generated in degree 2 which has a linear resolution, then after suitable renumbering of the variables, I is weakly polymatroidal.

Theorem 2.12 ([7, Theorem 3.5]). Let $I \subset R$ be a weakly polymatroidal ideal. Then I is 0-decomposable.

3 Partitionability of Cohen-Macaulay simplicial complexes of codimension 2

As the main result of this section, it is shown that if Δ is Cohen-Macaulay simplicial complex of codimension 2, then Δ is partitionable and Stanley's conjecture holds for $K[\Delta]$. Stanley conjectured in [8] the upper bound for the depth of $K[\Delta]$ as the following:

$$depth(K[\Delta]) \leq sdepth(K[\Delta]).$$

Also we recall another conjecture of Stanley. Let Δ be again a simplicial complex on $\{x_1,\ldots,x_n\}$ with facets G_1,\ldots,G_t . The complex Δ is called partitionable if there exists a partition $\Delta=\bigcup_{i=1}^t [F_i,G_i]$ where $F_i\subseteq G_i$ are suitable faces of Δ . Here the interval $[F_i,G_i]$ is the set of faces $\{H\in\Delta:F_i\subseteq H\subseteq G_i\}$. In [9] and [10] respectively Stanley conjectured each Cohen-Macaulay simplicial complex is partitionable. This conjecture is a special case of the previous conjecture. Indeed, Herzog, Soleyman Jahan and Yassemi [5] proved that for Cohen-Macaulay simplicial complex Δ on $\{x_1,\ldots,x_n\}$ we have that $depth(K[\Delta]) \leq sdepth(K[\Delta])$ if and only if Δ is partitionable.

Theorem 3.1. If Δ is a Cohen-Macaulay simplicial complex of codimension 2, then Δ is partitionable.

Proof. Since Δ is Cohen-Macaulay simplicial complex of codimension 2, by a result of Eagon and Reiner [3], $I_{\Delta^{\vee}}$ is a squarefree monomial ideal which has 2-linear resolution. Hence by Proposition 2.11 and Theorem 2.12, $I_{\Delta^{\vee}}$ is 0-decomposable. It follows from Theorem 2.10 that Δ is vertex decomposable. So Δ is partitionable. \square

Since each vertex decomposable simplicial complex is shellable and each shellable complex is partitionable, as a consequence of our result we obtain the following corollary.

Corollary 3.2. Let Δ be a Cohen-Macaulay simplicial complex of codimension 2 on vertex set $\{x_1, \ldots, x_n\}$. Then Stanley's conjecture holds for $K[\Delta]$.

As an immediate consequence we have the following:

Corollary 3.3. Let Δ be a quasi-forest simplicial complex which is not a simplex. Then Δ^{\vee} is shellable and Stanley's conjecture holds for $k[\Delta^{\vee}]$.

Proof. It is proved in [11] that each quasi-forest is a flag complex. So I_{Δ} is generated by quadratic monomials and hence $ht(I_{\Delta^{\vee}})=2$. Since Δ is quasi-forest by [11, Corollary 5.5], we have $pd(K[\Delta^{\vee}])=2$. Therefore Δ^{\vee} is Cohen-Macaulay of codimension 2 and by Theorem 3.1, Δ^{\vee} is vertex decomposable and each vertex decomposable complex is shellable. \square

Let Δ be a simplicial complex on the vertex set $\{x_1,\ldots,x_n\}$ with $\dim \Delta < n-2$. Let F be an arbitrary face of Δ^{\vee} and x_0 a new vertex. A cone from x_0 over F, denoted by $co_{x_0}F$, is the simplex on the the vertex set $F \cup \{x_0\}$. Set $\Gamma = \Delta^{\vee} \cup co_{x_0}F$.

Lemma 3.4 ([1, Lemma1]). Let F be a face of Δ_1 such that F is not $\{x_1, \ldots, x_n\}$. If $\Delta_2 = \Delta_1 \cup co_{x_0}F$, then

$$pd(k[\Delta_2]) = \max\{pd(k[\Delta_1]) + 1, n - |F|\}.$$

Proposition 3.5. Let Δ be a quasi-forest simplicial complex on the vertex set $\{x_1, \ldots, x_n\}$. Let F be an arbitrary face of Δ^{\vee} such that $\dim(\Delta^{\vee}) = |F|$ and x_0 a new vertex. Set $\Gamma = \Delta^{\vee} \cup co_{x_0}F$. Then Γ is Cohen-Macaulay.

Proof. Let Δ be a quasi-forest simplicial complex on vertex set $\{x_1, \ldots, x_n\}$. Then by Corollary 3.3, Δ^{\vee} is Cohen-Macaulay. So $ht(I_{\Delta^{\vee}}) = pd(k[\Delta^{\vee}])$. On the other hand,

$$ht(I_{\Gamma}) = ht(I_{\Delta \vee}) + 1.$$

By 3.4, we obtain

$$pd(k[\Gamma]) = \max\{pd(k[\Delta^{\vee}]) + 1, n - |F|\},\$$

Auslander-Buchbaum formula implies that

$$pd(k[\Delta^{\vee}]) = n - depth(k[\Delta^{\vee}]).$$

Since Δ^{\vee} is Cohen-Macaulay, we have

$$pd(k[\Delta^{\vee}]) = n - \dim(k[\Delta^{\vee}])$$
$$= n - (\dim \Delta^{\vee} + 1)$$
$$= n - |F| - 1.$$

Therefore

$$\begin{split} pd(k[\Gamma]) &= n - \mid F \mid \\ &= n - \dim \Delta^{\vee} \\ &= n - (\dim(k[\Delta^{\vee}]) - 1) \\ &= n - \dim(k[\Delta^{\vee}]) + 1 \\ &= ht(I_{\Delta^{\vee}}) + 1 \\ &= ht(I_{\Gamma}). \end{split}$$

This shows that Γ is Cohen-Macaulay. \square

As one of our main results, we prove that every k-Cohen-Macaulay simplicial complexes of codimension 3 is partitionable. But before that the following lemmas are needed.

Lemma 3.6 ([6, Lemma 2.3]). Let Δ be a simplicial complex with vertex set V. Let $W \subseteq V$ and let σ be a face in Δ . If $W \cap \sigma = \emptyset$, then $link_{\Delta \setminus W} \{\sigma\} = link_{\Delta} \{\sigma\} \setminus W$.

Definition 3.7. Let K be a field. A simplicial complex Δ with vertex set V is called k-Cohen-Macaulay of dimension r over K if for any subset W of V (including \emptyset), $\Delta \setminus W$ is Cohen-Macaulay of dimension r over K.

Lemma 3.8. Let Δ be a simplicial complex with vertex set V. Then the following conditions are equivalent:

- (i) Δ is k-Cohen-Macaulay;
- (ii) for all $\sigma \in \Delta$, $link_{\Delta} \{\sigma\}$ is k-Cohen-Macaulay;

Proof. By lemma 3.6, for any subset W of V, we have $\operatorname{link}_{\Delta\setminus W}\{\sigma\} = \operatorname{link}_{\Delta}\{\sigma\}\setminus W$. Since $\Delta\setminus W$ is Cohen-Macaulay so $\operatorname{link}_{\Delta}\{\sigma\}\setminus W$ is Cohen-Macaulay. Therefore $\operatorname{link}_{\Delta}\{\sigma\}$ is k-Cohen-Macaulay. \square

Now, we are ready that prove one of the main result of this section.

6 Ajdani

Theorem 3.9. Let Δ be a k-Cohen-Macaulay simplicial complex of codimension 3 on vertex set $\{x_1, \ldots, x_n\}$. Then Δ is partitionable.

Proof. We prove the theorem by induction on the number of vertices $\{x_1, \ldots, x_n\}$ of Δ . If n = 0, then $\Delta = \emptyset$ which is a vertex decomposable. Now Let $n \geq 1$ and $x_d \in \{x_1, \ldots, x_n\}$ be a vertex of Δ . Then the simplicial complex $\mathrm{link}_{\Delta}\{x_d\}$ is a complex on vertices $\{x_1, \ldots, \widehat{x_d}, \ldots, x_n\}$ of dimension n-1. By lemma 3.8, $\mathrm{link}_{\Delta}\{x_d\}$ is again k-Cohen-Macaulay of codimension 3. Therefore by induction hypothesis $\mathrm{link}_{\Delta}\{x_d\}$ is partitionable.

On the other hand, since Δ is k-Cohen-Macaulay, for each $x_d \in \Delta$, $\Delta \setminus \{x_d\}$ is Cohen-Macaulay of codimension 2 and by Theorem 3.1, $\Delta \setminus \{x_d\}$ is partitionable. It is easy to see that no face of $\text{link}_{\Delta}\{x_d\}$ is a facet of $\Delta \setminus \{x_d\}$. Therefore any vertex x_d is a shedding vertex. So Δ is vertex decomposable and each vertex decomposable complex is partitionable. \Box

References

- [1] M. Barile and N. Terai, Arithmetical ranks of Stanley-Reisner ideals of simplicial complexes with a cone, Comm. Algebra 38 (2010), no. 10, 3686–3698.
- [2] A Conca and E. De Negri, M-sequences, graph ideals and ladder ideals of linear type, J. Algebra 211 (1999), no. 2, 599-624.
- [3] J. Eagon and V. Reiner, Resolutions of Stanley–Reisner rings and Alexander duality, J. Pure Appl. Algebra 130 (1998), 265–275.
- [4] J. Herzog and T. Hibi, Componentwise linear ideals, Nagoya Math. J. 153 (1999), 141–153.
- [5] J. Herzog, A. Soleyman Jahan, and S. Yassemi, Stanley decompositions and partitionable simplicial complexes, J. Algebr. Comb. 27 (2008), 113–125.
- [6] M. Miyazaki, On 2-Buchsbaum Complexes, J. Math. kyoto Univ. 30 (1990), 367–392.
- [7] R. Rahmati-Asghar and S. Yassemi, k-decomposable monomial ideals, Algebra Colloq. 22 (2015), Special Issue no. 1, 745–756.
- [8] R.P. Stanley, Linear Diophantine Equations and Local Cohomology, Invent. Math. 68 (1982), 175–193.
- [9] R.P. Stanley, Combinatorics and Commutative Algebra, Second edition. Progress in Mathematics 41, Birkhauser Boston, 1996.
- [10] R.P. Stanley, *Positivity problems and conjectures in algebraic combinatorics*, Mathematics: Frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 295–319.
- [11] X. Zheng, Homological properties of monomial ideals associated to quasi-trees and lattices, Ph.D Thesis, University of Essen, 2004.