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Abstract

In this paper we deal with the multiplicity of solutions for the following Kirchhoff type problem with Navier boundary
conditions

K
(∫

Ω

1

l(x)
|∆φ|l(x)dx

)
∆(|∆φ|l(x)−2∆φ) = θ|φ|r(x)−2φ+ η|φ|t(x)−2φ in Ω,

φ = ∆φ = 0 on ∂Ω.

where Ω is a bounded domain in RN with smooth boundary ∂Ω, and K is a continuous Kirchhoff type function,
l(x), r(x) and t(x) are continuous functions on Ω, and θ and η are parameters. We show the existence of infinitely
many solutions for this problem by using the variational methods.
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1 Introduction

Recently, the exploration of variational problems and differential equations with l(x)-growth conditions has trans-
formed the subject from nonlinear electrorheological fluids to an interesting area of study. We refer the eager readers
about this subject to Ruzicka [25], Zhikov [32] and the reference therein and also see [14, 16, 17, 19].

Fourth order equations are present in various contexts. Applied mathematics and physics have different problems
that theses can address, for instance Micro Electro-Mechanical systems, surface diffusion on solids, and flow in Hele-
Shaw cells (see [20]). Moreover, these equations can specify the static outcome of a beam’s change or the movement
of rigid body parts.

The authors in [13] consider the following p(x)-biharmonic problem

∆(|∆u|p(x)−2∆u) = λ|u|p(x)−2u+ f(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

with bounded domains Ω, and λ ≤ 0. Under some restrictions on the Caratheodory function f : Ω × R → R, they
acquired the presence and variety of solutions. In [1] G.A. Afrouzi et al. have considered problem{

M
(∫

Ω
1

p(x) |∆u|
p(x) dx

)
∆(|∆u|p(x)−2∆u) = f(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
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in two cases when the nonlinearity f has special forms. They have demonstrated the existence of multiple solutions
to the problem by utilizing variational methods. Moreover, the interested reader can see [3, 26, 28], in which, by
variational approaches some existence results are given.

The works mentioned above have inspired us to explore this topic in the current paper: the existence and multiplicity
of weak solutions of the following fourth order elliptic equation{

K
( ∫

Ω
1

l(x) |∆φ|
l(x)dx

)
∆(|∆φ|l(x)−2∆φ) = θ|φ|r(x)−2φ+ η|u|t(x)−2φ in Ω,

φ = ∆φ = 0 on ∂Ω.
(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω,and K : R+ → R+, l(x), r(x) and t(x) are continuous
functions on Ω with infx∈Ω l(x) > 1, infx∈Ω r(x) > 1, infx∈Ω t(x) > 1, and θ and η are parameters. Throughout the
paper, our assumption is that θ2 + η2 ̸= 0.

The nonlocality of (1.1) is attributed to the existence of K, which means that the equation in (1.1) is not local,
indicating that it lacks pointwise identities. The problem is a source of fascination for some mathematic problems.

It’s miles well worth bringing up that Kirchhoff in 1883 offered a desk bound version of differential equation, the
so-called Kirchhoff equation:

ρ
∂2φ

∂t2
−

(
ρ0
h

+
E

2L

∫ L

0

∣∣∣∂φ
∂x

∣∣∣2 dx) ∂2φ

∂x2
= 0, (1.2)

which generalizes the classical D’Alembert’s wave equation, by taking into account the impact of the string length

change during vibration. (1.2) contains the nonlocal coefficient ρ0

h + E
2L

∫ L

0

∣∣∣∂φ∂x ∣∣∣2 dx which depends on the average

1
2L

∫ L

0

∣∣∣∂φ∂x ∣∣∣2 dx, thus, this equation has been discarded as a pointwise identity. After the work of Lions [23], a great

deal hobby has been focused on combining this model with many styles of issues due to its nonlocal nature, see e.g.
[5]-[12].

2 Notations and preliminaries

We need to obtain some results for l(x)-Laplacian starting from the spaces Ll(x)(Ω) and W k,l(x)(Ω).
For a bounded domain Ω, let

C+(Ω) = {s(x); s(x) ∈ C(Ω), s(x) > 1, ∀x ∈ Ω}.

For any s ∈ C+(Ω), set

s+ = max{s(x); x ∈ Ω}, s− = min{s(x); x ∈ Ω}.

For any given l ∈ C+(Ω), we define the variable exponent Lebesgue space

Ll(x)(Ω) =
{
φ; φ is a real-valued function that can be measured

∫
Ω

|φ(x)|l(x)dx <∞
}
,

endorsed with the so-called Luxemburg norm

|φ|l(x) = inf
{
ζ > 0;

∫
Ω

|φ(x)
ζ

|l(x)dx ≤ 1
}
,

then, (Ll(x)(Ω), | · |p(x)) is a Banach space. By [18], we see that the space (Ll(x)(Ω), | · |l(x)) is separable, uniformly

convex, reflexive and its conjugate space is Ln(x)(Ω) where n(x) is the conjugate function of l(x), i.e.,

1

l(x)
+

1

n(x)
= 1,
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for all x ∈ Ω. Also, the Hölder inequality hold: for φ ∈ Ll(x)(Ω) and ψ ∈ Ln(x)(Ω), we have∣∣∣ ∫
Ω

φψdx
∣∣∣ ≤ ( 1

l−
+

1

n−

)
|φ|l(x)|ψ|n(x) ≤ 2|φ|l(x)|ψ|n(x).

Define the variable exponent Sobolev space

W k,l(x)(Ω) = {φ ∈ Ll(x)(Ω) : Dαφ ∈ Ll(x)(Ω), |α| ≤ k},

whereDαφ = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

φ, with α = (α1, . . . , αN ) is a multi-index and |α| =
∑N

i=1 αi. Then, the spaceW
k,l(x)(Ω)

equipped with the norm

∥φ∥k,l(x) =
∑
|α|≤k

|Dαφ|l(x),

is a separable and reflexive Banach space. To learn more about this space, the reader can see [15, 18, 24, 29]. Now,
set

l∗k(x) =

{
Nl(x)

N−kl(x) if kl(x) < N,

+∞ if kp(x) ≥ N

for any x ∈ Ω, k ≥ 1.

Proposition 2.1 ([18]). If l, σ ∈ C+(Ω) with σ(x) ≤ l∗k(x) for any x ∈ Ω, then there is a continuous embedding

W k,l(x)(Ω) ↪→ Lσ(x)(Ω).

Moreover, by replacing ≤ with <, it turns to a compact embedding.

Now, let W
k,l(x)
0 (Ω), the closure of C∞

0 (Ω) in W k,l(x)(Ω). As we know, the generalized Sobolev

X =W 2,l(x)(Ω) ∩W k,l(x)
0 (Ω)

encompasses the weak solutions to problem (1.1), which is equipped with the following norm

∥φ∥ = inf
{
ζ > 0 :

∫
Ω

∣∣∣∆φ(x)
ζ

∣∣∣l(x) dx ≤ 1
}
.

Remark 2.2. According to [30], the norms ∥ · ∥2,l(x) and |∆ · |l(x) are equivalent. Therefore, we have these equivalent
norms ∥ · ∥2,l(x), ∥ · ∥ and |∆ · |l(x).

Proposition 2.3 ([13]). If we denote ρ(φ) =
∫
Ω
|∆φ|l(x) dx, then for φ ∈ X, we have

(1) ∥φ∥ < 1 (respectively= 1;> 1) ⇐⇒ ρ(u) < 1 (respectively= 1;> 1);

(2) if ∥φ∥ > 1, then ∥φ∥l− ≤ ρ(φ) ≤ ∥φ∥l+ ;
(3) if ∥φ∥ < 1, then ∥φ∥l+ ≤ ρ(φ) ≤ ∥φ∥l− ;
(4) ∥φ∥ → 0 (respectively → ∞) ⇐⇒ ρ(φ) → 0(respectively → ∞).

Note that the energy functional related to problem (1.1) is defined by the following

Iθ,η(φ) = K̂
(∫

Ω

1

l(x)
|∆φ|l(x) dx

)
− θ

∫
Ω

1

r(x)
|φ|r(x) dx− η

∫
Ω

1

t(x)
|φ|t(x) dx.

with K̂(t) =
∫ t

0
K(τ)dτ . Now, consider the well defined, even, and C1 functional J(φ) =

∫
Ω

1
l(x) |∆φ|

l(x) dx. Then, the

operator L = J ′ : X → X∗ defined by

⟨L(φ), ψ⟩ =
∫
Ω

|∆φ|l(x)−2∆φ∆ψ dx

for any φ,ψ ∈ X, is continuous, bounded and strictly monotone, homeomorphism and also a mapping of (S+) type,
namely: φn ⇀ u and lim supn→+∞ L(φn)(φn − φ) ≤ 0, implies φn → φ.

Throughout this paper, the letter ci indicates the positive constant and also, we impose the following conditions
on K:

(M1) There exist m2 ≥ m1 > 0 and β ≥ α > 1 so that for all τ ∈ R+, m1τ
α−1 ≤ K(τ) ≤ m2τ

β−1.

(M2) For any τ ∈ R+, K̂(τ) ≥ K(τ)t.
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3 Main results and proofs

First, we state the main result of this paper and then, we prove the multiplicity results.

Theorem 3.1. Suppose that r(x), t(x) ∈ C+(Ω), with (l+)α < r− ≤ r(x) < l∗2(x), t
+ < αl− and βl+ < r− for all

x ∈ Ω. Then we have

(i) If θ > 0, η ∈ R, then problem (1.1) has infinitely many solutions (±φk) with Iθ,η(±φk) → +∞ as k → +∞.

(ii) If η > 0, θ ∈ R, then problem (1.1) has infinitely many solutions (±ψk) with Iθ,η(±ψk) < 0 and Iθ,η(±ψk) → 0
as k → +∞.

We will use the Fountain and the Dual Fountain theorem (see Willem [27] and El Amrouss et al. [13]) to prove
Theorem 3.1. Since X is a reflexive and separable Banach space, then there exist {ϱj} ⊂ X and {ϱ∗j} ⊂ X∗ (see Zhao
[31]) such that

X = span {ϱj : j = 1, 2, . . . }, X∗ = span {ϱ∗j : j = 1, 2, . . . },

and

⟨ϱi, ϱ∗j ⟩ =
{

1 if i = j,
0 if i ̸= j,

Now, we define the following spaces which used in the Fountain theorem and the Dual fountain theorem.

Xj = span {ϱj}, Yk =

k⊕
j=1

Xj , Zk =

∞⊕
j=k

Xj . (3.1)

Proof of Theorem 3.1

We apply the Fountain theorem to prove conclusion (i) in Theorem 3.1.

(i) First, we check the (PS) condition for the functional Iθ,η. Suppose that (φn) ⊂ X is (PS) sequence, i.e.,

|Iθ,η(φn)| ≤ c9, I ′θ,η(φn) → 0 as n→ ∞.

It is evident that I ′θ,η is of type (S+). Thus, we just need to verify that (φn) is bounded. For ∥φn∥ > 1 with n
large enough, we can write

c9 + 1 + ∥φn∥ ≥Iθ,η(φn)−
1

r−
⟨I ′θ,η(φn), φn⟩

=
[
K̂
(∫

Ω

1

l(x)
|∆φn|l(x) dx

)
− θ

∫
Ω

1

r(x)
|φn|r(x) dx− η

∫
Ω

1

t(x)
|φn|t(x) dx

]
− 1

r−

[
K
(∫

Ω

1

l(x)
|∆φn|l(x)dx

)∫
Ω

1

l(x)
|∆φn|l(x) dx− θ

∫
Ω

|φn|r(x) dx− η

∫
Ω

|φn|t(x) dx
]

≥
( 1

l+
− 1

r−

)
K
(∫

Ω

1

l(x)
|∆φn|l(x) dx

)∫
Ω

|∆φn|l(x) dx− θ

∫
Ω

|φn|r(x) dx− η

∫
Ω

|φn|t(x) dx
]

≥
( 1

l+
− 1

r−

) m1

(l+)α−1

(∫
Ω

|∆φn|l(x) dx
)α

− θ

∫
Ω

|φn|r(x) dx− η

∫
Ω

|φn|t(x) dx

≥
( 1

l+
− 1

r−

) m1

(l+)α−1
∥φn∥αl

−
− c10∥φn∥t

+

.

(3.2)

Considering r− > l+ and αl− > t+, we obtain {φn} is bounded in X. Next, we will establish that when k is
sufficiently large, we can opt ρk > rk > 0 so that the two conditions in the Fountain theorem ((A2) and (A3) as in
Lemma 3.4 in [2]) are true.
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(A2) For φ ∈ Zk with ∥φ∥ = rk > 1 (rk will be specified below):

Iθ,η(φ) = K̂
(∫

Ω

1

l(x)
|∆φ|l(x) dx

)
− θ

∫
Ω

1

r(x)
|φ|r(x) dx− η

∫
Ω

1

t(x)
|φ|t(x) dx

≥ m1

α(l+)α

(∫
Ω

|∆φ|l(x) dx
)α

− θ

r−

∫
Ω

|φ|r(x) dx− c11|η|
t−

∥φ∥t
+

≥ m1

α(l+)α
∥φ∥αl

−
− θ

r−

∫
Ω

|φ|r(x) dx− c11|η|
t−

∥φ∥t
+

Since αl− > t+, there exists r0 > 0 large enough such that c11|η|
t− ∥φ∥t+ ≤ m1

2(l+)α ∥φ∥
αl− as r = ∥φ∥ ≥ r0. If

|φ|r(x) ≤ 1 then
∫
Ω
|φ|r(x)dx ≤ |φ|r−r(x) ≤ 1. However, if |φ|r(x) > 1 then

∫
Ω
|φ|r(x) dx ≤ |φ|r+r(x) ≤ (βk∥φ∥)r

+

. So, we
conclude that

Iθ,η(φ) ≥

{
m1

2(l+)α ∥φ∥
αl− − θc12

r− if |φ|r(x) ≤ 1,
m1

2(l+)α ∥φ∥
αl− − θ

r− (βk∥φ∥)r
+

if |φ|r(x) > 1.

≥ m1

2(l+)α
∥φ∥αl

−
− θ

r−
(βk∥φ∥)r

+

− c13,

choose rk =
(

2θ
m1r−

r+βr+

k

) 1

αp−−r+

, we have

Iθ,η(φ) =
m1

2

( 1

(l+)α
− 1

r+

)
rαp

−

k − c13 → ∞ as k → ∞,

since (l+)α < r− ≤ r+ and βk → 0 (Lemma 3.3 in [2]).

(A3) If φ ∈ Yk with ∥φ∥ = ρk > rk > 1, we have

Iθ,η(φ) = K̂
(∫

Ω

1

l(x)
|∆φ|l(x) dx

)
− θ

∫
Ω

1

r(x)
|φ|r(x) dx− η

∫
Ω

1

t(x)
|φ|t(x) dx

≤ m2

β

(∫
Ω

1

l(x)
|∆φ|l(x) dx

)β
− θ

r+

∫
Ω

|φ|r(x) dx+
|η|
t−

∫
Ω

|φ|t(x) dx

≤ m2

β(l−)β
∥φ∥βl

+

− θ

r+

∫
Ω

|φ|r(x) dx+
|η|
t−

∫
Ω

|φ|t(x) dx.

Using the fact that all norms are equivalent in in Yk, due to dimYk <∞, it follows

Iθ,η(φ) ≤
m2

β(l−)β
∥φ∥βl

+

− θ

r+
∥φ∥r

−
+

|η|
t−

∥φ∥t
+

.

We get that Iθ,η(φ) → −∞ as ∥φ∥ → +∞, since r− > βl+ and t+ < αl−. Considering (A2) and (A3), the option
to choose ρk > rk > 0 is available for us. Also, Iθ,η is even and the first assertion in Theorem 3.1 is completed.

(ii) The Dual Fountain theorem is aaplied to establish the claim (ii). Now we show, when k is large, we can choose
ρk > rk > 0 so that if k is large enough, the three conditions in the Dual Fountain theorem ((B1), (B2) and (B3) as
in Lemma 3.5 in [2]) are satisfied.

(B1) Let φ ∈ Zk we can write

Iθ,η(φ) = K̂
(∫

Ω

1

l(x)
|∆φ|l(x) dx

)
− θ

∫
Ω

1

r(x)
|φ|r(x) dx− η

∫
Ω

1

t(x)
|φ|t(x) dx

≥ m1

α(l+)α

(∫
Ω

|∆φ|l(x) dx
)α

− |θ|
r−

∫
Ω

|φ|r(x) dx− η

t−

∫
Ω

|φ|t(x) dx

≥ m1

α(l+)α
∥φ∥αl

+

− c14|θ|
r−

∥φ∥r
−
− η

t−

∫
Ω

|φ|t(x) dx
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Considering r− > αl+, there exists ρ0 > 0 small enough such that c14|θ|
r− ∥φ∥r− ≤ m1

2α(l+)α ∥φ∥
αl+ as 0 < ρ = ∥φ∥ ≤

ρ0. As discussed above, we get

Iθ,η(φ) ≥

{
m1

α(l+)α ∥φ∥
αl+ − ηc15

t− if |φ|t(x) ≤ 1,
m1

α(l+)α ∥φ∥
l+ − η

t− (θk∥φ∥)t
+

if |φ|t(x) > 1.
(3.3)

Choose ρk =
(

2η
m1t−

(l+)αθt
+

k

) 1

αl+−t+

, then

Iθ,η(φ) =
m1

2(l+)α
(ρk)

αl+ − m1

2(l+)α
(ρk)

αl+ = 0.

Due to αl− > t+, θk → 0 (Lemma 3.3 in [2]), we have ρk → 0 as k → ∞.

(B2) If φ ∈ Yk with ∥φ∥ ≤ 1, we deduce

Iθ,η(φ) = K̂
(∫

Ω

1

l(x)
|∆φ|l(x) dx

)
− θ

∫
Ω

1

r(x)
|φ|r(x) dx− η

∫
Ω

1

t(x)
|φ|t(x) dx

≤ m2

β(l−)β

( 1

l(x)
|∆φ|l(x) dx

)β
+

|θ|
r−

∫
Ω

|φ|r(x)dx− η

t+

∫
Ω

|φ|t(x) dx

≤ m2

β(l−)β
∥φ∥βl

−
+

|θ|
r−

∫
Ω

|φ|r(x) dx− η

t+

∫
Ω

|φ|t(x) dx.

By dimYk = k, relations t+ < αl− < βl− < β(l−)β and βl+ < r− then, there exists a rk ∈ (0, ρk) such that
Iθ,η(φ) < 0 when ∥φ∥ = rk. So we conclude

max
φ∈Yk, ∥φ∥=rk

Iθ,η(φ) < 0,

i.e., (B2) is true.

(B3) Due to Yk ∩ Zk ̸= ∅ and rk < ρk, we get

dk = inf
φ∈Zk,∥φ∥≤ρk

Iθ,η(φ) ≤ bk = max
φ∈Yk,∥φ∥=rk

Iθ,η(φ) < 0.

Using (3.3) , for φ ∈ Zk, ∥φ∥ ≤ ρk small enough we arrive at

Iθ,η(φ) ≥
m1

2(l+)α
∥φ∥αl

+

− η

t−
θt

+

k ∥φ∥t
+

≥ − η

t−
θt

+

k ∥φ∥t
+

,

Due to θk → 0 and ρk → 0 as k → ∞, (B3) is true. Finally, we establish the (PS)∗c condition (Definition 3.6 in
[2]). Let {φnj

} ⊂ X with

nj → +∞, φnj
∈ Ynj

, Iθ,η(φnj
) → c16 and (Iθ,η|Ynj

)′(φnj
) → 0.

If θ ≥ 0, similar to (3.2), we have the boundedness of ∥φnj
∥. Suppose ∥φnj

∥ ≥ 1. When θ < 0, if n is large enough,
we can conclude that

c16 + 1 + ∥φnj
∥ ≥Iθ,η(φnj

)− 1

r+
⟨I ′θ,η(φnj

), φnj
⟩

=
[
K̂
(∫

Ω

1

l(x)
|∆φnj |l(x) dx

)
− θ

∫
Ω

1

r(x)
|φnj |r(x) dx− η

∫
Ω

1

t(x)
|φnj |t(x) dx

]
− 1

r+

[
K
(∫

Ω

1

l(x)
|∆φnj |l(x)dx

)∫
Ω

1

l(x)
|∆φnj |l(x) dx− θ

∫
Ω

|φnj |r(x) dx− η

∫
Ω

|φnj |t(x) dx
]

≥
( 1

l+
− 1

r+

) m1

(l+)α−1

(∫
Ω

|∆φnj |l(x) dx
)α

− θ

∫
Ω

|φnj |r(x) dx− η

∫
Ω

|φnj |t(x) dx
]

≥
( 1

l+
− 1

r+

) m1

(l+)α−1
∥φnj

∥αl
−
− c17∥φnj

∥t
+

.

Due to αl− > t+ and l+ < (l+)α < r−, we deduce {φnj
} is bounded in X.

Similar to the proof in [2], we can obtain that Iθ,η satisfies the (PS)∗c condition.
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