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Abstract

This work deals with a class of fractional Schrödinger-Maxwell systems related to the distributional Riesz fractional
gradient. First, we introduce the latter operator and investigate its appropriate functional framework. Then, we pose
the given problem in that space. Applying variational methods combined with the Symmetric Mountain Pass critical
point theorem, we obtain infinitely many nontrivial solutions for the system in Bessel potential space.
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1 Introduction

This paper is concerned with a class of fractional Schrödinger-Maxwell systems of the following form{
−Dγ .Dγu+ V (x)u+ ϕu = f(x, u) in R3,

−Dγ .Dγϕ = u2 in R3,
(1.1)

where γ ∈ (0, 1), f : R3 × R → R is a continuous function and Dγ .Dγ is the distributional Riesz fractional derivative
that will be defined below, and we will show its consistency with the fractional Laplacian. This work is motivated
by the large interest in the literature around nonlinear systems driven by fractional operators of elliptic type due
to the fundamental role of such systems in analyzing of numerous complex phenomena, such as electrical circuits,
diffusion, phase transitions, finance, and quantum mechanics. For more related results, we refer the interested reader
to [7, 8, 12, 21, 22].

Another important reason for studying (1.1) is that in fractional cases the classical analysis is not available and
elliptic PDEs cannot be treated pointwisely. Caffarelli and Silvestre in their celebrated work [13] introduced the
reduction method to overcome these difficulties. Since then and with the aid of [17], there have been many excel-
lent works that considered the existence of infinitely many solutions, nontrivial solutions, concentration of solutions,
and ground state solutions to different classes of nonlinear fractional Schrödinger systems and nonlinear fractional
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Schrödinger-Poisson systems using different methods including variational tools and critical point theory, see for in-
stance [2, 10, 11, 15, 18, 19, 20, 28, 31] and the references therein. Among them, we pay special attention in our recent
work [11] where we studied the following system{

(−∆)γu+ V (x)u+K(x)ϕu = λf(x, u) in R3,

(−∆)βϕ = K(x)u2 in R3,
(1.2)

where γ, β ∈ (0, 1), 2β + 4γ > 3, λ ∈ R+. By using the Fountain Theorem we get the existence of infinitely many
solutions for any λ > 0. When β = γ and K(x) ≡ 1 in (1.2) and under different assumptions on f , Kim and Bae [20]
showed the existence of infinitely many solutions. If β = γ and K(x) ≡ 1 in (1.2), Jin and Yang [32] obtained three
existence and multiplicity results of solutions under similar assumptions of this work. On the other hand, many authors
have paid attention to the problems involving fractional (p, q)-Laplacian operator which is a natural generalization
of fractional Laplace operator. The interest in nonlocal problems driven by fractional (p, q)-Laplacian is founded in
their popularity in several fields of mathematical physics and biology, such as plasma physics, biophysics and strongly
anisotropic materials. Interested readers can consult the nice works of Razani et al [5, 24, 26] for more details.

In recent years, great attention has been given to the search for a good concept of fractional derivatives operators.
This considerable interest led many researchers to develop a variety of suitable definitions of fractional derivatives, see
for instance [1]. In particular, an increasing number of authors have focused their attention on problems involving the
so-called distributional Riesz fractional gradient in their works, see e.g. [6, 9, 19, 23, 28, 29]. Shieh and Spector in
their pioneered research [28] have studied a new class of fractional PDEs related to the distributional Riesz fractional
gradient, and they defined a functional space suitable to study fractional problems in which the latter operator is
present. This space is introduced consistently with the well-known fractional Sobolev and Bessel potential spaces.

Furthermore, it is worth mentioning that the fundamental aspect of the distributional Riesz fractional gradient is,
that the former (up to a constant) enjoys a unique combination of desirable translational and rotational invariance, and
homogeneity properties of order γ as proved in [30] on fractional gradient analysis. This characterization establishes
both from a mathematical and physical perspective the distributional Riesz fractional gradient, in some sense as the
natural definition for a fractional differential object, and makes this object very interesting and deserves more attention
in the literature. Another important aspect of such operator is that we have the convergence to its classical as the
fractionality parameter when γ → 1 (see [4, 6]), and this led not only fueling further developments in analysis but led
also to new application areas and improving the existing ones.

Motivated by all the reasons just described, the aim of this paper is to prove the existence of infinitely many
nontrivial solutions in Bessel potential space for (1.1).
In what follows, let 1 < p < ∞, and 0 < γ < 1. Following [28], consider u ∈ Lp

(
RN

)
such that I1−γ ∗u is well defined,

we recall that the Riesz fractional partial derivatives
∂u

∂xj
of order γ can be characterized in distributionally by

⟨∂
γu

∂xγ
i

, φ⟩ = (−1)⟨(I1−γ ∗ u), ∂φ
∂xj

⟩ = −
∫
RN

(I1−γ ∗ u) ∂φ
∂xj

dx,

where Iγ denotes the Riesz potential of order γ

Iγu (x) := CN,γ

∫
RN

u (y)

|x− y|N−γ
dy, with CN,γ :=

Γ(N−γ
2 )

π
N
2 2γΓ(γ2 )

.

Consequently, we define the distributional Riesz fractional gradient Dγ by

(Dγu)j =
∂γu

∂xγ
j

=
∂

∂xj
I1−γ ∗ u, j = 1, ..., N.

As it was observed in [28], the fractional Laplacian for sufficiently regular function u can be written as

(−∆)γu = CN,γP.V.

∫
RN

u(x)− u(y)

|y|N+2γ
dy

= −
N∑
j=1

∂γ

∂xγ
j

∂γ

∂xγ
j

u

= −Dγ .Dγu, (1.3)
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where CN,γ is a normalizing constant [17]. Among the nice properties of the distributional Riesz fractional gradient
Dγ , we have an alternative representation of Dγ as it was shown in [28], can be given in terms of the classical gradient
∇

Dγu = I1−γ ∗ ∇u for u ∈ C∞
0 (RN ).

Moreover, Dγ can be written for sufficiently regular functions u by [16, 23, 29]

Dγu(x) := CN,γ

∫
RN

[u(x)− u(y)]
x− y

|x− y|
1

|x− y|N+γ
dy,

Furthermore, for u,w ∈ C∞
0 (RN ) equation (1.3) is to be understood in the following sense∫

RN

Dγu.Dγwdx =

∫
RN

(−∆)γu.wdx =

∫
RN

(−∆)
γ
2 u.(−∆)

γ
2 wdx,

which is particularity useful for the variational formulation of PDEs involving fractional operator. We refer to [16,
23, 28, 29, 30] for more details about this fractional operator. The following assumptions on f and V will be needed
throughout the paper:

(A1) : The nonlinearity f : R3 × R → R fulfills the Carathéodory condition.

(A2) : There exist constants C1 > 0 and s ∈ R+
0 such that

|f(x, s)| ≤ C1(|s|+ |s|p−1
), p ∈

(
2θ, 2∗γ

)
where θ ∈ (1,

3

3− 2γ
) and 2∗γ = 6

3−2γ is the critical Sobolev exponent.

(A3) : For every x ∈ R3 and s ∈ R, there exist µ > 2θ and λ > 0 such that

µF (x, s) ≤ sf(x, s) + λs2,

where F (x, s) =

s∫
0

f(x, t)dt.

(A4) : lim
|s|→∞

F (x,s)

|s|2θ = ∞ uniformly for a.e. x ∈ R3.

(V ) : V ∈ C(R3,R), V0 := infx∈R3 V (x) > 0, where V0 is a constant, and for everyM > 0 meas
{
x ∈ R3 : V (x) ≤ M

}
<

∞.

Our main result is as follows:

Theorem 1.1. Assume that system (1.1) satisfies the assumptions (A1)-(A4) and (V ), then (1.1) has infinitely many
nontrivial solutions.

The rest of the paper is organized as follows. In section 2, we present some auxiliary results that will be used in
this paper. The proof of Theorem 1.1 is provided in section 3. In section 4, we give a discussion about our result.

Remark 1.2. (i) In this paper, we do not impose the Ambrosetti-Rabinowitz’s 4-superlinearity condition:

∃µ > 4 such that 0 < µF (x, s) ≤ sf(x, s) for all x ∈ R3, (1.4)

which was first introduced by Ambrosetti and Rabinowitz in [3]. This condition is important to ensure that the
corresponding functional I has the Mountain Pass geometry and to guarantee that the (PS), or (C) sequence of I is
bounded.

(ii) Hypothesis (A3), is weaker than the (1.4)-condition.
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2 Preliminaries and Variational Settings

In this section, we state some preliminary results that will be needed later. In the sequel, let γ ∈ (0, 1). The
fractional Sobolev space W γ,2(RN ) is defined by

W γ,2(RN ) :=

{
u ∈ L2(RN ) :

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2γ
dxdy < ∞

}
.

endowed with the norm

∥u∥Wγ,2(RN ) =

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2γ
dxdy +

∫
RN

|u|2dx
) 1

2

.

The fractional Sobolev space W γ,2(RN ) is simply denoted by Hγ(RN ). Furthermore, for u ∈ C∞
0 (RN ), we can thus

define the vector space of fractional differentiable functions Sγ,2(RN ) as the closure of C∞
0 (RN ) naturally endowed

with the norm
∥u∥2Sγ,2(RN ) = ∥u∥2L2(RN ) + ∥Dγu∥2L2(RN ). (2.1)

According to the Theorem 1.7 in [28], it is exactly the Bessel potential space Lγ,2(RN ) defined for γ ∈ R+ as

Lγ,2(RN ) := Gγ(L
2(RN )) = {Gγ ∗ f : f ∈ L2(RN )},

where the Bessel potential Gγ is defined by (see [27, 28])

Gγ(x) :=
1

(4π)
γ
2 Γ(γ2 )

∫ +∞

0

e
−π|x|2

t e
−t
4π t

γ−N
2 −1dt.

The norm of this space is ∥u∥Lγ,2(RN ) = ∥f∥L2(RN ) if u = Gγ ∗ f . The following theorem summarize the main
properties of this space (see [28]).

Theorem 2.1. 1. If γ ∈ (0, 1), then Hγ(RN ) = W γ,2(RN ) = Lγ,2(RN ) = Sγ,2(RN ) with the norm given by (2.1).

2. If γ ≥ 0 and 2 ≤ q ≤ 2∗γ , then Lγ,2(RN ) is continuously embedded in Lq(RN ), and the embedding is locally
compact if 2 ≤ q < 2∗γ ,

Remark 2.2. According to the Theorem 2.1, the Bessel potential space Lγ,2(RN ) is topologically undistinguishable
from the well known fractional Sobolev space Hγ(RN ).

The homogeneous Sobolev space Dγ,2(RN ) for γ ∈ (0, 1), is defined by

Dγ,2(RN ) =
{
u ∈ L2∗γ (RN ) : Dγu ∈ L2(RN )

}
,

which is the completion of C∞
0 (RN ) under the norm

∥u∥Dγ,2(RN ) = (

∫
RN

|Dγu|2dx)
1
2

.

Now, we introduce our working space E as follows

E =

u ∈ Lγ,2
(
RN

)
:

∫
RN

|Dγu|2 + V (x)|u|2)dx < ∞

 ,

which is a Hilbert space equipped with the norm

∥u∥E =

∫
RN

(|Dγu|2 + V (x) |u|2) 1
2 dx.

We notice that the two above definitions of Dγ,2(RN ) and E coincide with the usual definitions of them in terms
of the Gagliardo seminorm, and the assumption (V ) implies that ∥u∥E = ∥u∥Lγ,2(RN ). The following embedding
properties are necessary.
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Lemma 2.3. E is compactly embedded in Lq
(
RN

)
for q ∈

[
2, 2∗γ

)
, and continuously embedded in Lq

(
RN

)
for

q ∈
[
2, 2∗γ

]
.

Lemma 2.4. ([17]) For any γ ∈
(
0, 3

2

)
, Dγ,2(RN ) is continuously embedded in L2∗γ (RN ), i.e there exists Cγ > 0 such

that ∫
RN

|u|2
∗
γdx

 2
2∗γ

≤ Cγ

∫
RN

|Dγu|2dx, u ∈Dγ,2
(
RN

)
.

The existence of a nontrivial solution to a linear fractional PDEs with variable coefficients is established by the
following theorem.

Theorem 2.5. ([28]) Let Ω ⊂ RN is an arbitrary bounded open set. Assume that h ∈ L2(Ω), such that I1−γ ∗ u is
well defined and A : RN −→ RN×N with coefficients bounded and measurable such that

c∗|y|2 ≤ A(x)y.y and A(x)y.y ≤ c∗|y|2

For all x, y ∈ RN and some c∗, c
∗ > 0. Then, there exists a unique u ∈ Lγ,2(RN ) such that∫

RN

A(x)Dγu.Dγwdx =

∫
Ω

hwdx

for every w ∈ Lγ,2(RN ).

From now on, we restrict the work space in dimension N = 3.

2.1 A reduced problem

For any u ∈ E and w ∈ Dγ,2(R3) we have from Hölder inequality, Lemma 2.3 and Lemma 2.4∫
R3

u2wdx ≤ ∥u∥2
L

12
3+2γ (R3)

∥w∥
L

2∗γ (R3)

≤ C ∥u∥2E ∥w∥Dγ,2(R3). (2.2)

For any u ∈ E, the Lax-Milgram Theorem implies that there exists a unique ϕγ
u ∈ Dγ,2

(
R3

)
such that∫

R3

Dγϕγ
u.D

γwdx =

∫
R3

u2wdx ∀w ∈ Dγ,2
(
R3

)
. (2.3)

i.e. ϕγ
u is a weak solution of −Dγ .Dγϕγ

u = u2. Moreover ϕγ
u is given by

ϕγ
u(x) = cγ

∫
R3

u2(y)

|x− y|3−2γ dy, (2.4)

which is the Riesz potential (see [27]), where

cγ = π− 3
2 2−2γ Γ

(
3−2γ

2

)
Γ (γ)

.

Taking w = ϕγ
u in (2.2) and (2.3), we derive

∥ϕγ
u∥Dγ,2(R3) ≤ C ∥u∥2E . (2.5)

Substituting ϕγ
u in (1.1), it leads to the equivalent form

−Dγ .Dγu+ V (x)u+ ϕγ
uu = f(x, u), x ∈ R3, (2.6)
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whose corresponding functional I : E → R is given as follows

I (u) =
1

2

∫
R3

(
|Dγu|2 + V (x)u2

)
dx+

1

4

∫
R3

ϕγ
uu

2dx−
∫
R3

F (x, u) dx. (2.7)

Moreover, if we take w = ϕγ
u in (2.2) and (2.3) again, and by (2.5) we obtain∫

R3

ϕγ
uu

2dx ≤ C ∥u∥2E ∥ϕγ
u∥Dγ,2(R3)

≤ C ∥u∥4E . (2.8)

Clearly, I is well defined in E and I ∈ C1(E,R). Moreover, its derivative is

< I ′ (u) , w >=

∫
R3

(Dγu.Dγw + V (x)uw + ϕγ
uuw − f (x, u)w)dx, w ∈ E. (2.9)

Thus, we have the following result:

Theorem 2.6. the pair (u, ϕ) ∈ E ×Dγ,2
(
R3

)
is a weak nontrivial solution of (1.1) if and only if u ∈ E is a critical

point of functional I, where ϕ = ϕγ
u.

Since we do not suppose (1.4), the verification of (PS)c-condition at level c ∈ R becomes complicated, thus we
introduce the Cerami condition, which was established by Cerami [14]. Assuming that I ∈ C1(E,R).

Definition 2.7. The functional I satisfies the Cerami condition at level c ∈ R, denoted by (C)c-condition, if any
sequence {un} ⊂ E satisfying

I(un) → c and ∥I ′(un)∥(1 + ∥un∥E) → 0 as n → ∞.

has a convergence subsequence.

Choosing {ei} an orthonormal basis of E and define Xi = Rei,

Yk = ⊕k
i=1Xi Zk = ⊕∞

i=kXi k ∈ Z.

Clearly, E = Yk ⊕ Zk. To prove our result, we need the following theorem [25] under the (C)c-condition.

Theorem 2.8. (Symmetric Mountain Pass Theorem) Let E = Yk⊕Zk be an infinite dimensional Banach space where
Y is finite dimensional, let I ∈ C1(E,R) be even, satisfies the (C)c-condition and I(0) = 0, if

(i) there exist constants ρ, δ > 0 satisfying I
∣∣
∂Bρ

⋂
Z = inf

u∈Z,∥u∥=ρ
I(u) ≥ δ;

(ii) for every finite dimensional subspace Ẽ ⊂ E, there is a constant C = C(Ẽ) > 0 such that max
u∈Ẽ,∥u∥≥C

I(u) < 0,

then, I has an unbounded sequence of critical points.

3 Proof of Main Result

Before the proof of theorem, the following Lemma plays an important role in obtaining the existence of weak
nontrivial solution for (1.1).

Lemma 3.1. Let γ ∈ (0, 1). The functional I satisfies (C)c-condition on E, if (A1),(A3)-(A4) and (V ) hold.

Proof . Let {un} ⊂ E be a (C)c sequence of I. This implies that

c = I(un) + on(1) and ⟨I ′(un), un⟩ = on(1), (3.1)
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where on(1) → 0 as n → ∞. Seeking a contradiction. We assume that ∥un∥E → ∞ as n → ∞. Define {vn} ⊂ E such
that vn = un

∥un∥E
, then clearly ∥vn∥E = 1. Hence, there exists a subsequence {vn} such that vn ⇀ v in E as n → ∞.

From Lemma 2.3 we get, for 2 ≤ p < 2∗γ

vn → v a.e. in R3 and vn → v in Lp
(
R3

)
as n → ∞. (3.2)

There are two possible cases. First, we consider the case v(x) = 0. From (A3) we have

c+ 1 ≥ I (un)−
1

µ
⟨I ′ (un) , un⟩

=

(
1

2
− 1

µ

)
∥un∥2E +

(
1

4
− 1

µ

)∫
R3

ϕγ
un

u2
ndx+

∫
R3

(
f (x, un)un

µ
− F (x, un)

)
dx

≥
(
1

2
− 1

µ

)
∥un∥2E − λ

µ

∫
R3

|un|2dx

≥
(
1

2
− 1

µ

)
∥un∥2E − λ

µ
∥vn∥2L2(R3) ∥un∥2E ,

which implies
c+ 1

∥un∥2E
≥ 1

2
− 1

µ
− λ

µ
∥vn∥2L2(R3) .

Since ∥un∥E → ∞ as n → ∞, then

∥vn∥2L2(R3) ≥
µ− 2

2λ
,

which shows that v(x) ̸= 0, then we arrive at contradiction. In the second case v(x) ̸= 0 in R3, we set Σ ={
x ∈ R3 : v(x) ̸= 0

}
, thus meas(Σ) > 0. By (3.1), we obtain

c = I(un) + on(1) =
1

2
∥un∥2E +

1

4

∫
R3

ϕγ
un

u2
ndx−

∫
R3

F (x, un)dx. (3.3)

Since ∥un∥E → ∞ as n → ∞, we assert that∫
R3

F (x, un)dx ≥ 1

2
∥un∥2E − c+ on(1) → ∞ as n → ∞. (3.4)

Thus, combining (2.8) and (3.3), we obtain∫
R3

F (x, un)dx+ c− on(1) =
1

2
∥un∥2E +

1

4

∫
R3

ϕγ
un

u2
ndx ≤ 3

4
∥un∥4E . (3.5)

Moreover, it follows from (A4) that there exists s0 > 1 such that F (x, s) > |s|2θ, for all |s| > s0, x ∈ R3. Since
f satisfies the Carathéodory condition and by means of (A2), we infer that there exists a positive number K such
that |F (x, s)| < K, for all (x, s) ∈ R3 × [−s0, s0]. Then, we can choose K0 ∈ R such that F (x, s) ≥ K0, for all
(x, s) ∈ R3 × R, and thus

F (x, un)−K0

∥un∥2θE
≥ 0. (3.6)

It follows from (A4) that

lim
n→∞

F (x, un)

∥un∥2θE
= lim

n→∞

F (x, un)

|un|2θ
.|vn|2θ = ∞, (3.7)
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for all x ∈ Σ. Thus, we see that meas(Σ) = 0. Indeed, if meas(Σ) ̸= 0, then it follows from (3.4)-(3.7) and Fatou’s
Lemma that

3

4
=lim inf

n→∞

3
4

∫
R3

F (x, un)dx∫
R3

F (x, un)dx+ c

≥lim inf
n→∞

∫
R3

3
4F (x, un)
3
4 ∥un∥4E

dx

≥lim inf
n→∞

∫
Σ

F (x, un)

∥un∥4E
dx− lim inf

n→∞

∫
Σ

K0

∥un∥4E
dx

≥lim inf
n→∞

∫
Σ

F (x, un)−K0

∥un∥4E
dx.

≥
∫
Σ

lim inf
n→∞

F (x, un)

∥un∥4E
dx−

∫
Σ

lim sup
n→∞

K0

∥un∥4E
dx = ∞, (3.8)

which is a contradiction, then v(x) = 0 a.e x ∈ R3. Thus, {un} is bounded in E. Up to a subsequence, we can assume
that un ⇀ u in E, from Lemma 2.3 we conclude un → u in Lp

(
R3

)
, for all 2 ≤ p < 2∗γ . Clearly, we have

⟨I ′ (un)− I ′ (u) , un − u⟩ → 0 and ∥un − u∥2L2(R3) → 0 as n → ∞. (3.9)

Combining the Hölder inequality, Lemma 2.4 and (2.5), we obtain∣∣∣∣∣∣
∫
R3

ϕγ
un

un (un − u) dx

∣∣∣∣∣∣ ≤
∥∥ϕγ

un

∥∥
L

2∗γ (R3)
∥un∥

L
12

3+2γ (R3)
∥un − u∥

L
12

3+2γ (R3)

≤ C
∥∥ϕγ

un

∥∥
Dγ,2(R3)

∥un∥
L

12
3+2γ (R3)

∥un − u∥
L

12
3+2γ (R3)

≤ C ∥un∥3E ∥un − u∥
L

12
3+2γ (R3)

.

Similarly, we derive that∣∣∣∣∣∣
∫
R3

ϕγ
uu (un − u) dx

∣∣∣∣∣∣ ≤ C ∥u∥3E ∥un − u∥
L

12
3+2γ (R3)

.

We have ∣∣∣∣∣∣
∫
R3

(
ϕγ
un

un − ϕγ
uu

)
(un − u) dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
R3

ϕγ
un

un (un − u) dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
R3

ϕγ
uu (un − u) dx

∣∣∣∣∣∣ → 0 as n → ∞.

(3.10)

According to (A1) and the Hölder inequality, we obtain∣∣∣∣∣∣
∫
R3

(f (x, un)− f (x, u)) (un − u) dx

∣∣∣∣∣∣
≤ C1

∫
R3

(|un|+ |u|) |un − u| dx+ C1

∫
R3

(
|un|p−1

+ |u|p−1
)
|un − u| dx

≤ C1

(
∥un∥L2(R3) + ∥u∥L2(R3)

)
∥un − u∥L2(R3) + C1

(
∥un∥p−1

Lp(R3) + ∥u∥p−1
Lp(R3)

)
∥un − u∥Lp(R3)

≤ C (∥un∥E + ∥u∥E) ∥un − u∥L2(R3) + C
(
∥un∥p−1

E + ∥u∥p−1
E

)
∥un − u∥Lp(R3) → 0
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as n → ∞. Thus

∥un − u∥2E = ⟨I ′ (un)− I ′ (u) , un − u⟩ −
∫
R3

(V (x)un(un − u)− V (x)u(un − u)) dx

−
∫
R3

(
ϕγ
un

un − ϕγ
uu

)
(un − u) dx+

∫
R3

(f (x, un)− f (x, u)) (un − u)dx → 0

as n → ∞. Therefore, {un} converges strongly in E. □

Lemma 3.2. Suppose that (A1),(A4) and (V ) are satisfied. Then, for each finite dimensional subspace Ẽ ⊂ E, we
have

I(u) → −∞, ∥u∥E → ∞, u ∈ Ẽ.

Proof . Arguing indirectly, suppose that there exists M > 0 for some {un} ⊂ Ẽ and all n ∈ N, such that I(un) ≥ −M
with ∥un∥E → ∞. Set vn = un

∥un∥E
, then ∥vn∥E = 1, up to subsequence we may suppose that vn ⇀ v in E. Since

dim(Ẽ) < ∞, then vn → v ∈ Ẽ in E, vn(x) → v(x) a.e. in R3 and so ∥v∥E = 1. Set Σ =
{
x ∈ R3 : v(x) ̸= 0

}
. Thus

meas(Σ) > 0, and we have |un(x)| → ∞ for a.e. x ∈ Σ. From (2.8) we get

lim
n→∞

4
∫
R3

F (x, un)

∥un∥4E
dx = lim

n→∞

∫
Σ

2 ∥un∥2E +
∫
R3

ϕγ
un

u2
ndx− 4I(un)

∥un∥4E
dx ≤ C, (3.11)

for x ∈ Σ. Thus, since we have |un(x)| → ∞, by similar argument in (3.6)-(3.8) and from (A4), for large n we get

lim
n→∞

∫
R3

4F (x, un)

∥un∥2θE
dx ≥ lim

n→∞

∫
Σ

4F (x, un)

∥un∥2θE
dx = ∞. (3.12)

which is a contradiction with (3.11). □

Corollary 3.3. Under assumptions (A1)-(A4) and (V ), for every finite dimensional subspace Ẽ ⊂ E, there exists a
constant C = C(Ẽ) > 0 such that

I(u) ≤ 0 for all u ∈ Ẽ with ∥u∥E ≥ C.

Lemma 3.4. For 2 ≤ p < 2∗γ , we have that

Γk := sup
u∈Zk,∥u∥=1

∥u∥Lp(R3) → 0 as k → ∞

Proof . Since the embedding from E into Lp is compact, then we can prove Lemma 3.4 by a similar way as Lemma
2.10 in [15]. □

By Lemma 3.4, we can choose an integer m ≥ 1 such that

∥u∥2L2 ≤ 1

2C1
∥u∥2E , ∥u∥pLp ≤ p

4C1
∥u∥pE ∀u ∈ Zm. (3.13)

Lemma 3.5. Suppose that (A1),(A4) and (V ) are satisfied, there exist constants ρ, δ > 0 satisfying I
∣∣
∂Bρ

⋂
Zm

≥ δ >
0.

Proof . From (A1) and (3.13), for u ∈ Zm, choosing ρ := ∥u∥E = 1
2 , we derive

I (u) =
1

2

∫
R3

(
|Dγu|2 + V (x)u2

)
dx+

1

4

∫
R3

ϕγ
uu

2dx−
∫
R3

F (x, u) dx

≥ 1

2
∥u∥2E − C1

2
∥u∥2L2(R3) −

C1

p
∥u∥pLp(R3)

≥ 1

4
(∥u∥2E − ∥u∥pE)

=
2p−2 − 1

2p+2
:= δ > 0.
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This completes the proof.

Proof of Theorem 1.1 Let Y = Ym and Z = Zm. By Lemma 3.1, Lemma 3.5 and Corollary 3.3, all conditions
of Theorem 2.8 are satisfied. Thus, the problem (1.1) has infinitely many nontrivial solutions. □

4 Conclusion

In this paper, through the Symmetric Mountain Pass Theorem, we obtained the existence of infinitely many
nontrivial solutions in Bessel potential space to a new class of fractional Schrödinger-Maxwell systems driven by
distributional Riesz fractional gradient. From our perspective, this paper seems to enrich the related results of
systems that involve this fractional operator and corresponding functional space. In addition, since the concept of
distributional Riesz fractional gradient is very recent, it will be useful to expand the result of the present paper to the
result that involves a singularity. This suggestion will be treated in future studies.
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