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Abstract

The Leray-Lions operators attract much attention because they are flexible enough to be specified for different elliptic
operators. The goal of this paper is to obtain the existence of at least three distinct weak solutions for a Leray-Lions
problem of r(z)-Kirchhoff type and a nonexistence result in the exponent constant case. The technique is constructed
on variational methods.
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1 Introduction

The study of Leray-Lions type operator is a new subject for investigation, because they happen in some field, like
as electrorheological fluids [I2], image processing [14] and etc. Recently, some fourth order Leray-Lions type problems
have been investigated. For instance, in [I0] by using critical point theorem of [2], the authors ensured multiplicity
of weak solutions for a nonlocal biharmonic system including Hardy potential and Leray-Lions operator. In [9], a
multiplicity theorem for a fourth-order Leray Lions equation including indefinite weights, was established.

Relatively speaking, biharmonic r(xz)—Kirchhoff type problems consisting of Leray-Lions operators have rarely
been considered. In [I3], by applying critical point theory and variational approach, some multiplicity results for a
Leray-Lions r(x)-Kirchhoff type problem was obtained. Besides, the study of bi-nonlocal problems including Kirchhoff
type operator together with the external force term with a nonlocal coefficient can better qualify multiple biological
and physical systems (see [9]).

Here, we consider the following form of binonlocal r(2)—Kirchhoff type problems including Leray-Lions operator:

{ M, (HT(I)(u))A (a(m,Au) + \u|r<r>—2u) — A\M; (K(u)) fla,u(z)) inQ, a1
u=Au=0 on 052,
in which )

Hy ) (u) = /Q {A(m,Au) + @Mr(r)}dm, K(u) = /QF(x,u(x))dx, (1.2)

and Q C RY (N > 2) represents a bounded domain with smooth boundary, F(z,t) = fot flx,y)dy,a: QxR — R
denotes a Carathéodory function obeying the subsequent assumptions:
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(A1) a(z,0) =0, for a.e. x € Q.

(A2) a verifies the growth condition

la(z,t)| < ¢ <|t|r(g”)71 +g(x)>, Vi €R, a.e. x €Q,

r(x) —
in which ¢ > 0 denotes some constant, g € L7@-1(Q), denotes a nonnegative function and r € C(£2) denotes a
Log-Holder continuous function obeying the relationship

N
L<r = inf r(z) <r(z) <r" :=supr(z) < —. (1.3)
e zEQ 2
(A3) For every t,s € R,
(a(:r, 5) — a(x,t))(s — ) >0 for ace. z € Q.
(A4) There is 0 < ¢ < 3min{c, 1}, obeying the following relationship
Zt|"® < min{r(z)A(z,t),a(z, t)t} Vt € R, a.e. x € Q,
in which A : Q x R — R denotes the primitive function of a, in other words,
t
Az, t) = / a(z,y)dy,
0
the operators A(a(m, Au)) represents the fourth order Leray-Lions. If we consider
a(z,t) = o(x)|t]" 2, (1.4)

in which 7 € C, (Q),7" < 400, and select ¢ € L>°(£2) obeying the relationship
Jo0>0; o(z) > go > 0, for a.e. x € Q,

so, (1.4]) satisfies conditions (A1) — (A4) and we achieve the following operator

0()A (|Au|r(')’2Au> .

Whenever ¢ = 1, the upper operator becomes the well-known r(2)—biharmonic operator Ai(,)a [8]. Now, we give
the hypothesis concerning the functions M7, Ms and f:

(M) M; : Rt — Rt and M, : R™ — R* denote continuous functions and there exist three constants my, ma, m5 > 0
with 0 < my < m), and two constants /3, > 1 obeying the relationship

M, (t) > myt® !, mat? =1 < Mo(t) < mht?~1, Vvt >0.

f:Q xR — R denotes a function described as

Ay =1
flx,t) = {fg(:v,t) < 1, (1.5)

and verifies the following assumption:
(F) There are o; € C(Q) and ¢; > 0,4 = 1,2, obeying the relationship

- +
i )] < et ™7 1 <o <ou(e) < of < T < T

<o, <oa(z) <r3(2), (1.6)
in which 73 (z) will be defined by (2.2) with m = 2.
The paper contains four sections as follows: Section [2] gives some background and notations related to the function

space. The multiplicity and nonexistence theorems are presented in Section [3] whereas the proofs of this theorems are
stated in subsections [4.1] and respectively.
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2 Background

We begin by recalling some essential notions of the generalized Sobolev spaces that will be applied in the next
sections. For any r € C(2) obeying the relationship (1.3)), we describe the Lebesgue variable exponent space as

Lr(w)(Q) =< u: Q) —= R measurable : /\u(x)|r("”)dm < 400 p,

including the norm
()
de <1,,

v

U] () :=inf v >0: /
Q

and the Holder-type inequality

1 r(2)
‘/uvdx‘ < e )|u|T z)|v| EIOW Yu e L'@(Q), v € LT@-1 (1), (2.1)

keeps true.

Proposition 2.1 (see [7, Proposition 2.7]). If u € L"(*)(Q), then
min {Jul o } < [ (@)@ do < mase {Jul s -

For m = 1,2, the variable exponent Sobolev space is described as

W@ (Q) = {u € L"@(Q): Doue L'@(Q),]6] < m},

o1
Ox*...0x

1},

N
in which § = (d1,...,6n) denotes a multi-index, |6 = Y §; and Dou = Lﬁvu The norm of this space is
j=1

characterized by

IN

. u
Hu”m,r(z) = lnf{’/ >0: Br(w)(;)

in which the modular B, () : W@ (Q) — R, is described as
By () = [ (1Bu(@)"® +[ul )z
Q

in WHr@) ()

Let WOI’T(I)(Q) =C§° () . Our workspace Z is described as

Z =W @(@Q) nw, (),
with
lullz = [[wllm,r(),

which displays separable and reflexive Banach space (see [4, [I1]). Furthermore, the next embedding proposition take
place.

Proposition 2.2 (see [6, Theorem 2.3]). If h € C(Q) obeying the relationship 1 < 2~ < ht < 0o and h(x) <
rk (z),Vz € Q, in which

Nr(x) N
* N—mr(x) T‘(l‘) < m’ 2.9
r \r) = .
m( ) { ’I“({L‘) S ix ( )

Then the embedding Z < L"®)(Q) is continuous. If h(z) < 7%, (z) for each 2 € Q, the embedding becomes
compact.
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By Proposition We arrive at the following Proposition.
Proposition 2.3. For every u € Z, we get

(i) llullz < 1(> 1;=1) & By (u) < 1((> 1;=1);

.s . e rt+ r— ot
(it) min {Jjuly  Jully } < Broy (w) < max {Jully . Jully }-

Remark 2.4. From conditions (A1) — (A4), we conclude that the function A(z,t) is C'-Carathéodory and there is
¢ > 0, obeying the following relation

r(@)

in which the constants ¢, is as in condition (A4).

Note that if Z* represents the dual space of Z, then a mapping G : Z — Z* is of (S+) type if u; — v and
limsup; . (G(u;),u; —u) < 0, imply u; — u over Z. A functional B : Z — R is sequentially weakly lower
semicontinous if u; — w over Z implies B(u) < liminf;_, ., B(u;).

Proposition 2.5 (see [3]). Suppose that (A1) — (A4) are fulfilled and the functional H, ) : Z — R characterized
by (1.2)). Then we get

(i) H,( € C'(Z,R) with derivative denoted by
(Hy (o) (u),n) = /Q a(z, Au)Andz + /Q u|"® =2 und, (2.4)
for all n € Z.
(ii) H,(y) is sequentially weakly lower semicontinuous.
(iii) H;(x) : Z — 7' denotes a mapping of (S;) type .
Proposition 2.6. Suppose that (F) is fulfilled. Consider the functional K : Z — R by (1.2)). Then we get
(i) K € CY(Z,R) together with derivative denoted by
(K'(u),n) = /Qf(fv,umdrf, (2.5)
for all n € Z.
(ii) K is sequentially weakly continuous over Z, that is, u; — « implies that K (u;) — K(u).

Proof . By (F), the proof of statement (i) is immediate. Now let {u;} be any sequence with u; — u over Z. By
using (F) and (2.1), we arrive at

() = Kl < e [ gy = )@y = adde e | et gy =)0y = ulde

< 2¢ ||u+ pj(uj — u)‘m(m)q

o (@) |uj - u‘01($) (2.6)

o1 (z)—1

+ 262’|u + (g — w)[ 2O

09 () |uj — u|02($)
og(x)—1

in which for all z € Q; 0 < p;(x) < 1. Besides, since Z — L°(*)(Q) is compact for i = 1,2, u; — u in L% (Q). So,
it follows from ({2.6]) that (ii) holds true . O

Now, we will express the subsequent theorem that will be indispensable to prove the multiplicity result of this
paper.
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Proposition 2.7 (see [I, Theorem 2.1]). Assume that J, I : Z — R denote two continuously Géteaux differen-
tiable functionals over reflexive and separable real Banach space Z. If I(z) > 0 for each z € Z and there is zp € Z
together with I(zg) = J(29) = 0 and there are 19 > 0, 2; € Z so that

(i) no < I(z1);

(i) sup;(uy<p, J(2) <mo ‘I]((;l)) Moreover, put
€= 7o

- J(z ?
Mo I((le; - Sup](z)<?70 ‘](Z)

with ¢ > 1, and if I — A\J denotes a sequentially weakly lower semicontinuous functional, verifies the (P.JS)
condition and

(iii) Hmy.|—400(L(2) — AJ(2)) = +o0o for all A € [0,£].
Then there is a number > 0 and an open interval L C [0,£], so that for all A € L, the equation
I'(z) = M'(2) = 0,

possesses at least three distinct solutions over Z whose norms are smaller than u.

3 Main results

We consider two functionals J, I : Z — R as

I(w) = M (Hy (), J(w) = M (K(w) Vuez, (3.1)

in which ]\//E(t) = fot M;(y)dy for i = 1,2 and H,(;)(u) and K(u) are defined as (1.2)). By Propositions and
J,I € CYZ,R) and

(I (), m) = My (Hay () ) (B gy (), ), () = M (K ) ) K () m)
for all ,u € Z, in which H 7’_(30) and K’ as defined in (2.4]) and (2.5)), respectively.
Any function u € Z is named a weak solution of problem (1.1)), if the following relationship is verified:
(I'(u),n) — MNJ'(u),n) =0, VneZ. (3.2)
The multiplicity result can be described by the following theorems.

Theorem 3.1. (Multiplicity result) Suppose that (A1) — (A4), (M) and (F) are fulfilled. Furthermore, there exist
t > 0 with F(z,t) > 0 for all x € Q. Then, there is an open interval L C [0,£] and a number g > 0 so that for each
A € L problem (1.1]) possesses at least three weak solutions whose norms are smaller than p, in which £ will given
later one.

In the special case, when r(z) = r be a constant, problem (1.1 reduces to the following r-Kirchhoff type problem
r—2 _ .
M, (Hr(u))A (a(a:, Au) + |ul u) =AM, (K(u))f(m,u(:v)) in Q, (3.3)
u=Au=0 on 8Q,

and the nonexistence result are stated by the following theorem.

Theorem 3.2. (Nonexistence result in the exponent constant case) Suppose that (A4) is fulfilled. In case that
r(x) = r, the conditions (M) and (F) change as follow, respectively:

(M') My, My : Rt — RT denote two continuous functions and there are two numbers mq, m5 > 0 and two constant
B, a > 1 verifying
My (t) > myt® Y, My(t) < mht?~L

(F’) There is ¢z > 0 so that

|f(z,t)] <eslt|® 78, 1< &< r*, VteR and V a.e. v € Q.

g
Then there is A\p > 0 so that, problem (3.3) hasn’t any nontrivial weak solution over Z for any A < Aq.
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4 Proof the of the main results
This section is devoted to proving Theorem and Theorem |3.2] respectively.

4.1 Proof of Theorem [3.1]
We will use Proposition to prove Theorem So, it is necessary to check all conditions of Proposition [2.7]

Lemma 4.1. The functional I — AJ is sequentially weakly lower semicontinuous over Z for each A > 0.

Proof . Assume that {u;} is a sequence that u; — u over Z. By (i) in Proposition we get

Besides, the function ¢ — M (t) is monotone. So, we deduce that

liminf I'(u;) = lim inf M, (Hr(m)(uj)) > M (li_m inf H,. () (uj)) > M (Hr(z) (u)) = I(u).

Jj—o0o Jj—o0 Jj—o0

So, I is sequentially weakly lower semicontinuous over Z. By (i4) in Proposition we arrive at

jhﬁngo K(uj) = K(u).

Besides, since the function ¢ — Ms(t) is continuous, we arrive at

lim J(u;) = jlggo@(f{(uj)) - J@(jlggo K(uj)) - J\YQ(K(U)) = J(u).

Jj—00
Hence, J is sequentially weakly continuous and hence I — A\J is sequentially weakly lower semicontinuous. O

Lemma 4.2. I — \J represents a coercive functional, that is, limjj,|| 400 [[(u) — AJ(u)] = 400 .

Proof . Let u € Z with [ju||z > 1. Put
Q ={z € |u(z)| >1}, Q={zeQ; |u(z)] <1}

By (M), (F) and ({2.3]), we arrive at
/

(1= a0 = P (5 w) T AT (L [ @y 2

|U\02(x)dz>ﬂ.
a(r+)0¢ ﬁ 01 2 QQ

By (|1.6), we infer that
01 e , 5
(=) > M ()" AT (L [ e+ 2 o)
Q1

a(r‘*‘)‘i B \oy 02 JQy
> W(Br(w) (u))a — )\g:;j_ (max{cl,02}>ﬂ</ |u(x)\01(x)dx)ﬂ.
o

Now, since the embedding Z < L°(*)(Q) is continuous, we infer that

Jer >0; erlulo, ) < llullz.

Since ||ufz > 1, by Proposition [2.1] we arrive at

|ul*(®) dz: < max ! 17 ||u||01+
o z
Q

1 1
€ €

So, by using (ii) in proposition we infer that

mq(min{l,c})® o mh B 1 1 B ot
(1= Ay = P g 0 (maxer o)) (e { =< }) 2
01 611 el1

By (T.6), we have ar~ > Bo] and so I — \J is coercive. [J
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Lemma 4.3. For each A > 0, I — \J verifies the (PS) condition, that is, each sequence {u;} obeying the following
condition

(I =) (uj)| <e, (I'=XJ)(uj) = 0over Z* as j — oo, (4.1)
admits a convergent subsequence in Z.
Proof . Let {u;} be a (PS) sequence for I — AJ. By Lemma I — \J is coercive on Z, so by the first relation

in (4.1), the sequence {u;} is bounded over Z. Via the reflexivity of Z, there is a subsequence indicated by {u;} and
some u € Z with u; — u. We will prove that {u;} — w. Indeed, since u; — u over Z, we deduce that

My (Hy () (u3)) (Hy (g (1), (w5 = w)) — AM2(K (u;) ) (K" (u), (uj — u)) = 0. (4.2)
By (F) and , we infer that
)y = )| < [ 1)l = ulde

< max{cl,CQ}/Q ;]2 @y — ulda.

Since the embedding Z < L°1(*) is compact, by (2.1]), we deduce that

() = )| < ma{ensca} [ fus 0y = ulda

|01(z)71

< 2max{cy, ca} ’|uj ortey U5 = Uloy(z) = 0. (4.3)

o1(z)—1

Combining (4.3)) with the continuity of the function My and (é4) in Proposition we arrive at

My (K (1) ) (K (1), (1 = w)) > 0. (4.4)

Hence by (4.2) and (4.4), we arrive at
My (Hr(z) (uJ))<H/(w) (U’j)7 (uj - u)> — 0.

T

Besides, by (i) in Proposition and (M), we arrive at

3 () ) B ),y — ] 2 PO (0 0) ™ o e ), g = )

> [ D™ i sl
% (Y oy ), (s = )| > 0.
If ||u;]|z — O then u; — 0 over Z. Otherwise, ||u;||z is bounded in Z. So
jlggo(Hfa(x)(uj)v (uj —u)) =0.
By (#i7) in Proposition we obtain u; — u over Z and this ends the proof. [
Here, we are prepare to prove Theorem [3.1] Obviously,
I(u)>0 Yue Z, I(0)=J(0)=0 (4.5)

Given # as in Theorem If Q~C Q2 denotes a sufficiently large compact subset and @ € C§°(Q2), so that
0 < u(z) <t over Q\Q, u(z) =1 over 2. Put

Q3 ={z € |u(x)| > 1}, Q={reQ; |uz) <1}.
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Then by (M) and (F), we arrive at

B
J@) > K@) > %(/ Fadir -2 [ a2 [ gee)
Q 01 J(Q\Q)NQ3 09 J(\Q)NQy
- —o— ~ _ - ~ B
2 @</~ F(x,t)dx — L max {|t|°1+, IZ]1 }) ‘(Q\Q) N 93‘ — 2 max {Mo;, 172 }) ‘(Q\Q) A Q4D
Q 0; 0
>0,

while |Q\Q] is small enough. Besides, we have

my(min{1,¢})*

1) = R (Hy o)) > 202 min {77 7 IO > 0.

Hence J(@)
0< T (4.6)

Now, choose 0 < 19 < min {W,I(ﬂ)} So, (i) in Proposition is achieved with z; = @. Whenever
I(u) < ng, we arrive at

(e
i) (Brw () < I(w) <m0 < e (4.7)
So
Br(:r) (u) <1,
and by (i) in Proposition 2.3] |lul|z < 1 which implies by ([&.7) that
Jully = min{Jally Jully } < Buoy(w) < (—220 ) * e
z = 2oz 3= 2@ =\ minf1, epe )~ V0"
So, we get
J
lullz < (noca) . (4.8)

By (F) and (1.6, we arrive at

! I ﬂ
J(u) < 22 (K(u)? < @(C—i/ [u*@da+ 2| fu|>@dz)
B B 01 JO Oz JQ,
/
B

B
<2 (2 [ et 2 [ )
01 JOu o Qo

2
gj(max{cl,CQ})ﬁ(/ﬂ \u|°2(r)da¢)6,

Now, by the continuous embedding Z < L°>(*)(Q), we infer that

IN

dey > 0; €2|U|02(z) < lullz-

Since [Jul|z < 1, by Proposition we have

1 1 [
/Q|u|02(z)dxgmax{ —, _}||u||Z2.

2 02
€y €9

By (4.8), we arrive at
/ B 1 1 B 05
J(u) < Bmz (max{cl,CQ}) (max{ T }) H“”g ’
o 0.

1 822 e;’;
m} B 1 1 B Bog oy
= ﬁTi(maX{ch 62}> (max { ol or }) (77004) art = 6577OMJr :
2 2

1 €y° €y
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Note that by (1.6), we obtain art < Bo, . Therefore, relation (4.6) permits us to select 7y small enough so that
SUPr(uy<yo /(W) J(1)
< 7=
"o I()
and (i¢) in Proposition is achieved. Lemmas |4.1 and relations (4.5)),(4.6) and (4.9) permits us to apply

Proposition with zp = 0,27 = @. Thus there exists a number p > 0 and an open interval L C [0, ], in which

(4.9)

_ aTo
5 - J(’& J )
Mo 7@y — SUPI(w)<no ()

N

with ¢ > 1, so that for all A € L problem (|1.1)) possesses at least three distinct solutions over Z whose norms are
smaller than pu.

4.2 Proof of Theorem [3.2]
Note that we consider the exponent constant case r(x) = r be a constant. So, our working space reduce to the
space Z = W2 N Wy () with
1 1
Jullzy = (Brw)" = ([ (18l + Juf)d) "
Q

Since 1 < 97 < r*, the embedding Z — L% () is continuous. Let ez > 0 be the best Sobolev constants for that
embedding, that is,

ez = inf ”u”Z
0£ue”Z |u|%

Now, if u denotes any weak solution for the problem (1.1). By (M’), (A4) and (F'), there is a number ¢g > 0 so
that

mq(min{1,c})*

et el < My () () T ) ), ) = MM (K () ) ) < Newrmlu3

By taking \g = ml(rﬁifa{fié})a 5" Theorem [3.2]is proved.

/
myce’
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