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Abstract

This paper aims to establish stability for a system of Euler-Lagrange quadratic functional equations by applying the
so-called direct (Hyers) method and a fixed point technique in the setting of fuzzy normed spaces. Comparing the
results obtained by the mentioned ways, we find that the fixed point tool not only needs a less conditions for the
proofs but also gives us a more exact approximation of approximately Euler-Lagrange-type quadratic mappings in
comparison to the direct approach.
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1 Introduction

A fuzzy concept after the definition of fuzzy sets which has been introduced by Zadeh [42], is fuzzy norm on linear
spaces. A fuzzy norm on a linear space has been defined by Katsaras [24] and almost simultaneously, Wu and Fang
[40] presented a concept of fuzzy normed space and gave the generalization of the Kolmogoroff normalized theorem
for a fuzzy topological vector space. Next, Biswas [7] posed a notion of fuzzy inner product spaces in a linear space.
Since then, many authors and mathematicians have indicated more discussions of fuzzy norms on a vector space from
various points of view [5, 19, 26, 39]. Following Cheng and Mordeson [14] who introduced a definition of fuzzy norm
on a vector space and studied this the new concept in such a manner that the corresponding induced fuzzy metric is of
Kramosil and Michalek type [25], Bag and Samanta [5] modified their definition and then investigated some properties
of fuzzy normed spaces [6].

One of the challenging problems in nonlinear analysis and approximation theory, which has a special importance,
undoubtedly, is the stability of functional equations, which many authors are working on nowadays. The story of
stability theory has been pioneered by Ulam [38] concerning a query stability of homomorphisms on groups. Hyers
[23] reacted positively to the mentioned problem for more groups, assuming that Banach spaces are the groups and
also homomorphisms are the linear mappings. Let us recall that the stability of a functional equation is concerned
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with approximating an approximate solution by an exact solution. After that, this theory for functional equations
and mappings were extended on miscellaneous spaces which are available in many articles and books; see for instance
[4], [16], [20], [21], [34], [35] and more references therein. Moreover, the Hyers-Ulam-Rassias stability of the various
functional equations in fuzzy normed spaces were studied for example in [27], [28], [29], [30] and [31].

Let us remember that Skof [36] was the first author who introduced and studied the quadratic functional equation

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y). (1.1)

Here, we recall that equation (1.1) is the main tool for characterizing of inner product spaces. In fact, this subject
comes from here that the parallelogram equality

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + ∥y∥2

is valid for a square norm on an inner product space; for more information about the equations above we refer to
[1], [3], [18] and references therein. Moreover, some applications of quadratic functional equations for the stability
of ternary quadratic derivations on ternary Banach algebras and C∗-ternary rings and also the stability of quadratic
double centralizers and quadratic multipliers are presented in [9] and [10]. A generalized form of (1.1), namely, the
Euler-Lagrange-type quadratic mapping, presented by J. M. Rassias [33] as follows:

For linear spaces V and W , recall that a mapping Q : V −→ W fulfills the functional equation

Q(au+ bv) +Q(bu− av) = (a2 + b2)[Q(u) +Q(v)] (1.2)

is called Euler-Lagrange quadratic, where u, v ∈ V in which a, b are two fixed real numbers with a2 + b2 > 1 and
|a|, |b| ≠ 1. Note that if |a| = |b| = 1, then with a little connivance, equations (1.1) and (1.2) are the same. Moreover,
the function Q(v) = cv2 is a common solution of (1.1) and (1.2). After that, Xu [41] extended equation (1.2) to
multiple variable mappings and proposed the following definition.

Definition 1.1. Let V and W be vector spaces over real numbers, n ∈ N. A multivariable mapping f : V n ≃
n−times︷ ︸︸ ︷

V × · · · × V −→ W is said to be n-Euler-Lagrange quadratic or multi-Euler-Lagrange quadratic if f fulfills the general
system of quadratic equations

f(u1, . . . , ui−1, aui + bu′
i, ui+1, . . . , un) + f(u1, . . . , ui−1, bui − au′

i, ui+1, . . . , un)

= λf(u1, . . . , ui−1, ui, ui+1, . . . , un) + λf(u1, . . . , ui−1, u
′
i, ui+1, . . . , un),

for all i ∈ {1, . . . , n}, where λ := a2 + b2 (this notation used here and from now on) in which λ > 1 and |a|, |b| ≠ 1.
Note that each multi-Euler-Lagrange quadratic mapping satisfies equation (1.2) in each of variable.

For a mapping f : V n −→ W , we consider two properties as follows:

• (H1) f has zero property, that is, f
(
v[n]
)
= 0 for any v[n] ∈ V n, with at least one variable equal to zero.

• (H2) f has the quadratic condition in all variables, that is, the equality

f(u1, . . . , uj−1, cuj , uj+1, . . . , un) = c2f(u1, . . . , uj−1, uj , uj+1, . . . , un),

holds for all u1, . . . , un ∈ V and j ∈ {1, . . . , n}, where c ∈ {a, b} and |a|, |b| ≠ 1.

It is clear that if a f has the hypothesis (H2), then it has (H1) but clearly, the converse is not valid in general.

Regarding a multi-Euler-Lagrange quadratic mapping, as a special case of [12, Theorem 5], Bodaghi et al. proved
the following theorem.

Theorem 1.2. Every multi-Euler-Lagrange quadratic mapping f : V n −→ W satisfies∑
t1,...tn∈{(a,b),(b,a)}

f
(
St1
1 , . . . , Stn

n

)
= λn

∑
l1,··· ,ln∈{1,2}

f(vl11, . . . , vlnn), (1.3)

for all v
[n]
i = (vi1, vi2, . . . , vin) ∈ V n with i ∈ {1, 2}, in which

S
(a,b)
j = av1j + bv2j , and S

(b,a)
j = bv1j − av2j , (1.4)

for all j ∈ {1, . . . , n}. The converse is valid if f has (H2).
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It is know from Theorem 1.2 that a mapping f : V n −→ W satisfying the system of Euler-Lagrange quadratic
functional equations given in Definition 1.1 for each variable i also fulfills equation (1.3) [12, Theorem 5], which will be
the primary equation for our stability analysis. We remind that the stability for the multi-Euler-Lagrange quadratic
mappings means that functional equation (1.3) is stable. More information about the structures, characterizations
and the stability results for various multi-quadratic mappings and equation on miscellaneous spaces such as normed
spaces, non-Archimedean spaces and fuzzy normed spaces are available in [2], [8], [11], [13], [15], [32] and [43].

In the current article, we prove Găvruţa and Hyers-Ulam-Rassias stability of the multi-Euler-Lagrange quadratic
mappings by using the direct and fixed methods in the setting of fuzzy normed spaces. Furthermore, we find that
the fixed point way is a more exact approximation of approximately multi-Euler-Lagrange-type quadratic mappings
in comparison to the direct manner.

2 Stability results for Euler-Lagrange-type quadratic mappings

In this section, we prove various stability of multi-Euler-Lagrange quadratic mappings in fuzzy normed spaces by
the direct and fixed point methods.

Definition 2.1. Let V be a real linear space. A function T : V × R −→ [0, 1] is called a fuzzy norm on V if for all
u, v ∈ V and all s, t ∈ R, we have

(T1) T (v, r) = 0 for r ≤ 0;

(T2) v = 0 if and only if T (v, r) = 1 for all r > 0;

(T3) T (rv, t) = T
(
v, t

|r|

)
if r ̸= 0;

(T4) T (u+ v, s+ t) ≥ min{T (u, s), T (v, t)};
(T5) T (v, ·) is a non-decreasing function on R on and limt→∞T (v, t) = 1;

(T6) For v ̸= 0, T (v, ·) is (upper semi)-continuous on R.

The pair (V, T ) is said to be a fuzzy normed linear space. Now, for a fuzzy normed vector space (V, T ), we bring
some known observations as follows. A sequence {vj}j in V converges to a v ∈ V if limj→∞T (vj − v, t) = 1 for all
t ≥ 0. In this case, v is called the limit of the sequence {vj}j and denoted by T − limt→∞ vj = v. Moreover, a sequence
{vj} in V is called Cauchy if for each δ > 0 and each t > 0 there exists an t0 ∈ N such that for all t ≥ t0 and all k > 0,
we have T (vj+k − vj , t) > 1− δ.

Similar all normed spaces, if each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and
the fuzzy normed vector space is called a fuzzy Banach space. For fuzzy normed vector spaces (V, T ) and (W,T ′), we
say that a mapping f : (V, T ) −→ (W,T ′) is continuous at a point v0 ∈ V if for each sequence {vj}j converging to
v0 in V , the sequence {f(vj)}j converges to f(v0). If f : V −→ W is continuous at each v ∈ V , then it is said to be
continuous on V ; for more details we refer to [6].

The following example is presented in [31]. In continuation, we apply this example to obtain further results.

Example 2.2. Let (V, T ) be a normed linear space. For v ∈ V , the function

T (v, t) =

{
t

∥v∥+t t > 0,

0 otherwise.

is a fuzzy norm on V .

Let n ∈ N with n ≥ 2 and v
[n]
i = (vi1, vi2, . . . , vin) ∈ V n, where i ∈ {1, 2}. Here and subsequently, for a mapping

f : V n −→ W , we consider the operator Dqf : V n × V n −→ W defined through

Dqf
(
v
[n]
1 , v

[n]
2

)
: =

∑
t1,...tn∈{(a,b),(b,a)}

f
(
St1
1 , . . . , Stn

n

)
− λn

∑
l1,··· ,ln∈{1,2}

f(vl11, . . . , vlnn),

for fixed non-zero real numbers a, b, considered in Definition 1.1, where S
(a,b)
j and S

(b,a)
j are defined in (1.4) for all

j = 1, . . . , n.

Throughout this section, in all theorems, V is a real linear space, (W,T ) is a fuzzy Banach space and (Y, T ′) is a
fuzzy normed space. Moreover, it is assumed that all mapping f : V n −→ W has the property (H1).
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2.1 Stability results: direct method

In this subsection, we prove Găvruţa and Hyers-Ulam-Rassias stability of multi-Euler-Lagrange quadratic mappings

in fuzzy normed spaces by means of the direct method. From now on, we set 0 = (

n−times︷ ︸︸ ︷
0, . . . , 0).

Theorem 2.3. Let f : V n −→ W be a mapping and ϕ : V n −→ Y be a mapping with the property

(H3) For all v[n] ∈ V n, f
(
λv[n]

)
= αf

(
v[n]
)
for some real number α with 0 < |α| < λ2n,

such that

T
(
Dqf

(
v
[n]
1 , v

[n]
2

)
, t+ s

)
≥ min

{
T ′
(
ϕ
(
v
[n]
1

)
, t
)
, T ′

(
ϕ
(
v
[n]
2

)
, s
)}

, (2.1)

for all v
[n]
1 , v

[n]
2 ∈ V n and t, s > 0. Then, there exists a solution Q : V n −→ W of (1.3) such that

T
(
f
(
v[n]
)
−Q

(
v[n]
)
, t
)
≥ M

(
v,

λ2n − |α|
2λ2n

t

)
, (2.2)

for all v[n] ∈ V n and t > 0, where

M(v[n], t) := min
{
T ′ (ϕ (v[n]) , λn

4 t
)
, T ′ (ϕ(0), λn

4 t
)
,

T ′
(
ϕ
(
av[n]

)
, λ2n

4 t
)
, T ′

(
ϕ
(
bv[n]

)
, λ2n

4 t
)}

. (2.3)

Moreover, Q is a unique multi-Euler-Lagrange quadratic mapping satisfying (2.2) provided that the hypothesis
(H2) valid for it.

Proof . Putting v
[n]
2 = 0 and s = t in (2.1) and using the assumptions, we have

T
(
f̃
(
v
[n]
1

)
− λnf

(
v
[n]
1

)
, 2t
)
≥ min

{
T ′
(
ϕ
(
v
[n]
1

)
, t
)
, T ′ (ϕ(0), t)

}
, (2.4)

for all v
[n]
1 ∈ V n and t > 0, where

f̃
(
v
[n]
1

)
=

∑
al11,··· ,alnn∈{a,b}

f(al11v11, . . . , alnnv1n). (2.5)

For the remainder of the proof, we denote v
[n]
1 by v[n] unless stated otherwise. It follows from (2.4) that

T
(
λnf̃

(
v[n]
)
− λ2nf

(
v[n]
)
, 2t
)
≥ min

{
T ′
(
ϕ
(
v[n]
)
,
t

λn

)
, T ′

(
ϕ(0),

t

λn

)}
, (2.6)

for all v[n] ∈ V n and t > 0. Once more, switching
(
v
[n]
1 , v

[n]
2

)
by
(
av[n], bv[n]

)
and putting s = t in (2.1), we get

T
(
f
(
λv[n]

)
− λnf̃

(
v[n]
)
, 2t
)
≥ min

{
T ′
(
ϕ
(
av[n]

)
, t
)
, T ′

(
ϕ
(
bv[n]

)
, t
)}

, (2.7)

for all v[n] ∈ V n and t > 0. It follows from relation (2.6) and (2.7) that

T
(
f
(
λv[n]

)
− λ2nf

(
v[n]
)
, t
)

≥ min

{
T ′
(
ϕ
(
v[n]
)
,

t

4λn

)
, T ′

(
ϕ(0),

t

4λn

)
, T ′

(
ϕ
(
av[n]

)
,
t

4

)
, T ′

(
ϕ
(
bv[n]

)
,
t

4

)}
,

for all v[n] ∈ V n and t > 0. From the relation above, applying (T3) with r = 1
λ2n to the vector inside T yields

T

(
f
(
λv[n]

)
λ2n

− f
(
v[n]
)
,

1

λ2n
t

)
≥ min

{
T ′
(
ϕ
(
v[n]
)
,

t

4λn

)
, T ′

(
ϕ(0),

t

4λn

)
, T ′

(
ϕ
(
av[n]

)
,
t

4

)
, T ′

(
ϕ
(
bv[n]

)
,
t

4

)}
,
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for all v[n] ∈ V n and t > 0. By a change of variable t into λ2nt in the last inequality, we obtain

T

(
f
(
λv[n]

)
λ2n

− f
(
v[n]
)
, t

)
≥ M

(
v[n], t

)
, (2.8)

for all v[n] ∈ V n and t > 0, where M
(
v[n], t

)
is defined in (2.3). Putting v[n] by λmv[n] in (2.8) and applying the

equality

M
(
λv[n], t

)
= M

(
v[n],

t

|α|

)
, (2.9)

we arrive to

T

(
f
(
λm+1v[n]

)
λ2(m+1)n

−
f
(
λmv[n]

)
λ2mn

,
|α|m

λ2mn
t

)
= T

(
f
(
λm+1v[n]

)
λ2n

− f
(
λmv[n]

)
, |α|mt

)
≥ M

(
λmv[n], |α|mt

)
= M

(
v[n], t

)
,

for all v[n] ∈ V n, t > 0 and m ≥ 0. Furthermore, for each m > l > 0, we get

T

f
(
λmv[n]

)
λ2mn

−
f
(
λlv[n]

)
λ2ln

,
m−1∑
j=l

|α|j

λ2jn
t

 = T

m−1∑
j=l

f
(
λm+1v[n]

)
λ2(m+1)n

−
f
(
λmv[n]

)
λ2mn

,
m−1∑
j=l

|α|j

λ2jn
t


≥ min

m−1⋃
j=l

{
T

(
f
(
λm+1v[n]

)
λ2(m+1)n

−
f
(
λmv[n]

)
λ2mn

,
|α|j

λ2jn
t

)}

≥ M
(
v[n], t

)
. (2.10)

Take ϵ, δ > 0. Due to the equality limt→∞ M
(
v[n], t

)
= 1, there is some t0 > 0 such that M

(
v[n], t0

)
> 1 − ϵ.

Since the series
∑m−1

j=0
|α|j
λjn t0 converges, its partial sums are Cauchy and therefore there is some n0 ∈ N such that∑m−1

j=l
|α|j
λ2jn t0 < δ for all m > l ≥ n0. It now deduces that

T

(
f
(
λmv[n]

)
λ2mn

−
f
(
λlv[n]

)
λ2ln

, δ

)
≥ T

f
(
λmv[n]

)
λ2mn

−
f
(
λlv[n]

)
λ2ln

,

m−1∑
j=l

|α|j

λ2jn
t0


≥ M

(
v[n], t0

)
≥ 1− ϵ.

The relation above shows that the sequence

{
f(λmv[n])

λ2mn

}
m

is Cauchy in (W,T ). Since (W,T ) is a Banach fuzzy

space, the sequence

{
f(λmv[n])

λ2mn

}
m

converges pointwise to a mapping Q : V n −→ W , that is,

Q
(
v[n]
)
= lim

m→∞
T −

f
(
λmv[n]

)
λ2mn

.

Putting l = 0 in (2.10), we obtain

T

f
(
λmv[n]

)
λ2mn

− f(v[n]),

m−1∑
j=0

|α|j

λjn
t

 ≥ M(v[n], t),

for all v[n] ∈ V n and t > 0. The last inequality necessitates that

T

(
f
(
λmv[n]

)
λ2mn

− f(v[n]), t

)
≥ M

(
v[n],

t∑m−1
j=0

|α|j
λ2jn

)
, (2.11)
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for all v[n] ∈ V n and t > 0. It will be shown that the mapping Q is a solution of (1.3). For this, we have

T
(
DqQ

(
v
[n]
1 , v

[n]
2

)
, t
)

≥ min
{ ⋃

t1,...tn∈{(a,b),(b,a)}

T

(
Q
(
St1
1 , . . . , Stn

n

)
−

f
(
λmSt1

1 , . . . , λmStn
n

)
λ2mn

,
t

(2n + 2)2n

)
,

⋃
l1,...,ln∈{1,2}

T

(
λnQ (vl11, . . . , vlnn)− λn f (λmvl11, . . . , λ

mvlnn)

λ2mn
,

t

(2n + 2)2n

)
,

⋃
t1,...tn∈{(a,b),(b,a)}

⋃
l1,...,ln∈{1,2}

T

(
f
(
λmSt1

1 , . . . , λmStn
n

)
λ2mn

− λn f (λmvl11, . . . , λ
mvlnn)

λ2mn
,

t

(2n + 2)2n

)}
,

for all v
[n]
1 , v

[n]
2 ∈ V n and t > 0. By the definition of Q, each member of the first and second unions on the right hand

side of the above inequality goes toward 1 as m tends to infinity and each member of the third unions, by (2.1) is
greater than or equal to

min

{
T ′
(
ϕ
(
λmv

[n]
1

)
,

λ2mn

(2n + 2)2n−1
t

)
, T ′

(
ϕ
(
λmv

[n]
2

)
,

λ2mn

(2n + 2)2n−1
t

)}
= min

{
T ′
(
ϕ
(
v
[n]
1

)
,

λ2mn

(2n + 2)2n−1|α|m
t

)
, T ′

(
ϕ
(
v
[n]
2

)
,

λ2mn

(2n + 2)2n−1|α|m
t

)}
,

which goes to 1 when m → ∞. Hence,

T
(
DqQ

(
v
[n]
1 , v

[n]
2

)
, t
)
= 1,

for all v
[n]
1 , v

[n]
2 ∈ V n and t > 0. This means that Q is a solution of (1.3). If now Q has the quadratic condition in

each component, then it is a multi-Euler-Lagrange quadratic mapping by Theorem 1.2. Here, we approximate the
difference between f and Q in a fuzzy sense. By inequality (2.11), for each v[n] ∈ V n and t > 0, we have

T
(
Q
(
v[n]
)
− f

(
v[n]
)
, t
)
≥ min

{
T

(
Q
(
v[n]
)
−

f
(
λmv[n]

)
λ2mn

,
t

2

)
, T

(
f
(
λmv[n]

)
λ2mn

− f
(
v[n]
)
,
t

2

)}

≥ M

(
v[n],

t

2
∑∞

j=0
|α|j
λ2jn

)

= M

(
v[n],

λ2n − |α|
2λ2n

t

)
.

For the uniqueness of Q, assume that Q is another multi-Euler-Lagrange quadratic mapping from V n into W , such
that inequality (2.2) is true for them. For each v[n] ∈ V n and t > 0, we reach

T
(
Q
(
v[n]
)
−Q

(
v[n]
)
, t
)
≥ min

{
T

(
Q
(
v[n]
)
− f

(
v[n]
)
,
t

2

)
, T

(
Q
(
v[n]
)
− f

(
v[n]
)
,
t

2

)}
≥ M

(
v[n],

λ2n − |α|
2λ2n

t

)
.

On the other hand, Q and Q are multi-Euler-Lagrange quadratic, and hence

T
(
Q
(
v[n]
)
−Q

(
v[n]
)
, t
)
= T

(
Q
(
λmv[n]

)
−Q

(
λmv[n]

)
, λ2mnt

)
≥ M

(
v[n],

λ2n − |α|
2λ2n

(
λ2n

|α|

)m

t

)
,

for all v[n] ∈ V n, t > 0 and m ∈ N. Since limm→∞

(
λ2n

|α|

)m
= +∞, the right hand side of the last inequality tends to

1 as m → ∞. This shows that Q
(
v[n]
)
= Q

(
v[n]
)
for all v[n] ∈ V n, and therefore the proof is now finished. □

The next theorem is in analogy with the previous theorem, when the assumptions are the same but we obtain
different results. Note that the techniques are completely similar to the that of Theorem 2.3, and so we present a
sketch of the proof.
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Theorem 2.4. Let f : V n −→ W be a mapping and ϕ : V n −→ Y be a function with the hypothesis (H3) such that

T
(
Dqf

(
v
[n]
1 , v

[n]
2

)
, t+ s

)
≥ min

{
T ′
(
ϕ
(
v
[n]
1

)
, t
)
, T ′

(
ϕ
(
v
[n]
2

)
, s
)}

,

for all v
[n]
1 , v

[n]
2 ∈ V n and t, s > 0. Then, there exists a solution Q : V n −→ W of (1.3) such that

T
(
f
(
v[n]
)
−Q

(
v[n]
)
, t
)
≥ N

(
v[n],

|α| − λ2n

2|α|
t

)
, (2.12)

for all v[n] ∈ V n and t > 0, where

N
(
v[n], t

)
:= min

{
T ′
(
ϕ
(
v[n]
)
, |α|
4λn t

)
, T ′

(
ϕ(0), |α|

4λn t
)
,

T ′
(
ϕ
(
av[n]

)
, |α|

4 t
)
, T ′

(
ϕ
(
bv[n]

)
, |α|

4 t
)}

. (2.13)

In addition, Q is a unique multi-Euler-Lagrange quadratic mapping satisfying (2.12) if it satisfies the hypothesis
(H2).

Proof . Note that the assumption (H3) for ϕ implies that ϕ
(

v[n]

λ

)
= 1

|α|ϕ
(
v[n]
)
in which |α| > λ2n. Similar way to

that proof of Theorem 2.3, we have

T
(
f
(
λv[n]

)
− λ2nf

(
v[n]
)
, t
)

≥ min

{
T ′
(
ϕ
(
v[n]
)
,

t

4λn

)
, T ′

(
ϕ(0),

t

4λn

)
, T ′

(
ϕ
(
av[n]

)
,
t

4

)
, T ′

(
ϕ
(
bv[n]

)
,
t

4

)}
,

for all v[n] ∈ V n and t > 0. A direct result from the inequality above is as follows:

T

(
f
(
v[n]
)
− λ2nf

(
v[n]

λ

)
, t

)
≥ N

(
v[n], t

)
, (2.14)

for all v[n] ∈ V n and t > 0, where N(v, t) is defined in (2.13). Interchanging v[n] into λmv[n] in (2.14) and applying

the property N
(

v[n]

λ , t
)
= N

(
v[n], |α|t

)
, we get

T

(
λ2mnf

(
v[n]

λm

)
− λ(m+1)nf

(
v[n]

λm+1

)
,
λ2mn

|α|m
t

)
≥ N

(
v[n], t

)
,

for all v[n] ∈ V n, t > 0 and m ≥ 0. Moreover, for each m > l > 0, we obtain

T

λ2lnf

(
v[n]

λl

)
− λ2mnf

(
v[n]

λm

)
,

m−1∑
j=l

λ2jn

|α|j
t

 ≥ N
(
v[n], t

)
,
(
v[n] ∈ V n

)
. (2.15)

Let ϵ, δ > 0. Since limt→∞ N
(
v[n], t

)
= 1, and so there is some t0 > 0 such that N

(
v[n], t0

)
> 1− ϵ. On the other

hand
∑m−1

j=0
λ2jn

|α|j t0 < ∞, and so for some n0 ∈ N, we get
∑m−1

j=l
λ2jn

|α|j t0 < δ for all m > l ≥ n0. These arguments imply

that

T

(
λ2lnf

(
v[n]

λl

)
− λ2mnf

(
v[n]

λm

)
, δ

)
≥ N

(
v[n], t0

)
≥ 1− ϵ.

Thus, the sequence
{
λ2mnf

(
v[n]

λm

)}
is Cauchy in (W,T ). Due to the completeness of (W,T ′), this sequence

converges pointwise to a mapping Q : V n −→ W such that

Q
(
v[n]
)
= lim

m→∞
T − λ2mnf

(
v[n]

λm

)
,
(
v[n] ∈ V n

)
.
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Putting l = 0 in (2.15), we find

T

f
(
v[n]
)
− λ2mnf

(
v[n]

λm

)
,

m−1∑
j=0

λ2jn

|α|j
t

 ≥ N
(
v[n], t

)
,

for all v[n] ∈ V n and t > 0. It now follows from the last inequality that

T

(
f
(
v[n]
)
− λ2mnf

(
v[n]

λm

)
, t

)
≥ N

(
v[n],

t∑m−1
j=0

λ2jn

|α|j

)
,

or all v[n] ∈ V n and t > 0. The proof of being a solution of (1.3) and the uniqueness of Q can be a standard fashion
taken from the proof of Theorem 2.3. □

A direct consequence of Theorems 2.3 and 2.4 is Rassias stability for the multi-Euler-Lagrange quadratic mappings
as follows.

Example 2.5. Let V be a real normed space, (W,T ) be a fuzzy Banach space and (Y, T ′) be a fuzzy normed space,
where T and T ′ are fuzzy norm as considered in Example 2.2. Suppose that f : V n −→ W is a mapping satisfies

T
(
Dqf

(
v
[n]
1 , v

[n]
2

)
, t+ s

)
≥ min

{
T ′
(∑n

j=1 ∥v1j∥ry0, t
)
, T ′

(∑n
j=1 ∥v2j∥ry0, s

)}
,

for all v
[n]
1 , v

[n]
2 ∈ V n and t, s > 0, where y0 is a fixed vector in Y . If 0 < r ̸= 2n and |a| ≥ |b|, then by Theorem 2.3

and Theorem 2.4 there exists a solution Q : V n −→ W of (1.3) such that

T
(
f
(
v[n]
)
−Q

(
v[n]
)
, t
)
≥



(λ2nn−λr)t
(λ2n−λr)t+8λn∥y0∥

∑n
j=1 ∥v1j∥r 0 < r < 2n,

(λrn−λ2n)t
(λr−λ2n)t+8λn∥y0∥

∑n
j=1 ∥v1j∥r r > 2n, λ2n ≥ |a|r,

(λrn−λ2n)t
(λr−λ2n)t+8|a|r∥y0∥

∑n
j=1 ∥v1j∥r r > 2n, λ2n ≤ |a|r,

(2.16)

for all v[n] := v
[n]
1 ∈ V n and t > 0. Moreover, if Q has the property (H2), then it is a unique multi-Euler-Lagrange

quadratic mapping satisfying (2.16).

It is easily seen that if in the definition of multi-Euler-Lagrange quadratic mapping, we consider a large number
for n, then the right side of inequality (2.16) goes to 1 and fuzzy difference closes to zero. In the upcoming example,
we prove the Hyers’ stability of multi-Euler-Lagrange quadratic mappings.

Example 2.6. Given δ > 0. Let V be a real normed space, (W,T ) be a fuzzy Banach space and (Y, T ′) be a fuzzy
normed space. Suppose that f : V n −→ W is a mapping satisfies

T
(
Dqf

(
v
[n]
1 , v

[n]
2

)
, t+ s

)
≥ min{T ′ (δy0, t) , T

′ (δy0, s)},

for all v
[n]
1 , v

[n]
2 ∈ V n and t, s > 0, where y0 is a fixed vector in Y . By Theorem 2.3, there exists a solutionQ : V n −→ W

of (1.3) such that

T
(
f
(
v[n]
)
−Q

(
v[n]
)
, t
)
≥ T ′

(
y0,

λ2n − 1

8δλn
t

)
, (2.17)

for all v[n] ∈ V n and t > 0. In particular, if Q has the property (H2), then it is a unique multi-Euler-Lagrange
quadratic mapping fulfilling (2.17).
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2.2 Stability results: the fixed point method

In this subsection, we present the Hyers-Ulam-Rassias stability of multi-Euler-Lagrange quadratic mappings by a
fixed point method. Before presenting the main results in this subsection, we recall that the only essential difference
of the generalized metric d on a set X from the metric d′ on X is that the range of generalized metric includes the
infinity. In the next theorem, we bring a fundamental result in fixed point theory from [17], is useful to our goals in
this subsection; we remind that an extension of the result was stated in [37].

Theorem 2.7. Suppose that (∆, d) is a complete generalized metric space and T : ∆ −→ ∆ is a mapping with
Lipschitz constant (its definition is available in the literature) 0 < L < 1 . Then, for each element η ∈ ∆, one of the
following happen:

• d(T nη, T n+1η) = ∞ for all n ≥ 0;

or

• there exists a n0 ∈ N such that

(1) d
(
T nη, T n+1η

)
< ∞ for all n ≥ n0;

(2) the sequence {T nη} converges to an element η∗ of T ;

(3) η∗ is the unique fixed point of J ∈ ∆0 = {η ∈ ∆ : d(T n0y, y) < ∞};
(4) d(η, η∗) ≤ 1

1−Ld(η, T η) for all η ∈ ∆0.

Theorem 2.8. Let V be a real linear space, (W,T ) be a fuzzy Banach space and (Y, T ′) be a fuzzy normed space.
Suppose that f : V n −→ W is a mapping and ϕ : V n −→ Y is a function satisfying (2.1). If the property (H3) is true
for ϕ, then there exists a solution Q : V n −→ W of (1.3) such that

T
(
f
(
v[n]
)
−Q

(
v[n]
)
, t
)
≥ M

(
v[n],

λ2n − |α|
λ2n

t

)
, (2.18)

for all v[n] ∈ V n and t > 0, where M
(
v[n], t

)
is defined in (2.3). In addition, if Q has the property (H2), then it is a

unique multi-Euler-Lagrange quadratic mapping fulfilling (2.18).

Proof . Consider the set
∆ := {f : V n −→ W : f has the property (H1)}.

Let us define a mapping dF : V n × V n −→ [0,∞] via

dF (g, h) := inf
{
µ ∈ [0,∞) : T

(
g(v[n]

)
− h

(
v[n]
)
, µt) ≥ M

(
v[n], t

)
, ∀v[n] ∈ V n, t > 0

}
,

where, as usual, inf∅ = +∞, for which g, h ∈ ∆, where M
(
v[n], t

)
is defined in (2.3). It can be easily verified that dF is

a generalized metric on ∆. Moreover, (∆, dF ) is a complete generalized metric space. Suppose that a sequence {gm}m
is dF -Cauchy. Fix v[n] ∈ V n . A similar way to that the proof of [27, Lemma 2.1], one can show that

{
gm
(
v[n]
)}

m
is

Cauchy in W . Since (W,T ) be a fuzzy Banach space, there exists a mapping g : V n −→ W satisfying the property
(H1) such that

{
gm
(
v[n]
)}

m
converges to g

(
v[n]
)
. Now, by repeating the second part of the proof of [27, Lemma 2.1]

we can show that {gm}m is dF -convergent (see also the proof of [22, Lemma 2.6]). Define the mapping T : ∆ −→ ∆
through

T f
(
v[n]
)
:=

1

λ2n
f
(
λv[n]

)
,

(
v[n] ∈ V n

)
.

Take g, h ∈ ∆, v[n] ∈ V n and µ ∈ [0,∞] with dF (g, h) ≤ µ. Then, T
(
g
(
v[n]
)
− h

(
v[n]
)
, µt
)
≥ M

(
v[n], t

)
, and so

by the property (2.9), we have

T

(
T g(v[n])− T h(v[n]),

|α|
λ2n

µt

)
= T

(
1

λ2n
g
(
λv[n]

)
− 1

λ2n
h
(
λv[n]

)
,
|α|
2n

µt

)
= T

(
g
(
λv[n]

)
− h

(
λv[n]

)
, |α|µt

)
≥ M

(
λv[n], |α|t

)
= M

(
v[n], t

)
,
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for all v[n] ∈ V n and t > 0. Therefore, dF (T g, T h) ≤ |α|
λ2nµ. This shows that dF (T g, T h) ≤ α

λ2n dF (g, h), and indeed,

we showed that T is a strictly contractive operator with the Lipschitz constant |α|
λ2n . Similar to the proof of Theorem

2.3, we get

T

(
f
(
λv[n]

)
λ2n

− f
(
v[n]
)
, t

)
≥ M

(
v[n], t

)
,

for all v[n] ∈ V n and t > 0, where M
(
v[n], t

)
is defined in (2.3). Therefore, dF (T f, f) ≤ 1. We can now apply

Theorem 2.7 for the space (∆, dF ), the operator T , to deduce that the sequence (T mf)m∈N is convergent in (∆, dF )
and its pointwise limit, namely, Q is a fixed point of T , and additionally, Q(v[n]) = 1

λ2nQ
(
λv[n]

)
. Moreover, we have

dF (T mf,Q) → 0, which implies that

Q(v[n]) = T − lim
l→∞

f
(
λmv[n]

)
λ2mn

,

for all v[n] ∈ V n. Furthermore, dF (f,Q) ≤ 1
1−LdF (f, T f), which necessitates that

dF (f,Q) ≤ 1

1− |α|
λ2n

=
λ2n

λ2n − |α|
.

If {δl} is a decreasing sequence converging to λ2n

λ2n−|α| , then T
(
f
(
v[n]
)
−Q

(
v[n]
)
, δlt
)
≥ M

(
v[n], t

)
, for all v[n] ∈ V n,

t > 0 and l ∈ N. It concludes that

T
(
f
(
v[n]
)
−Q

(
v[n]
)
, t
)
≥ M

(
v[n],

t

δl

)
,

for all v[n] ∈ V n, t > 0 and l ∈ N. Since M is left continuous by (T6), we deduce that

T
(
f
(
v[n]
)
−Q

(
v[n]
)
, t
)
≥ M

(
v[n],

λ2n

λ2n − |α|

)
,

for all v[n] ∈ V n, t > 0 and l ∈ N. Here, it can be proven like in Theorem 2.3 that Q is a solution of (1.3). Besides,
the uniqueness of Q follows from the fact that Q is the unique fixed point of T with the property that there exists
ζ ∈ (0,∞) such that

T
(
f
(
v[n]
)
−Q

(
v[n]
)
, ζt
)
≥ M

(
v[n], t

)
,

for all v[n] ∈ V n and t > 0. This completes the proof. □

It follows from the proof of Theorem 2.8 that for proving the uniqueness of the solution, we do not need the
property (H2) for a mapping f : V n −→ W and this property is used only for being multi-Euler-Lagrange quadratic
mapping, and so the property (H2) is a redundant condition in Theorem 2.8.

The upcoming result is analogous to Theorem 2.8 in which we find a different approximation for a approximately
multi-Euler-Lagrange quadratic equations in fuzzy Banach spaces. Since the proof is similar, it is omitted.

Theorem 2.9. Let V be a real linear space, (W,T ) be a fuzzy Banach space and (Y, T ′) be a fuzzy normed space.
Suppose that f : V n −→ W is a mapping and ϕ : V n −→ Y is a function satisfying (2.1). If the hypothesis (H3) holds
for ϕ, then there exists a solution Q : V n −→ W of (1.3) such that

T
(
f
(
v[n]
)
−Q

(
v[n]
)
, t
)
≥ N

(
v[n],

|α| − λ2n

|α|
t

)
, (2.19)

for all v[n] ∈ V n and t > 0, where N(v[n], t) is defined in (2.13). Furthermore, if Q has the property (H2), then it is a
unique multi-Euler-Lagrange quadratic mapping satisfying (2.19).

In view of results in Theorem 2.3 and Theorem 2.8, we observe that M
(
v, λ2n−|α|

λ2n t
)
> M

(
v, λ2n−|α|

2λ2n t
)
and so we

find that the fixed point method give us more exact approximation in comparison to direct method. Such a comparison
can also be seen for Theorem 2.4 and Theorem 2.9.
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