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Abstract

In this paper we deal with the multiplicity of solutions for the following Kirchhoff type problem with Navier boundary
conditions
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where € is a bounded domain in RV with smooth boundary 99, and K is a continuous Kirchhoff type function,

I(z),r(x) and t(z) are continuous functions on €, and @ and 7 are parameters. We show the existence of infinitely
many solutions for this problem by using the variational methods.
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1 Introduction

Recently, the exploration of variational problems and differential equations with 1(x)-growth conditions has trans-
formed the subject from nonlinear electrorheological fluids to an interesting area of study. We refer the eager readers
about this subject to Ruzicka [25], Zhikov [32] and the reference therein and also see [I4], [16], 17, [19].

Fourth order equations are present in various contexts. Applied mathematics and physics have different problems
that theses can address, for instance Micro Electro-Mechanical systems, surface diffusion on solids, and flow in Hele-
Shaw cells (see [20]). Moreover, these equations can specify the static outcome of a beam’s change or the movement
of rigid body parts.

The authors in [I3] consider the following p(x)-biharmonic problem
A(|AuP@ 2 Au) = NuP@ =24 + f(z,u) in Q,
u=Au=0 on 99,
with bounded domains 2, and A < 0. Under some restrictions on the Caratheodory function f : Q2 x R — R, they
acquired the presence and variety of solutions. In [I] G.A. Afrouzi et al. have considered problem
M (fﬂ 1 Aufp@ dx) A(AUP®2Au) = f(z,u) in O,
u=Au=0 on 012,
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in two cases when the nonlinearity f has special forms. They have demonstrated the existence of multiple solutions
to the problem by utilizing variational methods. Moreover, the interested reader can see [3, 26, 28], in which, by
variational approaches some existence results are given.

The works mentioned above have inspired us to explore this topic in the current paper: the existence and multiplicity
of weak solutions of the following fourth order elliptic equation

(Jo s 180l de) A AG 2 Ag) = 8o =2 + lul )2 in 0, W
p=Ap=0 onJ.

where 2 is a bounded domain in RY with smooth boundary 8Q,and K : Rt — R*, I(z), r(z) and () are continuous
functions on Q with inf_ g i(x) > 1,inf__g7(x) > 1, inf__gt(z) > 1, and € and 7 are parameters. Throughout the
paper, our assumption is that 62 + 7% # 0.

The nonlocality of (|1.1)) is attributed to the existence of I, which means that the equation in (|1.1) is not local,
indicating that it lacks pointwise identities. The problem is a source of fascination for some mathematic problems.

It’s miles well worth bringing up that Kirchhoff in 1883 offered a desk bound version of differential equation, the
so-called Kirchhoff equation:

0% oo E [Top2 0%
(7”04 = Tl dr | =X =0 1.2
P o <h+2L/0 ‘89& “) o T (12)
which generalizes the classical D’Alembert’s wave equation, by taking into account the impact of the string length

2
221" dx which depends on the average

change during vibration. l) contains the nonlocal coefficient 52 + % fOL e

1 rLlop
2L JO |0z
deal hobby has been focused on combining this model with many styles of issues due to its nonlocal nature, see e.g.
[5]-012].

2
’ dz, thus, this equation has been discarded as a pointwise identity. After the work of Lions [23], a great

2 Notations and preliminaries

We need to obtain some results for /(z)-Laplacian starting from the spaces L!®)(Q) and Wk!®)(Q).
For a bounded domain €2, let

C,(Q) = {s(x); s(z) € C(Q), s(x) > 1, Vx € Q}.
For any s € C(9), set
sT =max{s(x); x € Q}, s~ =min{s(z); v € Q}.
For any given [ € Cy (), we define the variable exponent Lebesgue space
L@ Q) = {cp; ¢ is a real-valued function that can be measured/Q lo(z)|" @ da < oo},

endorsed with the so-called Luzemburg norm
oy =int {¢ >0 [ (B0 <1},
Q

then, (L'®)(Q), | |y(x)) is a Banach space. By [I8], we see that the space (L'®)(Q),] - [y,)) is separable, uniformly
convex, reflexive and its conjugate space is L™*)(Q) where n(z) is the conjugate function of I(z), i.e.,
1

1
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for all z € Q. Also, the Holder inequality hold: for ¢ € L'®)(Q) and ¢ € L™*) (), we have
| [ ida] < (= + =) lebo ey < 2eliolloce

Define the variable exponent Sobolev space
WHD(Q) = {p € L'D(Q) : D € L'D(Q), |a] <k},

where D%p = mw, with @ = (a1, ..., ay) is a multi-index and |a| = Zil ;. Then, the space W@ (Q)
1 2 N

equipped with the norm

lellri@ = D 1Dl
la| <k

is a separable and reflexive Banach space. To learn more about this space, the reader can see [I5] [18] 24] 29]. Now,
set

for any z € Q, k > 1.
Proposition 2.1 ([18]). If ;0 € C;(Q) with o(z) < [}(z) for any x € Q, then there is a continuous embedding
WhIE Q) — L7 (Q).
Moreover, by replacing < with <, it turns to a compact embedding.
Now, let VV(;C’I(I)(Q)7 the closure of C§°(Q) in W*H ) (Q). As we know, the generalized Sobolev
X = W@ (@Q) nwho @)
encompasses the weak solutions to problem , which is equipped with the following norm

el =int {¢>0: [ |22 ar <1},

Remark 2.2. According to [30], the norms || - [|2,;(;) and |A - [;;) are equivalent. Therefore, we have these equivalent
norms || - [2,u(@), | - | and |A - |yz).

Proposition 2.3 ([13]). If we denote p(¢) = [, [Ap['®) dz, then for ¢ € X, we have
(1) |lell <1 (respectively=1;> 1) <= p(u) < 1 (respectively= 1; > 1);
(2) if [l > 1, then [lo]!” < p(e) < [l
(3) if [|pll < 1, then [lo]!" < p(p) < Il ;
(4) |l¢ll = 0 (respectively — 00) <= p(¢) — O(respectively — o).

Note that the energy functional related to problem (|1.1)) is defined by the following

~ 1
- I(x) _ @) dp — t(z)
o) = K( [ osldel @) =0 [ —siol @ e —n [ tmm da.

with IC fo 7)dr. Now, consider the well defined, even, and C' functional J(p) = [, 74 W™ |Ap|"*) dz. Then, the
operator L J X — X* defined by

(L), ) = / A2 A A di

for any ¢,1 € X, is continuous, bounded and strictly monotone, homeomorphism and also a mapping of (S4) type,
namely: ¢, — u and limsup,,_, | . L(¢n)(@n — ¢) < 0, implies ¢, — .

Throughout this paper, the letter ¢; indicates the positive constant and also, we impose the following conditions
on K:
(My) There exist my > m; >0 and 8 > a > 1 so that for all 7 € RT, my7¢~! < K(7) < marP~ L
(My) For any 7 € R, K(7) > K(7)t.
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3 Main results and proofs

First, we state the main result of this paper and then, we prove the multiplicity results.

Theorem 3.1. Suppose that r(z),t(xz) € C4(Q), with (IT)* < r~ < r(z) < l5(x), tT < al” and BIT < r~ for all
x € Q. Then we have
(i) If § > 0, n € R, then problem (1.1) has infinitely many solutions (+¢y) with Iy , () — +00 as k — +oo.

(ii) If n > 0, 6 € R, then problem (|1.1)) has infinitely many solutions () with Iy ,(£¢x) < 0 and Ig,(£1r) — 0
as k — +oo.

We will use the Fountain and the Dual Fountain theorem (see Willem [27] and El Amrouss et al. [13]) to prove
Theorem Since X is a reflexive and separable Banach space, then there exist {g;} C X and {¢}} C X* (see Zhao
[31]) such that

X =span{p; :j=1,2,...}, X*= span{g;f cj=1,2,...},

and
w1 i Q=
<Qia9j>_{ 0 if i+,

Now, we define the following spaces which used in the Fountain theorem and the Dual fountain theorem.

k S
X;= span {0;}, Vi=EPX;, Z=PX, (3.1)

Proof of Theorem [B.1]

We apply the Fountain theorem to prove conclusion (i) in Theorem |3 .
(i) First, we check the (PS) condition for the functional Iy . Suppose that (¢,) C X is (PS) sequence, i.e.,

[o.n(on)| < co,  Tg,(¢n) =0 as n— oo

It is evident that I, is of type (S4). Thus, we just need to verify that (¢,) is bounded. For [[¢,[| > 1 with n
large enough, we can write

co + 1+ [lonll 2Lom(pn) — <1977(‘Pn) ©n)
1 xr 1 (T T
- [k (/Qz(m)A@ « >dx)e/(x)|¢n|<>dz / Zaglenl!® o]
1 1
— = [k jyaenl @) Agal!® dz =0 | fon" @ dw— 1 | [in]!®) de]
r Ql(x Q ( )
(3.2)
11 1 "
> (z) - r(z) . t(z)
>(75 = )% [ et de) [ 18,1 do /w o /|so| dm}

Vv

<

my
(i+)o- 1”‘:0”” ClO”‘PnHt

v

(7%
(i+ i—) HT;L; /|As0 =) dfﬂ —0/ lon|"® da — /@ 11@) gy
(F )

Considering r~ > T and i~ > t*, we obtain {¢,} is bounded in X. Next, we will establish that when & is
sufficiently large, we can opt py > rp > 0 so that the two conditions in the Fountain theorem ((A2) and (A3) as in
Lemma 3.4 in [2]) are true.
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(A2) For ¢ € Zj with ||| = rr > 1 (ry will be specified below):

1
I A ﬂc)d -0 T(w)d—/ 1) g
0. /z 1Al ff / || da 77Qt(x)|90| x
/ Al dr)” - / o s — L

a r(xz cll‘r’ﬂ +
i ||l——/|so|< _culaly oy

Since al™ > t*, there exists 79 > 0 large enough such that Clll’7|||g0||fr < Q(ﬁl)chpHal_ as r = ||sp|| > rg. If

(@l < 1 then [y lp"@da < [ol7g,) < 1. However, if |plyw) > 1 then fy, ol @ dz < @[, < (Bellgl)™. So, we
conclude that

_mi al™ Ocq .
1977(@) Z 2(l+ o ||<)0|| - - ? N if I@'r(z) S 17
’ saiellell®t == Grllel)™ i (ol > 1.
> el - *(5k||<P||) — a3,
2( )

1
P
choose 7}, = ( rt By ) 7" we have

mir—

my
2

1 1 -
(W_ )r?p —c13 — 00 as k — oo,

IHJ?(SD) = TJ’_

since (I7)* <7~ <r* and B — 0 (Lemma 3.3 in [2]).
(A3) If v € Yy, with ||¢|| = pr > 1, > 1, we have

IG,n(‘zD):E(/Q%|A<p|l ) da —9/ L r(@) dg — / e )W(z
%(/ﬂ e )‘Awll(m)d]" _ /| r(x |77|/| |t(m)d1‘

ma [—3l+ / r(x) dr + |77|/ t(x) dr.
sl o ]

Using the fact that all norms are equivalent in in Yy, due to dimYj < oo, it follows

- Inl, et
el ? Tl\wl\t :

m 0 -

We get that Iy, (¢) — —o0 as ||| — +oo, since r~ > BIT and ¢+ < al~. Considering (A2) and (A3), the option
to choose py, > i > 0 is available for us. Also, Iy, is even and the first assertion in Theorem is completed.

(i) The Dual Fountain theorem is aaplied to establish the claim (ii). Now we show, when k is large, we can choose

pr > 1k > 0 so that if k is large enough, the three conditions in the Dual Fountain theorem ((B1), (B2) and (B3) as
in Lemma 3.5 in [2]) are satisfied.

(B1) Let ¢ € Zj, we can write

lofo) = R( [ Zslaol @ dr) =0 [ —iolr@do— [ il da
(/ |A(p|l(w) d;L‘ * ‘9| /| |(.L) dr — /|80|t(1) do
Q

my alt 614\9| / t(x)
> d
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Considering 7~ > al™, there exists pp > 0 small enough such that clr4—,|m||<p||f < M’('l’ii)aﬂwﬂ"ﬁ as 0 < p=lp| <
po- As discussed above, we get

m alt _ neis :
o >z{ ol — e il < 1,

1O . (3.3)
ol = Z Ol el > 1.

1
Choose py, = ( (l*)o‘ﬂﬁ) “TT then

mait—

10,7](50) = 2(711)04 (pk:)alJr - 2(’,;11)0[ (pk)al+ =0.

Due to al™ > t*, 6, — 0 (Lemma 3.3 in [2]), we have p;, — 0 as k — oo.
(B2) If ¢ € Y}, with |¢|| < 1, we deduce

Ion(0) = K( Agﬁﬁwwﬂdw —0 ——4ﬂ“”dw— 4—4¢W”d$
o l(z) o t(x)
my i) g |9| / () / i) g
—|A
Ba)P <l(x)| ¢l o™ da — 2 [ el
ma Bl~ ‘el / r(z) / t(z)
< — der — — dzx.
< ﬁ(l_)/3||90|| +o- ; |l =y p|"* dx

By dimY} = k, relations tT < al~ < BI= < B(I7)? and It < r~ then, there exists a r, € (0, px) such that
Iy »(¢) < 0 when ||| = 7. So we conclude

Ieﬂ?(@) < 07

<

max
PEY, llell=rk

i.e., (B2) is true.
(B3) Due to Y N Zy # 0 and r, < pg, we get

d = inf Iy <b, = max Iy < 0.
ezl ,, Ton(®) ey, Ton(9)

Using (3.3) , for ¢ € Z, ||| < pk small enough we arrive at

alt +
Ton(p) = 2(l+) llefl —*9 el

.
>—*9 el

Due to 0 — 0 and py, — 0 as k — oo, (B3) is true. Finally, we establish the (PS)? condition (Definition 3.6 in
[2]). Let {¢n,} C X with

nj = +00, ¢n, €Yy, Ioy(on;) = cie and  (Ioyly,, ) (¢n,) = 0.

If 6 > 0, similar to (3.2]), we have the boundedness of |[¢y,||. Suppose ||¢n,| > 1. When 6 < 0, if n is large enough,
we can conclude that

1
c16 + 1+ [|on, | 2Lo.n(on,) — TTUéﬂI((‘O"J’)’ n;)

~ 1 1 1
— — A, 1@ d fq/———n“”df /47 o [H®) d
B, magtaontas) = [ soglont r=n [ gegton e
1 1 1
b A n,l(gﬂ)d /—A n‘l(z)d _9/ n‘T(x)d _ / nAt(””)d
([ @ )' ony () | o5 18n 1 do =0 | on, [ do =1 | i, ) do]
1 ]. x r(x x
> (5~ 5) g ([ 180 90 d)" =0 [ Jo, 1 do =1 [ o0, de]

1 1 mia al™ +
> (ZT_ - F)(Zﬂﬁ”%”” — c17ll¢n, ||

Due to al™ > t* and I < (IT)* <r~, we deduce {¢,,} is bounded in X.

Similar to the proof in [2], we can obtain that Iy, satisfies the (PS)} condition.
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