| تعداد نشریات | 21 |
| تعداد شمارهها | 675 |
| تعداد مقالات | 9,814 |
| تعداد مشاهده مقاله | 69,672,885 |
| تعداد دریافت فایل اصل مقاله | 49,025,841 |
تأثیر کنج محدب بر جابهجایی دیوارههای گودبرداری مهار شده: تحلیل سهبُعدی | ||
| مهندسی زیر ساخت های حمل و نقل | ||
| دوره 11، شماره 3 - شماره پیاپی 43، آبان 1404، صفحه 45-70 | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22075/jtie.2025.38506.1728 | ||
| نویسندگان | ||
| مهسا مختاری دهاقانی؛ مریم مختاری* ؛ محمد حاذقیان | ||
| دانشکده مهندسی عمران، دانشگاه یزد، یزد، ایران | ||
| تاریخ دریافت: 08 مرداد 1404، تاریخ بازنگری: 29 مهر 1404، تاریخ پذیرش: 29 مهر 1404 | ||
| چکیده | ||
| در پروژههای گودبرداری، وجود کنجهای محدب باعث میشود تحلیلهای دو بُعدی دقیق نباشند. این پژوهش، به بررسی تأثیر این کنجها بر تغییرشکل دیوارههای مهار شده، با استفاده از مدلسازی سهبُعدی میپردازد. در واقع، پژوهش حاضر با استفاده از نرمافزار FLAC3D به مدلسازی عددی دوبعدی و سهبعدی اثر کنجهای محدب بر تغییرشکلهای ناشی از گودبرداری برای دیوارههای پایدارسازی شده با روش میلمهار میپردازد. همچنین، تأثیر پارامترهایی نظیر نوع خاک، چسبندگی و ضریب اطمینان طراحی هدف (Target Design FOS) بر تغییرشکلها و ضریب اطمینان پایداری نهایی (Final Stability FOS) در کنج محدب مورد بررسی قرار گرفته است. نتایج مطالعه حاضر نشان میدهد که طول ناحیه تحت تأثیر کنج (ناحیهای از اطراف کنج محدب که در آن مقادیر نسبت جابهجایی سهبعدی در محل تاج گود بزرگتر از مقدار متناظر دوبعدی است) با کاهش مقاومت خاک کاهش پیدا میکند، بهطوری که در خاک ضعیف، متوسط و قوی به ترتیب H2، H5/1 و H25/1 است. به علت تأثیر هندسه سهبعدی کنج محدب، مقادیر ضریب اطمینان سهبعدی کمتر از مقادیر متناظر دوبعدی هستند. | ||
| کلیدواژهها | ||
| سازه نگهبان؛ میلمهار؛ کنج محدب؛ تحلیل عددی سهبعدی؛ نرم افزار FLAC3D | ||
| عنوان مقاله [English] | ||
| Effect of Convex Corners on Displacement of Restrained Excavation Walls: A Three-Dimensional Analysis | ||
| نویسندگان [English] | ||
| Mahsa Mokhtari Dehaghani,؛ Maryam Mokhtari؛ mohammad hazeghian, | ||
| Faculty of Civil Engineering, Yazd University, Yazd, Iran | ||
| چکیده [English] | ||
| In excavation projects, presence of convex corners makes 2D analyses inaccurate. This study investigates the effect of these corners on deformation of retaining walls using 3D modeling. The present study uses FLAC3D software for two-dimensional and three-dimensional numerical modeling to study the effect of convex corners on the deformations caused by excavation for walls stabilized by anchor rod method. It also examines the effect of various parameters such as soil type, soil adhesion, pit height and reliability coefficient on the deformation rate of convex corner. Results of the present study show that the length of corner-affected area (area around the convex corner where values of the three-dimensional displacement ratio at the location of crown pit is greater than the two-dimensional corresponding value) decreases with the decrease in soil resistance. So, in weak, medium and strong soil, it is 2H, 1.5H and 1.25H respectively. Due to the influence of three-dimensional geometry of convex corner, the three-dimensional reliability coefficient values are lower than corresponding two-dimensional values. | ||
| کلیدواژهها [English] | ||
| Retaining structure؛, Anchor rod؛ Convex corner؛ Three-Dimensional Numerical Analysis؛ FLAC3D Software | ||
| مراجع | ||
|
Ashrafi, H. 2021. “Excavation and guard structures”. Noavar. [In Persian]
BRIDGES, H. 1997. US Department of Transportation-Federal Highway Administration.
Imeni, H., Ghanbari, A., Rashidi, F. and Shahir, H. 2017. “Numerical study on the effect of convex corner on the behavior of deep excavation”. Electr. J. Geotech. Eng., 22(10): 3965–3984.
Das, B. M. 2010. “Principles of Geotechnical Engineering”. Cengage Learning.
Duzceer, R., Mothersille, D., Okumusoglu, B. and Gokalp, A. 2015. “Support of 25 m deep excavation using ground anchors in Russia”. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 168(4): 1-15.
Jeremic, B., Shibamoto, Y., Milicic, B., Nikolic, N., et al. 2000. “Hyperfractionated radiation therapy with or without concurrent low-dose daily cisplatin in locally advanced squamous cell carcinoma of the head and neck: A prospective randomized tria”. J. Clin. Oncol., 18(7).
Khodaverdian, S., Hazeghian, M. and Mokhtari, M. 2021. “Three-dimensional numerical study of the effect of convex corners on the displacements induced by excavation for soil-nailed walls”. Amirkabir J. Civ. Eng., 53(8): 3279–3298.
Khorami, H. 2017. “Analysis and comparison of deep excavation wall stabilization using nailing and anchoring methods”. Saroye Institute of Higher Education. [In Persian]
Mokhtari Dehaqani, M., Mokhtari, M., Hazaghian, M. and Etarabi, H. 2023. Three-dimensional numerical study of the effect of convex corners on excavation-induced displacements for a wall stabilized by the tie rod method”. 13th International Congress of Civil Engineering. [In Persian]
Nierlich, H. and Bruce, D. A. 1997. “A review of the post-tensioning institute’s revised recommendations for prestressed rock and soil anchors”. In Ground Anchorages and Anchored Structures: Proceedings of the International Conference Organized by the Institution of Civil Engineers.
Rezamand, A., Afrazi, M. and Shahidikhah, M. 2021. “Study of convex corners’ effect on the displacements induced by soil-nailed excavations”. J. Adv. Eng. Comput., 5(4): 277–290.
Rezaei, M. 2013. “Angular effect of expansion on analyses related to excavation guard structures”. Isfahan University of Technology. [In Persian]
Sabatini, P. J., Pass, D. G. and Bachus, R. C. 1999. “Geotechnical engineering circular no. 4: Ground anchors and anchored systems”. USDT, FHA.
Schweiger, H. F. 2002. "Results from numerical benchmark exercises in geotechnics". In 5th European Conference on Numerical Methods in Geotechnical Engineering, Vol. 1, pp. 305-314. Presses de l'ENPC/LCPC, Paris.
Shickel, B., Tighe, P. J., Bihorac, A. and Rashidi, P. 2018. “Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis”. IEEE J. Biomed. Health Inform., 22(5): 1589–1604. https://doi.org/10.1109/JBHI.2017.2767063
Sun, J., Wang, S., Shi, X., Wu, F. and Zeng, L. 2019. “Study on the design method for the deformation state control of pile-anchor structures in deep foundation pits”. Adv. Civ. Eng., 2019: 9641674. https://doi.org/10.1155/2019/9641674
Szepesházi Attila, M. A. M. B. 2016. “Three dimensional finite element analysis of deep excavations’ concave corners”. Period. Polytech. Civ. Eng., 60(3): 371–378. https://doi.org/10.3311/PPci.8608
Vafi Shahri, J., Pourrostam, T., Ghareh, S. and Mazrouei, A. 2023. “Design of a guard structure system for urban ditches with value engineering approach”. Struct. Eng. Constr., 10(9): 73-92. [In Persian]
Wu, C. H., Ou, C. Y. and Tung, N. 2010. “Corner effects in deep excavations-establishment of a forecast model for taipei basin T2 zone”. J. Mar. Sci. Tech., 18(1).
Zad, A. A. and Hejr, M. M. 2019. “Investigation of corner effects of deep excavations using the combination of soil nailing and ground-anchors methods”. In 13th Australia New Zealand Conference on Geomechanics, Perth, Australia.
Zhang, M., Wang, X., Yang, G. and Wang, Y. 2011. “Numerical investigation of the convex effect on the behavior of crossing excavations”. J. Zhejiang Univ.-Sci. A, 12(10): 747–757. https://doi.org/10.1631/jzu s.A1100028
Zhao, W., Chen, C., Li, S. and Pang, Y. 2015. “Researches on the influence on neighboring buildings by concave and convex location effect of excavations in soft soil area”. J. Intell. Robot. Syst., 79(3): 351–369. https://doi.org/10.1007/s10846-014-0109-7 | ||
|
آمار تعداد مشاهده مقاله: 111 |
||