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Abstract

Let ∆ be a simplicial complex on vertex set {x1, . . . , xn}. It is shown that if ∆ is a Cohen-Macaulay simplicial complex
of codimension 2, then ∆ is partitionable and Stanley’s conjecture holds for K[∆]. As a consequence, we show that if
∆ is a quasi-forest simplicial complex, then ∆∨ is shellable.
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1 Introduction

A simplicial complex ∆ over a set of vertices V = {x1, . . . , xn} is a collection of subsets of V with the property
that:

(a) {xi} ∈ ∆, for all i;

(b) if F ∈ ∆, then all subsets of F are also in ∆ (including the empty set).

An element of ∆ is called a face of ∆ and complement of a face F is V \ F and it is denoted by F c. Also, the
complement of the simplicial complex ∆ = ⟨F1, . . . , Fr⟩ is ∆c = ⟨F c

1 , . . . , F
c
r ⟩. The dimension of a face F of ∆, dimF ,

is |F | − 1, where |F | is the number of elements of F and dim∅ = −1. The faces of dimensions 0 and 1 are called
vertices and edges, respectively. A non-face of ∆ is a subset F of V with F /∈ ∆. We denote by N (∆), the set of
all minimal non-faces of ∆. The maximal faces of ∆ under inclusion are called facets of ∆. The dimension of the
simplicial complex ∆, dim∆, is the maximum of dimensions of its facets. If all facets of ∆ have the same dimension,
then ∆ is called pure.

Let F(∆) = {F1, . . . , Fq} be the facet set of ∆. It is clear that F(∆) determines ∆ completely and we write
∆ = ⟨F1, . . . , Fq⟩. A simplicial complex with only one facet is called a simplex. A simplicial complex Λ is called a
subcomplex of ∆, if F(Λ) ⊆ F(∆).

For v ∈ V , the subcomplex of ∆ obtained by removing all faces F ∈ ∆ with v ∈ F is denoted by ∆ \ v. That is,

∆ \ v = ⟨F ∈ ∆: v /∈ F ⟩.
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The link of a face F ∈ ∆, denoted by link∆(F ), is a simplicial complex on V with the faces G ∈ ∆ such that
G ∩ F = ∅ and G ∪ F ∈ ∆. The link of a vertex v ∈ V is simply denoted by link∆(v).

link∆(v) =
{
F ∈ ∆: v /∈ F, F ∪ {v} ∈ ∆

}
.

Let ∆ be a simplicial complex over n vertices {x1, . . . , xn}. For F ⊆ {x1, . . . , xn}, we set:

xF =
∏
xi∈F

xi.

We define the facet ideal of ∆, denoted by I(∆), to be the ideal of S generated by {xF : F ∈ F(∆)}. The non-
face ideal or the Stanley-Reisner ideal of ∆, denoted by I∆, is the ideal of S generated by square-free monomials
{xF : F ∈ N (∆)}. Also we call K[∆] := R/I∆ the Stanley-Reisner ring of ∆.

One of the interesting problems in combinatorial commutative algebra is the Stanley’s conjectures. Let R =
K[x1, . . . , xn] be a polynomial ring in n variables over a field K and M be a finitely generated Zn-graded R-module.
Let m ∈ M be a homogeneous element in M and Z ⊆ {x1, . . . , xn}. We denote by mK[Z] the K-subspace of M
generated by all elements mf where f is a monomial in K[Z]. The Zn-graded K-subspace mK[Z] ⊆ M is called a
Stanley space of dimension |Z| when mK[Z] is a free K[Z]-module. A Stanley decomposition of M is a presentation
of the K-vector space M as a finite direct sum of Stanley spaces

D : M =

r⊕
i=1

miK[Zi].

Set sdepth(D) = min{|Zi| : i = 1, . . . , r}. The number

sdepth(M) = max{sdepth(D) : D is a Stanley decomposition of M}

is called Stanley depth of M . The Stanley’s conjectures are studied by many researchers. Let R be a Nn-graded ring
and M a Zn- graded R- module. Then Stanley [8] conjectured that

depth(M) ≤ sdepth(M).

He also conjectured in [9] that each Cohen-Macaulay simplicial complex is partitionable. Herzog, Soleyman Jahan
and Yassemi in [5] showed that the conjecture about partitionability is a special case of the Stanley’s first conjecture.
In this paper, we show that if ∆ is cohen macaulay simplicial complex of codimension 2, then ∆ is partitionable
and Stanley’s conjecture holds for K[∆]. Also, it is shown that every k-Cohen-Macaulay simplicial complexes of
codimension 3 is partitionable.

2 Preliminaries

In this section we fix some notations and recall some definitions. For a monomial u = xa1
1 . . . xan

n in R, we denote
the support of u by supp(u) and it is the set of those variables xi that ai ̸= 0. Let m be another monomial in R. If
for all xi ∈ supp(u), xai

i ∤ m, then we set [u,m] = 1, otherwise we set [u,m] ̸= 1.

For a monomial ideal I ⊂ R, we set Iu = (mi ∈ G(I) : [u,mi] ̸= 1) and Iu = (mi ∈ G(I) : [u,mi] = 1). The
concept of shedding monomial and k-decomposable monomial ideals was first introduced by Rahmati and Yassemi in
[7].

Definition 2.1. Let I be a monomial ideal and G(I) = {m1, . . . ,mr}. The monomial u = xa1
1 . . . xan

n is called a
shedding monomial of I if Iu ̸= 0 and for each mi ∈ G(Iu) and each xl ∈ supp(u) there exists mj ∈ G(Iu) such that
⟨mj : mi⟩ = ⟨xl⟩.

Definition 2.2. Let I be a monomial ideal and G(I) = {m1, . . . ,mr}. Then I is a k-decomposable ideal if r = 1 or
else has a shedding monomial u with | supp(u) |≤ k + 1 such that the ideals Iu and Iu are k-decomposable. Note that
since | G(I) | is finite, the recursion procedure will stop.

A 0-decomposable ideal is called variable decomposable. Also, a monomial ideal is decomposable if it is k-decomposable
for some k ≥ 0.
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Definition 2.3. A simplicial complex ∆ is recursively defined to be vertex decomposable, if it is either a simplex, or
else has some vertex v so that

(a) Both ∆ \ v and link∆(v) are vertex decomposable, and

(b) No face of link∆(v) is a facet of ∆ \ v.

A vertex v which satisfies in condition (b) is called a shedding vertex.

Definition 2.4. A simplicial complex ∆ is shellable, if the facets of ∆ can be ordered F1, . . . , Fs such that, for all
1 ≤ i < j ≤ s, there exists some v ∈ Fj \ Fi and some l ∈ {1, . . . , j − 1} with Fj \ Fl = {v}.

A simplicial complex ∆ is called disconnected, if the vertex set V of ∆ is a disjoint union V = V1 ∪ V2 such that
no face of ∆ has vertices in both V1 and V2. Otherwise ∆ is connected. It is well-known that

vertex decomposable =⇒ shellable =⇒ Cohen-Macaulay

Definition 2.5. Given a simplicial complex ∆ on V , we define ∆∨, the Alexander dual of ∆, by

∆∨ = {V \ F : F /∈ ∆}.

It is known that for the complex ∆ one has I∆∨ = I(∆c). Let I ̸= 0 be a homogeneous ideal of R and N be the
set of non-negative integers. For every i ∈ N, one defines:

tRi (I) = max{j : βR
i,j(I) ̸= 0},

where βR
i,j(I) is the i, j-th graded Betti number of I as an R-module. The Castelnuovo-Mumford regularity of I is

given by:
reg(I) = sup{tRi (I)− i : i ∈ Z}.

We say that the ideal I has a d-linear resolution, if I is generated by homogeneous polynomials of degree d and
βR
i,j(I) = 0, for all j ̸= i + d and i ≥ 0. For an ideal which has a d-linear resolution, the Castelnuovo-Mumford

regularity would be d. If I is a graded ideal of R, then we write (Id) for the ideal generated by all homogeneous
polynomials of degree d belonging to I.

Definition 2.6. A graded ideal I is componentwise linear if (Id) has a linear resolution for all d.

Also, we write I[d] for the ideal generated by the squarefree monomials of degree d belonging to I.

Definition 2.7. A graded S-module M is called sequentially Cohen-Macaulay (over K), if there exists a finite
filtration of graded S-modules,

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

such that each Mi/Mi−1 is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:

dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1).

The Alexander dual, allows us to make a bridge between (sequentially) Cohen-Macaulay ideals and (componetwise)
linear ideals.

Definition 2.8 (Alexander duality). For a square-free monomial ideal I = (M1, . . . ,Mq) ⊂ R = K[x1, . . . , xn],
the Alexander dual of I, denoted by I∨, is defined to be:

I∨ = PM1
∩ · · · ∩ PMq

,

where PMi
is prime ideal generated by {xj : xj |Mi}.

Theorem 2.9 ([4, Proposition 8.2.20], [3, Theorem 3]). Let I be a square-free monomial ideal inR = K[x1, . . . , xn].
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(i) The ideal I is componentwise linear ideal if and only if R/I∨ is sequentially Cohen-Macaulay.

(ii) The ideal I has a q-linear resolution if and only if R/I∨ is Cohen-Macaulay of dimension n− q.

A monomial ideal I ⊂ R = K[x1, . . . , xn] generated in a single degree is called polymatroidal if for any u, v ∈ G(I)
such that degxi

(u) > degxi
(v) there an index j with degxj

(u) < degxj
(v) such that xj(u/xi) ∈ G(I). A squarefree

polymatroidal ideal is called matroidal. Also, a monomial ideal I is called weakly polymatroidal if for every two
monomials u = xa1

1 . . . xan
n > v = xb1

1 . . . xbn
n in G(I) such that a1 = b1, . . . , at−1 = bt−1 and at > bt, there exists j > t

such that xt(v/xj) ∈ I. It is clear from the definition that a polymatroidal ideal is weakly polymatroidal.

The following results from [7] are crucial in this paper.

Theorem 2.10 ([7, Theorem 2.10]). Let ∆ be a (not necessarily pure) d-dimensional simplicial complex on vertex
set {x1, . . . , xn}. Then ∆ is k-decomposable if and only if I∆∨ is k-decomposable, where k ≤ d.

Proposition 2.11 ([7, Lemma 3.8]). If I is an squarefree monomial ideal generated in degree 2 which has a linear
resolution, then after suitable renumbering of the variables, I is weakly polymatroidal.

Theorem 2.12 ([7, Theorem 3.5]). Let I ⊂ R be a weakly polymatroidal ideal. Then I is 0-decomposable.

3 Partitionability of Cohen-Macaulay simplicial complexes of codimension 2

As the main result of this section, it is shown that if ∆ is Cohen-Macaulay simplicial complex of codimension 2,
then ∆ is partitionable and Stanley’s conjecture holds for K[∆]. Stanley conjectured in [8] the upper bound for the
depth of K[∆] as the following:

depth(K[∆]) ≤ sdepth(K[∆]).

Also we recall another conjecture of Stanley. Let ∆ be again a simplicial complex on {x1, . . . , xn} with facets
G1, . . . , Gt. The complex ∆ is called partitionable if there exists a partition ∆ =

⋃t
i=1[Fi, Gi] where Fi ⊆ Gi are

suitable faces of ∆. Here the interval [Fi, Gi] is the set of faces {H ∈ ∆ : Fi ⊆ H ⊆ Gi}. In [9] and [10] respectively
Stanley conjectured each Cohen-Macaulay simplicial complex is partitionable. This conjecture is a special case of the
previous conjecture. Indeed, Herzog, Soleyman Jahan and Yassemi [5] proved that for Cohen-Macaulay simplicial
complex ∆ on {x1, . . . , xn} we have that depth(K[∆]) ≤ sdepth(K[∆]) if and only if ∆ is partitionable.

Theorem 3.1. If ∆ is a Cohen-Macaulay simplicial complex of codimension 2, then ∆ is partitionable.

Proof . Since ∆ is Cohen-Macaulay simplicial complex of codimension 2, by a result of Eagon and Reiner [3], I∆∨

is a squarefree monomial ideal which has 2-linear resolution. Hence by Proposition 2.11 and Theorem 2.12, I∆∨ is
0-decomposable. It follows from Theorem 2.10 that ∆ is vertex decomposable. So ∆ is partitionable. □

Since each vertex decomposable simplicial complex is shellable and each shellable complex is partitionable, as a
consequence of our result we obtain the following corollary.

Corollary 3.2. Let ∆ be a Cohen-Macaulay simplicial complex of codimension 2 on vertex set {x1, . . . , xn}. Then
Stanley’s conjecture holds for K[∆].

As an immediate consequence we have the following:

Corollary 3.3. Let ∆ be a quasi-forest simplicial complex which is not a simplex. Then ∆∨ is shellable and Stanley’s
conjecture holds for k[∆∨].

Proof . It is proved in [11] that each quasi-forest is a flag complex. So I∆ is generated by quadratic monomials
and hence ht(I∆∨) = 2. Since ∆ is quasi-forest by [11, Corollary 5.5], we have pd(K[∆∨]) = 2. Therefore ∆∨ is
Cohen-Macaulay of codimension 2 and by Theorem 3.1, ∆∨ is vertex decomposable and each vertex decomposable
complex is shellable. □

Let ∆ be a simplicial complex on the vertex set {x1, . . . , xn} with dim∆ < n − 2. Let F be an arbitrary face of
∆∨ and x0 a new vertex. A cone from x0 over F , denoted by cox0F , is the simplex on the the vertex set F ∪ {x0}.
Set Γ = ∆∨ ∪ cox0F .
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Lemma 3.4 ([1, Lemma1]). Let F be a face of ∆1 such that F is not {x1, . . . , xn}. If ∆2 = ∆1 ∪ cox0
F , then

pd(k[∆2]) = max{pd(k[∆1]) + 1, n− | F |}.

Proposition 3.5. Let ∆ be a quasi-forest simplicial complex on the vertex set {x1, . . . , xn}. Let F be an arbitrary
face of ∆∨ such that dim(∆∨) =| F | and x0 a new vertex. Set Γ = ∆∨ ∪ cox0

F . Then Γ is Cohen-Macaulay.

Proof . Let ∆ be a quasi-forest simplicial complex on vertex set {x1, . . . , xn}. Then by Corollary 3.3, ∆∨ is Cohen-
Macaulay. So ht(I∆∨) = pd(k[∆∨]). On the other hand,

ht(IΓ) = ht(I∆∨) + 1.

By 3.4, we obtain
pd(k[Γ]) = max{pd(k[∆∨]) + 1, n− | F |},

Auslander-Buchbaum formula implies that

pd(k[∆∨]) = n− depth(k[∆∨]).

Since ∆∨ is Cohen-Macaulay, we have

pd(k[∆∨]) = n− dim(k[∆∨])

= n− (dim∆∨ + 1)

= n− | F | −1.

Therefore

pd(k[Γ]) = n− | F |
= n− dim∆∨

= n− (dim(k[∆∨])− 1)

= n− dim(k[∆∨]) + 1

= ht(I∆∨) + 1

= ht(IΓ).

This shows that Γ is Cohen-Macaulay. □

As one of our main results, we prove that every k-Cohen-Macaulay simplicial complexes of codimension 3 is
partitionable. But before that the following lemmas are needed.

Lemma 3.6 ([6, Lemma 2.3]). Let ∆ be a simplicial complex with vertex set V . Let W ⊆ V and let σ be a face
in ∆. If W ∩ σ = ∅, then link∆\W {σ} = link∆{σ} \W .

Definition 3.7. Let K be a field. A simplicial complex ∆ with vertex set V is called k-Cohen-Macaulay of dimension
r over K if for any subset W of V (including ∅), ∆ \W is Cohen-Macaulay of dimension r over K.

Lemma 3.8. Let ∆ be a simplicial complex with vertex set V . Then the following conditions are equivalent:

(i) ∆ is k-Cohen-Macaulay;

(ii) for all σ ∈ ∆, link∆{σ} is k-Cohen-Macaulay ;

Proof . By lemma 3.6, for any subset W of V , we have link∆\W {σ} = link∆{σ}\W . Since ∆\W is Cohen-Macaulay
so link∆{σ} \W is Cohen-Macaulay. Therefore link∆{σ} is k-Cohen-Macaulay. □

Now, we are ready that prove one of the main result of this section.
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Theorem 3.9. Let ∆ be a k-Cohen-Macaulay simplicial complex of codimension 3 on vertex set {x1, . . . , xn}. Then
∆ is partitionable.

Proof . We prove the theorem by induction on the number of vertices {x1, . . . , xn} of ∆. If n = 0, then ∆ = ∅ which is
a vertex decomposable. Now Let n ≥ 1 and xd ∈ {x1, . . . , xn} be a vertex of ∆. Then the simplicial complex link∆{xd}
is a complex on vertices {x1, . . . , x̂d, . . . , xn} of dimension n− 1. By lemma 3.8, link∆{xd} is again k-Cohen-Macaulay
of codimension 3. Therefore by induction hypothesis link∆{xd} is partitionable.

On the other hand, since ∆ is k-Cohen-Macaulay, for each xd ∈ ∆, ∆ \ {xd} is Cohen-Macaulay of codimension
2 and by Theorem 3.1, ∆ \ {xd} is partitionable. It is easy to see that no face of link∆{xd} is a facet of ∆ \ {xd}.
Therefore any vertex xd is a shedding vertex. So ∆ is vertex decomposable and each vertex decomposable complex is
partitionable. □
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