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Abstract

Bessel functions arise in the solution of many physical and mathematical problems. This, with some other special
functions, has recently gained increased importance in the study of geometric function theory. The aim of this paper
is to establish some geometric properties such as coefficient inequalities, characterization properties and convolution
properties for the new subclasses Qn(λ, α, β, µ, t), Pn(λ, α, β, µ, t) and P ∗

n(λ, α, β, µ, t) of univalent functions defined
by Opoola Differential Operator in collaboration with generalized Bessel functions.
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1 Introduction and Preliminary

Let A be the class of functions f(z) defined by

f(z) = z +

∞∑
k=2

akz
k (1.1)

which are analytic in the unit disk U = {z ∈ C : |z| < 1}. Denote by S the subclass of A consisting of functions which
are analytic, univalent in the unit disk U = {z ∈ C : |z| < 1} and normalized by f(0) = 0 = f ′(0)− 1.

A function f(z) ∈ S of the form (1.1) is star-like in the unit disk U = {z ∈ C : |z| < 1} if it maps a unit disk onto
a star-like domain. A necessary and sufficient condition for a function f(z) to be star-like is that

Re

(
zf ′(z)

f(z)

)
> 0, (z ∈ U)

The class of all star-like functions is denoted by S∗. An analytic function f(z) is convex if it maps the unit disk
U = {z ∈ C : |z| < 1} conformally onto a convex domain. Equivalently, a function f(z) is said to be convex if and
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only if it satisfies the following condition;

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, (z ∈ U).

The class of all convex functions is denoted by K . A function f(z) ∈ A is said to be in the class Rτ (A,B), {τ ∈
C \ {0}},−1 ≤ B < A ≤ 1 if it satisfies the inequality∣∣∣∣ f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1, (z ∈ U).

The Class Ŗτ (A,B) was introduced in [11]. Let T denote the subclass of S consisting of functions whose non-zero
coefficients, from the second on, are negative. That is, an analytic and univalent function f(z) ∈ T if it can be
expressed as

f(z) = z −
∞∑
k=2

akz
k, (ak ≥ 0)

see [30].

Definition 1.1. [22] For t ≥ 0, 0 ≤ µ ≤ β, n ∈ N0, z ∈ U, Opoola Differential Operator Dn(µ, β, t)f(z) : A → A is
defined as:

D0(µ, β, t)f(z) = f(z)

D1(µ, β, t)f(z) = tzf ′(z)− z(β − µ)t+ (1 + (β − µ− 1)t)f(z)

Dn(µ, β, t)f(z) = (D(Dn−1(µ, β, t)f(z))).

From the above definition and for f(z) given by equation (1.1)

Dn(µ, β, t)f(z) = z +

∞∑
k=2

[1 + (k + β − µ− 1)t]nakz
k (1.2)

Remark 1.2. The following are some remarks on Opoola Differential Operator.

1. When t = 1, µ = β, then Dn(µ, β, t)f(z) reduces to Sǎlǎgean differential operator. [29]

2. When µ = β, then Dn(µ, β, t)f(z) reduces to Al-Oboudi differential operator. [1]

Definition 1.3. A function f(z) ∈ A is in the class Qn(λ, α, β, µ, t) if∣∣∣∣z(Dnf(z))′ + λz2(Dnf(z))′′

Dnf(z)
− 1

∣∣∣∣ < 1− α, (z ∈ U). (1.3)

where 0 ≤ λ < 1, 0 ≤ α < 1, n ∈ N0 and Dnf(z) is the Opoola differential operator for f(z).

A function f(z) ∈ A belong to the class Pn(λ, α, β, µ, t) if∣∣∣∣z[z(Dnf(z))′ + λz2(Dnf(z))′′]′

z(Dnf(z))′
− 1

∣∣∣∣ < 1− α, (z ∈ U) (1.4)

where 0 ≤ λ < 1, 0 ≤ α < 1, n ∈ N0 and Dnf(z) is the Opoola differential operator for f(z).

Remark 1.4. For n=0;

1. Qn(λ, α, β, µ, t) ≡ G(λ, α).

2. Pn(λ, α, β, µ, t) ≡ K(λ, α).
The classes G(λ, α) and K(λ, α) were introduced and studied by Cho et al in [10].
For n = λ = 0;

3. Qn(λ, α, β, µ, t) ≡ S∗(α) and Pn(λ, α, β, µ, t) ≡ K(α)
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The classes S∗(α) and K(α) are classes of star-like and convex functions of order α respectively. [30]

Definition 1.5. For 0 ≤ λ < 1, 0 ≤ α < 1, n ∈ N0. A function f(z) ∈ T belongs to the class P ∗
n(λ, α, β, µ, t) if∣∣∣∣z[z(Dnf(z))′ + λz2(Dnf(z))′′]′

z(Dnf(z))′
− 1

∣∣∣∣ < 1− α, (z ∈ U) (1.5)

Dnf(z) is the Opoola differential operator for f(z) ∈ T.

Bessel function of the first kind of order p: The classical Bessel function of the first kind of order p can be
defined by:

Jp(z) =

∞∑
k=0

(−1)k

k!Γ(p+ k + 1)

(z
2

)2k+p

(1.6)

z ∈ C, p can be real or complex and equation (1.6) satisfies the second order ordinary differential equation

z2ω′′(z) + zω′(z) + (z2 − p2)ω(z) = 0. (1.7)

In [5]-[7], Baricz introduced the generalized Bessel function of the first kind of order p which is an extension of the
classical Bessel function of the first kind of order p and it is defined by

ωp,b,c(z) =
∞∑
k=0

(−1)kck

k!Γ

(
p+ k +

b+ 1

2

) (z
2

)2k+p

(1.8)

equation (1.8) satisfies the second order linear ordinary differential equation

z2ω′′(z) + bzω′(z) + [cz2 − p2 + (1− b)p]ω(z) = 0 (1.9)

where p, b, c ∈ C. On different choices of b and c, classical Bessel function, modified Bessel function, spherical Bessel
function and modified spherical Bessel function of the first kind order p can be obtained respectively from equation
(1.9). Next is to consider the function Up,b,c(z) defined by the transformation

Up,b,c(z) =2pΓ

(
p+

b+ 1

2

)
z−p/2ωp,b,c(

√
z)

=2pΓ

(
p+

b+ 1

2

)
z−p/2

∞∑
k=0

(−1)kck

k!Γ

(
p+ k +

b+ 1

2

) (z
2

)2k+p

=

∞∑
k=0

(−1)k(c/4)kΓ

(
p+

b+ 1

2

)
k!Γ

(
p+ k +

b+ 1

2

) zk

using Pochhammer symbol in terms of Gamma, written as

(m)k =
Γ(m+ k)

Γ(m)

and for conveniences sake, we write Up,b,c(z) as Up(z).

Up(z) =

∞∑
k=0

(−c/4)k

(m)k k!
zk (1.10)

where m =

(
p+

b+ 1

2

)
̸= 0,−1,−2, ...Up(z) is called the generalized and normalized Bessel function of the first kind

of order p. The function Up(z) is analytic in C and satisfies the second order ordinary differential equation

4z2u′′(z) + 4kzu′(z) + czu(z) = 0.



4 Fatunsin, Opoola

Consider the linear operator I(c,m) : A −→ A defined by

I(c,m)f(z) = z(Up(z)) ∗ f(z) = z +

∞∑
k=0

(−c/4)k−1

(m)k−1(k − 1)!
akz

k

for

f(z) = z +

∞∑
k=2

akz
k

where z(Up(z)) ∗ f(z) is the Hadarmand product of z(Up(z)) and f(z). If c < 0 and m > 0, then

z(2− Up(z)) = z −
∞∑
k=2

(−c/4)k−1

(m)k−1(k − 1)!
zk. (1.11)

Opoola differential operator was introduced by Opoola in [22]. In geometric function theory, some researchers that
have studied Opoola differential operator include but not limited [8, 9, 13, 14, 15, 17, 18, 19, 23, 24, 31]. The operator
has been used to define various new subclasses of univalent, p-valent and bi-univalent functions, their geometric
properties were also established by these researchers. Due to the work of Baricz in [5, 6, 7], Ramachandran et al in
[26] and Dixit and Pal in [11], it is observed that the study of generalized Bessel functions of the first kind and it’s
application to subclasses of analytic functions in geometric function theory started recently. Motivated by [10], Cho
et al defined two subclasses of univalent functions and studied the characterization property of function z(2− Up(z))
(derived from the generalized Bessel functions of the first kind of order p) to be in the new subclasses G(λ, α) and
K(λ, α) of analytic functions. The geometric properties of the new classes of analytic functions defined in inequalities
(1.3)-(1.5) will be studied and new results for these classes will also be established by the following theorems.

2 Main Results

Coefficients Inequalities for classes Qn(λ, α, β, µ, t), Pn(λ, α, β, µ, t) and P ∗
n(λ, α, β, µ, t).

Theorem 2.1. A function f(z) ∈ A belongs to the class Qn(λ, α, β, µ, t) if

∞∑
k=2

[k + λk(k − 1)− α]Mk|an| ≤ 1− α (2.1)

where Mk = [1 + (k + β − µ− 1)t]n, 0 ≤ λ < 1, 0 ≤ α < 1, n ∈ N0, t ≥ 0, 0 ≤ β ≤ µ ≤ 1, z ∈ U.

Proof . Let f(z) ∈ A belongs to the class Qn(λ, α, β, µ, t), then by the Definition of Qn(λ, α, β, µ, t) in inequality
(1.3), it implies that ∣∣∣∣z(Dnf(z))′ + λz2(Dnf(z))′′

Dnf(z)
− 1

∣∣∣∣ < 1− α. (2.2)

Inequality (2.2) implies that
z(Dnf(z))′ + λz2(Dnf(z))′′

Dnf(z)
lies in a circle centered at v = 1, radius (1− α) and

∣∣∣∣z(Dnf(z))′ + λz2(Dnf(z))′′

Dnf(z)
− 1

∣∣∣∣ = ∣∣∣∣z(Dnf(z))′ + λz2(Dnf(z))′′ −Dnf(z)

Dnf(z)

∣∣∣∣
=

∣∣∣∣∑∞
k=2[k + λk(k − 1)− 1]Mkakz

k−1

1 +
∑∞

k=2 Mkakzk−1

∣∣∣∣
=

∣∣∑∞
k=2[k + λk(k − 1)− 1]Mkakz

k−1
∣∣

|1 +
∑∞

k=2 Mkakzk−1|
(2.3)

Using the principle of triangle inequality, equation (2.3) can now be written as∣∣∑∞
k=2[k + λk(k − 1)− 1]Mkakz

k−1
∣∣

|1 +
∑∞

k=2 Mkakzk−1|
≤
∑∞

k=2[k + λk(k − 1)− 1]Mk|ak||z|k−1

1−
∑∞

k=2 Mk|ak||z|k−1
.
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Taking the value of z on the real axis as |z| < 1∑∞
k=2[k + λk(k − 1)− 1]Mk|ak||z|k−1

1−
∑∞

k=2 Mk|ak||z|k−1
≤
∑∞

k=2[k + λk(k − 1)− 1]Mk|ak|
1−

∑∞
k=2 Mk|ak|

.

Suppose ∑∞
k=2[k + λk(k − 1)− 1]Mk|ak|

1−
∑∞

k=2 Mk|ak|
≤ 1− α

then
∞∑
k=2

[k + λk(k − 1)− 1]Mk|ak| ≤ (1− α)

{
1−

∞∑
k=2

Mk|ak|

}
which implies that

∞∑
k=2

[k + λk(k − 1)− 1 + 1− α]Mk|ak| ≤ 1− α.

Hence,
∞∑
k=2

[k + λk(k − 1)− α]Mk|ak| ≤ 1− α.

□

Theorem 2.2. A function f(z) ∈ A belongs to the class Pn(λ, α, β, µ, t) if

∞∑
k=2

k[k + λk(k − 1)− α]Mk|ak| ≤ 1− α (2.4)

where Mk = [1 + (k + β − µ− 1)t]n, 0 ≤ λ < 1, 0 ≤ α < 1, n ∈ N0, t ≥ 0, 0 ≤ β ≤ µ ≤ 1, z ∈ U.

Proof . Let f(z) ∈ A be in the class Pn(λ, α, β, µ, t) and from the Definition of Pn(λ, α, β, µ, t), expansion of inequality
(1.4) yields the following equation∣∣∣∣z[z(Dnf(z))′ + λz2(Dnf(z))′′]′

z(Dnf(z))′
− 1

∣∣∣∣ =
∣∣∑∞

k=2(k
2 + λk2(k − 1)− k)Mkakz

k−1
∣∣

|1 +
∑∞

k=2 kMkakzk−1|

Using the principle of triangle inequality, then∣∣∑∞
k=2(k

2 + λk2(k − 1)− k)Mkakz
k−1
∣∣

|1 +
∑∞

k=2 kMkakzk−1|
≤
∑∞

k=2(k
2 + λk2(k − 1)− k)Mk|ak||z|k−1

1−
∑∞

k=2 kMk|ak||z|k−1

And taking the value of z on the real axis as |z| < 1∑∞
k=2(k

2 + λk2(k − 1)− k)Mk|ak||z|k−1

1−
∑∞

k=2 kMk|ak||z|k−1
≤
∑∞

k=2(k
2 + λk2(k − 1)− k)Mk|ak|
1−

∑∞
k=2 kMk|ak|

Suppose ∑∞
k=2(k

2 + λk2(k − 1)− k)Mk|ak|
1−

∑∞
k=2 kMk|ak|

≤ 1− α

then
∞∑
k=2

(k2 + λk2(k − 1)− k)Mk|ak| ≤ (1− α)

(
1−

∞∑
k=2

kMk|ak|

)
.

Hence,
∞∑
k=2

k(k + λk(k − 1)− α)Mk|ak| ≤ 1− α.

□
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Theorem 2.3. A function f(z) ∈ T belongs to the class P ∗
n(λ, α, β, µ, t) if

∞∑
k=2

k[k + λk(k − 1)− α]Mk|ak| ≤ 1− α (2.5)

where
Mk = [1 + (k + β − µ− 1)t]n, 0 ≤ λ < 1, 0 ≤ α < 1, n ∈ N0, t ≥ 0, 0 ≤ β ≤ µ ≤ 1, z ∈ U.

Lemma 2.4. [12] If a function f(z) ∈ A belong the class Ŗτ (A,B), then

|ak| ≤
(A−B)|τ

k
. (2.6)

Characterization Properties for z(2− Up(z)) to be in classes Qn(λ, α, β, µ, t) and Pn(λ, α, β, µ, t).

Theorem 4. If c < 0,m > 0, t ≥ 0, 0 ≤ β ≤ µ ≤ 1, n ∈ N ∪ {0}, 0 ≤ α < 1 and 0 ≤ λ < 1, then z(2− Up(z)) is in
Qn(λ, α, β, µ, t) if

λH ′′
p (1) + (1 + 2λ)H ′

p(1) + {(1− α)Hp(1)} ≤ (1− α)(1 +M1). (2.7)

Proof . Let z(2− Up(z)) be in Qn(λ, α, β, µ, t), then from equation (1.11)

z(2− Up(z)) = z −
∑∞

k=2(−c/4)k−1

(m)k−1(k − 1)!
zn.

By virtue of inequality (2.1), it suffices to show that

∞∑
k=2

(k + λk(k − 1)− α)Mk
(−c/4)k−1

(m)k−1(k − 1)!
≤ 1− α.

Let

L(v) =

∞∑
k=2

(k + λk(k − 1)− α)
(−c/4)k−1

(m)k−1(k − 1)!
Mk (2.8)

writing k2 = (k − 1)(k − 2) + 3(k − 1) + 1 and k = (k − 1) + 1, equation (2.8) can be re-written as

L(v) ≤
∞∑
k=2

λ(k − 1)(k − 2)
(−c/4)k−1

(m)k−1(k − 1)!
Mk + (1 + 2λ(k − 1))

∞∑
k=2

(−c/4)k−1

(m)k−1(k − 1)!
Mk + (1− α)

∞∑
k=2

(−c/4)k−1

(m)k−1(k − 1)!
Mk

=λ

∞∑
k=3

(−c/4)k−1

(m)k−1(k − 3)!
Mk + (1 + 2λ)

∞∑
k=2

(−c/4)k−1

(m)k−1(k − 2)!
Mk + (1− α)

∞∑
k=2

(−c/4)k−1

(m)k−1(k − 1)!
Mk

=λ

∞∑
k=1

(−c/4)k+1

(m)k+1(k − 1)!
Mk+2 + (1 + 2λ)

∞∑
k=0

(−c/4)k+1

(m)k+1k!
Mk+2 + (1− α)

∞∑
k=0

(−c/4)k+1

(m)k+1(k + 1)!
Mk+1

=λ
(−c/4)2

m(m+ 1)

∞∑
k=0

(−c/4)k

(m+ 2)kk!
Mk+3 + (1 + 2λ)

(−c/4)

m

∞∑
k=0

(−c/4)k

(m+ 1)kk!
Mk+2 + (1− α)

∞∑
k=0

(−c/4)k+1

(m)k+1(k + 1)!
Mk+2

=λ
(−c/4)2

m(m+ 1)

{
M3 +M4

(−c/4)

(m+ 2)
+

∞∑
k=2

(−c/4)k

(m+ 2)kk!

}
+ (1 + 2λ)

(−c/4)

m

{
M2 +

∞∑
k=1

(−c/4)

(m+ 1)kk!

}

+ (1− α)

∞∑
k=0

(−c/4)k+1

(m)k+1(k + 1)!
Mk+2

=λ
(−c/4)2

m(m+ 1)

∞∑
k=2

(−c/4)k−2

(m+ 2)k−2(k − 2)!
Mk+1 + (1 + 2λ)

(−c/4)

m

∞∑
k=1

(−c/4)k−1

(m+ 1)k−1(k − 1)!
Mk+1

+ (1− α)

∞∑
k=0

(−c/4)k+1

(m)k+1(k + 1)!
Mk+2

=λ

∞∑
k=2

(−c/4)k

(m)k(k − 2)!
Mk+1 + (1 + 2λ)

∞∑
k=1

(−c/4)k

(m)k(k − 1)!
Mk+1 + (1− α)

∞∑
k=0

(−c/4)k+1

(m)k+1(k + 1)!
Mk+2

=λH ′′
p (1) + (1 + 2λ)H ′

p(1) + (1− α){Hp(1)−M1}.
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Hence, the last expression is bounded above by 1− α if

λH ′′
p (1) + (1 + 2λ)H ′

p(1) + (1− α)Hp(1) ≤ (1− α)(1 +M1)

where

Hp(z) =

∞∑
k=0

(−c/4)k

(m)kk!
Mk+1z

k.

□

Corollary 2.5. By taking λ = 0, inequality (2.7) reduces to

H ′
p(1) + (1− α)[Hp(1)] ≤ (1− α)(1 +M1). (2.9)

Remark 2.6. When n = 0;

� Hp(z) reduces to Up(z)

� Inequality (2.7) reduces to inequality (2.1) in [11].

Theorem 2.7. If c < 0,m > 0, t ≥ 0, 0 ≤ β ≤ µ ≤ 1, n ∈ N0, 0 ≤ α < 1 and 0 ≤ λ < 1, then z(2 − Up(z)) is in
Pn(λ, α, β, µ, t) if

λH ′′′
p (1) + (1 + 5λ)H ′′

p (1) + (3 + 4λ− α)H ′
p(1) + (1− α)Hp(1) ≤ (1− α)(1 +M1). (2.10)

Proof . Let z(2− Up(z)) ∈ Pn(λ, α, β, µ, t). Since

z(2− Up(z)) = z −
∞∑
k=2

(−c/4)k−1

(m)k−1(k − 1)!
zk

and by the condition of Theorem 2, it is sufficient to show that

∞∑
k=2

(k3 + λk2(k − 1)− kα)Mk
(−c/4)k−1

(m)k−1(k − 1)!
≤ 1− α.

Let

H(v) =

∞∑
k=2

(k3 + λk2(k − 1)− kα)Mk
(−c/4)k−1

(m)k−1(k − 1)!
. (2.11)

Writing k3 = (k− 1)(k− 2)(k− 3)+ 6(k− 1)(k− 2)+ 7(k− 1)+ 1 and k2 = (k− 1)(k− 2)+ 3(k− 1)+ 1, equation
(2.11) can then be written as

H(v) ≤λ

∞∑
k=2

(k − 1)(k − 2)(k − 3)
(−c/4)k−1Mk

(m)k−1(k − 1)!
+ (1 + 5λ)

∞∑
k=2

(k − 1)(k − 2)
(−c/4)k−1Mk

(m)k−1(k − 1)!

+ (3 + 4λ− α)

∞∑
k=2

(k − 1)
(−c/4)k−1Mk

(m)k−1(k − 1)!
+ (1− α)

(−c/4)k−1Mk

(m)k−1(k − 1)!

=
λ(−c/4)3

m(m+ 1)(m+ 2)

∞∑
k=0

(−c/4)kMk+4

(m+ 3)kk!
+ (1 + 5λ)

(−c/4)2

m(m+ 1)

∞∑
k=0

(−c/4)kMk+3

(m+ 2)kk!

+(3 + 4λ− α)

∞∑
k=1

(−c/4)kMk+1

(m)k(k − 1)!
+ (1− α)

∞∑
k=0

(−c/4)k+1Mk+2

(m)k+1(k + 1)!

=λ

∞∑
k=3

(−c/4)kMk+1

(m)k(k − 3)!
+ (1 + 5λ)

∞∑
k=2

(−c/4)kMk+1

(m)k(k − 2)!
+ (3 + 4λ− α)

∞∑
k=1

(−c/4)kMk+1

(m)k(k − 1)!

+(1− α)

∞∑
k=0

(−c/4)k+1Mk+2

(m)k+1(k + 1)!

=λH ′′′
p (1) + (1 + 5λ)H ′′

p (1) + (3 + 4λ− α)H ′
p(1) + (1− α)[Hp(1)−M1].
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The last equation is bounded above by 1− α if

λH ′′′
p (1) + (1 + 5λ)H ′′

p (1) + (3 + 4λ− α)H ′
p(1) + (1− α)Hp(1) ≤ (1− α)(1 +M1),

where

Hp(z) =

∞∑
k=0

(−c/4)k

(m)kk!
Mk+1z

k.

□

Corollary 2.8. when λ = 0, inequality (2.10) reduces to

H ′′
p (1) + (3− α)H ′

p(1) + (1− α)[Hp(1)] ≤ (1− α)(1 +M1).

Remark 2.9. When n = 0

� Hp(z) reduces to Up(z).

� Inequality (2.11) reduces to inequality (2.4) in [11].

Convolution Properties for I(c,m) to be in the classes Pn(λ, α, β, µ, t) and P ∗
n(λ, α, β, µ, t)

Theorem 2.10. Let c < 0,m > 0, t ≥ 0, 0 ≤ µ ≤ β, n ∈ N ∪ {0}, 0 ≤ α < 1 and 0 ≤ λ < 1. If

f ∈
∣∣∣∣ f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1, (z ∈ U)

and
(A−B)|τ |[λH ′′

p (1) + (1 + 2λ)H ′
p(1) + (1− α)[Hp(1)−M1] ≤ (1− α)(1 +M1) (2.12)

is satisfied, then I(c,m)f(z) ∈ Pn(λ, α, β, µ, t).

Proof . Let f(z) ∈ Ŗτ (A,B), it can be recalled from equation (1.11) that

z(2− Up(z)) = z −
∞∑
k=2

(−c/4)k−1

(m)k−1(k − 1)!
zk.

Also,

I(c,m)f(z) = z(Up(z)) ∗ f(z) = z +

∞∑
k=0

(−c/4)k−1

(m)k−1(k − 1)!
akz

k

for

f(z) = z +

∞∑
k=2

akz
k

To show that I(c,m)f(z) ∈ Pn(λ, α, β, µ, t) is to show that by Theorem 2 and Inequality (2.4)

∞∑
k=2

k(k2λ+ k(1− λ)− α)
(−c/4)k−1Mk

(m)k−1(k − 1)!
|ak| ≤ 1− α. (2.13)

Since by the condition of the class Ŗτ (A,B) which is defined by∣∣∣∣ f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1, (z ∈ U)

and applying Lemma 1, inequality (2.13) gives

∞∑
k=2

k(k2λ+ k(1− λ)− α)
(−c/4)k−1Mk

(m)k−1(k − 1)!
|ak| ≤

∞∑
k=2

k(k2λ+ k(1− λ)− α)
(−c/4)k−1Mk

(m)k−1(k − 1)!

(A−B)

k
|τ |
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Let

F (k) =

∞∑
k=2

(k2λ+ k(1− λ)− α)
(−c/4)k−1Mk

(m)k−1(k − 1)!
(A−B)|τ |.

To show that F (k) ≤ 1− α, we write k2 = (k − 1)(k − 2) + 3(k − 1) + 1, then F (k) can be re-written as;

F (k) ≤(A−B)|τ |
∞∑
k=2

λ(k − 1)(k − 2)
(−c/4)k−1Mk

(m)k−1(k − 1)!
+ (A−B)|τ |(1 + 2λ)

∞∑
k=2

(k − 1)
(−c/4)k−1Mk

(m)k−1(k − 1)!

+ (A−B)|τ |(1− α)

∞∑
k=2

(−c/4)k−1Mk

(m)k−1(k − 1)!

=(A−B)|τ |λ (−c/4)2

m(m+ 1)

∞∑
k=2

(−c/4)k−2Mk+1

(m+ 2)k−2(k − 2)!
+ (A−B)|τ |(1 + 2λ)

(−c/4)

m

∞∑
k=1

(−c/4)k−1Mk+1

(m+ 1)k(k − 1)!

+ (A−B)|τ |(1− α)

∞∑
k=0

(−c/4)k+1Mk+2

(m)k+1(k + 1)!

=(A−B)|τ |λ
∞∑
k=2

(−c/4)kMk+1

(m)k(k − 2)!
+ (A−B)|τ |(1 + 2λ)

∞∑
k=1

(−c/4)kMk+1

(m)k(k − 1)!

+ (A−B)|τ |(1− α)
∞∑
k=0

(−c/4)k+1Mk+2

(m)k+1(k + 1)!

=(A−B)|τ |[λH ′′
p (1) + (1 + 2λ)H ′

p(1) + (1− α)[Hp(1)−M1]] (2.14)

where

Hp(z) =

∞∑
k=0

(−c/4)k

(m)kk!
Mk+1z

k.

□

Corollary 2.11. When λ = 0, Inequality (2.12) reduces to

(A−B)|τ |[H ′
p(1) + (1− α)[Hp(1)−M1]] ≤ 1− α.

Remark 2.12. When n = 0;

� Hp(z) reduces to Up(z).

� Inequality (2.14) reduces to inequality (2.3) in [11].

Theorem 2.13. For t ≥ 0, 0 ≤ µ ≤ β, n ∈ N ∪ {0}, 0 ≤ α < 1 and 0 ≤ λ < 1. Let c < 0, and m > 0. Then∫ z

0

(2− Up(t))dt

is in the class P ∗
n(λ, α, β, µ, t) if and only if the inequality

λH ′′
p (1) + (1 + 2λ)H ′

p(1) + (1− α){Hp(1)−M1} ≤ 1− α (2.15)

is satisfied.

Proof . If the generalized Bessel function is given as

Up(z) =

∞∑
k=2

(−c/4)k

(m)kk!
zk

then, let

2− Up(z) = 1−
∞∑
k=2

(−c/4)k−1

(m)k−1(k − 1)!
zk−1
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which implies that ∫ z

0

(2− up(t))dt =

∫ z

0

(
1−

∞∑
k=2

(−c/4)k−1

(m)k−1(k − 1)!
tk−1

)
dt

= z −
∞∑
k=2

(−c/4)k−1

(m)k−1k!
zk.

To show that ∫ z

0

(2− up(t))dt ∈ P ∗
n(λ, α, β, µ, t)

is to show that by the condition of the class P ∗
n(λ, α, β, µ, t) and Theorem 3,

∞∑
k=2

(−c/4)k−1

(m)k−1
k[k2λ+ k(1− λ)− α]Mk ≤ 1− α.

Let

L(c,m, z) =

∞∑
k=2

(−c/4)k−1

(m)k−1
k[k2λ+ k(1− λ)− α]Mk

then it is sufficient to prove that L(c,m, z) ≤ 1− α

L(c,m, z) =

∞∑
k=2

k(k2λ+ k(1− λ)− α)Mk
(−c/4)k−1

(m)k−1k!

following the same steps for the proofs of Theorems 5 and 6, then

L(c,m, z) = λH ′′
p (1) + (1 + 2λ)H ′

p(1) + (1− α) [Hp(1)−M1] (2.16)

Equation (2.16) is bounded above by 1− α if

λH ′′
p (1) + (1 + 2λ)H ′

p(1) + (1− α){Hp(1)−M1} ≤ 1− α (2.17)

where

Hp(z) =

∞∑
k=0

(−c/4)k

(m)kk!
Mk+1z

k.

□

Corollary 2.14. When λ = 0, inequality (2.15) reduces to H ′
p(1) + (1− α){Hp(1)−M1} ≤ 1− α

Remark 2.15. When n = 0;

� Hp(z) reduces to Up(z).

� Inequality (2.15) reduces to inequality (3.5) in [11].

Concluding Remark

The geometric properties of the newly defined classes Qn(λ, α, β, µ, t), Pn(λ, α, β, µ, t) and P ∗
n(λ, α, β, µ, t) of ana-

lytic univalent functions were established. The result obtained are generalization of the existing results in literature
specifically Cho et al in [10] and it also represents a step forward in understanding geometric function theory of
complex analysis.
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involving Hadamard product of certain analytic multiplier transform, 7th Int. Conf. Control Optim. Ind. Appl.,
26–28 August, 2020, Baku, Azerbaijan, pp. 248–250.

[21] Z. Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975.

[22] T.O. Opoola, On a subclass of univalent functions defined by a generalized differential operator, International
Journal of Mathematical Analysis 11 (2017), no. 18, 869–876.

[23] E.A. Oyekan, I.T. Awoleke, and P.O. Adepoju, Results for a new subclass of analytic functions connected with



12 Fatunsin, Opoola

Opoola differential operator and Gegenbauer polynomials, Acta Univ. Apulensis 74 (2023), 23–42.

[24] T.O. Opoola, E.A. Oyekan, S.D. Oluwasegun, and P.O. Adepoju, New subfamilies of univalent functions defined
by Opoola differential operator and connected with sigmoid function, Malaya J. Mate. 11 (2023), no. S, 53–69.

[25] C. Pommerenke, Univalent Functions, Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and
Ruprecht, 1975.

[26] C. Ramachandran, S. Annamalai, and S. Sivasubramanian, Inclusion relations for Bessel functions for domains
bounded by conical domains, Advances in Difference Equations (2014), 1–12.

[27] B. Richard and B.S. Gabriel, Shaum Outline Series of Differential Equations, Third edition, 2006.

[28] M.S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), 374–408.

[29] G.S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian Seminar, Lecture Notes in
Mathematics, Vol. 1013, Springer, Berlin, 1983, pp. 362–372.

[30] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109–116.

[31] G.S. Timilehin, G. Mural, and Halit Orhan, Fekete Szegö problems for some subclasses of holomorphic functions
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