Int. J. Nonlinear Anal. Appl. In Press, 1–12

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2024.34524.5155

On new subclasses of analytic functions associated with generalized Bessel functions

Lolade Modupe Fatunsin^{a,*}, Timothy Oloyede Opoola^b

(Communicated by Mugur Alexandru Acu)

Abstract

Bessel functions arise in the solution of many physical and mathematical problems. This, with some other special functions, has recently gained increased importance in the study of geometric function theory. The aim of this paper is to establish some geometric properties such as coefficient inequalities, characterization properties and convolution properties for the new subclasses $Q_n(\lambda, \alpha, \beta, \mu, t)$, $P_n(\lambda, \alpha, \beta, \mu, t)$ and $P_n^*(\lambda, \alpha, \beta, \mu, t)$ of univalent functions defined by Opoola Differential Operator in collaboration with generalized Bessel functions.

Keywords: Analytic and univalent functions, Opoola differential operator, Bessel functions, Geometric properties 2010 MSC: Primary 30C45, Secondary 30C50

1 Introduction and Preliminary

Let A be the class of functions f(z) defined by

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1.1}$$

which are analytic in the unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Denote by S the subclass of A consisting of functions which are analytic, univalent in the unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ and normalized by f(0) = 0 = f'(0) - 1.

A function $f(z) \in S$ of the form (1.1) is star-like in the unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ if it maps a unit disk onto a star-like domain. A necessary and sufficient condition for a function f(z) to be star-like is that

$$Re\left(\frac{zf'(z)}{f(z)}\right) > 0, (z \in \mathbb{U})$$

The class of all star-like functions is denoted by S^* . An analytic function f(z) is convex if it maps the unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ conformally onto a convex domain. Equivalently, a function f(z) is said to be convex if and

 $Email\ addresses:\ {\tt lfatunsin@nmc.edu.ng}\ (Lolade\ Modupe\ Fatunsin),\ {\tt opoola_stc@yahoo.com}\ (Timothy\ Oloyede\ Opoola)$

 $Received: \ \, \hbox{June 2024} \quad \, \, Accepted: \ \, \hbox{December 2024}$

^a Mathematics Programme, National Mathematical Centre, Abuja, Nigeria

^bDepartment of Mathematics. University of Ilorin, P.M.B. 1515, Ilorin, Nigeria

^{*}Corresponding author

only if it satisfies the following condition;

$$Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > 0, \ (z \in \mathbb{U}).$$

The class of all convex functions is denoted by K. A function $f(z) \in A$ is said to be in the class $R^{\tau}(A, B), \{\tau \in \mathbb{C} \setminus \{0\}\}, -1 \leq B < A \leq 1$ if it satisfies the inequality

$$\left| \frac{f'(z) - 1}{(A - B)\tau - B[f'(z) - 1]} \right| < 1, (z \in \mathbb{U}).$$

The Class $\mathbb{R}^{\tau}(A, B)$ was introduced in [11]. Let \mathbb{T} denote the subclass of S consisting of functions whose non-zero coefficients, from the second on, are negative. That is, an analytic and univalent function $f(z) \in \mathbb{T}$ if it can be expressed as

$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k, (a_k \ge 0)$$

see [30].

Definition 1.1. [22] For $t \geq 0$, $0 \leq \mu \leq \beta$, $n \in \mathbb{N}_0$, $z \in \mathbb{U}$, Opoola Differential Operator $D^n(\mu, \beta, t) f(z) : A \to A$ is defined as:

$$D^{0}(\mu, \beta, t)f(z) = f(z)$$

$$D^{1}(\mu, \beta, t)f(z) = tzf'(z) - z(\beta - \mu)t + (1 + (\beta - \mu - 1)t)f(z)$$

$$D^{n}(\mu, \beta, t)f(z) = (D(D^{n-1}(\mu, \beta, t)f(z))).$$

From the above definition and for f(z) given by equation (1.1)

$$D^{n}(\mu, \beta, t)f(z) = z + \sum_{k=2}^{\infty} [1 + (k + \beta - \mu - 1)t]^{n} a_{k} z^{k}$$
(1.2)

Remark 1.2. The following are some remarks on Opoola Differential Operator.

- 1. When t = 1, $\mu = \beta$, then $D^n(\mu, \beta, t) f(z)$ reduces to Sălăgean differential operator. [29]
- 2. When $\mu = \beta$, then $D^n(\mu, \beta, t) f(z)$ reduces to Al-Oboudi differential operator. [1]

Definition 1.3. A function $f(z) \in A$ is in the class $Q_n(\lambda, \alpha, \beta, \mu, t)$ if

$$\left| \frac{z(D^n f(z))' + \lambda z^2 (D^n f(z))''}{D^n f(z)} - 1 \right| < 1 - \alpha, (z \in \mathbb{U}).$$
 (1.3)

where $0 \le \lambda < 1, 0 \le \alpha < 1, n \in \mathbb{N}_0$ and $D^n f(z)$ is the Opoola differential operator for f(z).

A function $f(z) \in A$ belong to the class $P_n(\lambda, \alpha, \beta, \mu, t)$ if

$$\left| \frac{z[z(D^n f(z))' + \lambda z^2 (D^n f(z))'']'}{z(D^n f(z))'} - 1 \right| < 1 - \alpha, (z \in \mathbb{U})$$
(1.4)

where $0 \le \lambda < 1, 0 \le \alpha < 1, n \in \mathbb{N}_0$ and $D^n f(z)$ is the Opoola differential operator for f(z).

Remark 1.4. For n=0;

- 1. $Q_n(\lambda, \alpha, \beta, \mu, t) \equiv G(\lambda, \alpha)$.
- 2. $P_n(\lambda, \alpha, \beta, \mu, t) \equiv K(\lambda, \alpha)$. The classes $G(\lambda, \alpha)$ and $K(\lambda, \alpha)$ were introduced and studied by Cho et al in [10]. For $n = \lambda = 0$;
- 3. $Q_n(\lambda, \alpha, \beta, \mu, t) \equiv S^*(\alpha)$ and $P_n(\lambda, \alpha, \beta, \mu, t) \equiv K(\alpha)$

The classes $S^*(\alpha)$ and $K(\alpha)$ are classes of star-like and convex functions of order α respectively. [30]

Definition 1.5. For $0 \le \lambda < 1, 0 \le \alpha < 1, n \in \mathbb{N}_0$. A function $f(z) \in \mathbb{T}$ belongs to the class $P_n^*(\lambda, \alpha, \beta, \mu, t)$ if

$$\left| \frac{z[z(D^n f(z))' + \lambda z^2 (D^n f(z))'']'}{z(D^n f(z))'} - 1 \right| < 1 - \alpha, (z \in \mathbb{U})$$
(1.5)

 $D^n f(z)$ is the Opoola differential operator for $f(z) \in \mathbb{T}$.

Bessel function of the first kind of order p: The classical Bessel function of the first kind of order p can be defined by:

$$J_p(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(p+k+1)} \left(\frac{z}{2}\right)^{2k+p}$$
 (1.6)

 $z \in \mathbb{C}$, p can be real or complex and equation (1.6) satisfies the second order ordinary differential equation

$$z^{2}\omega''(z) + z\omega'(z) + (z^{2} - p^{2})\omega(z) = 0.$$
(1.7)

In [5]-[7], Baricz introduced the generalized Bessel function of the first kind of order p which is an extension of the classical Bessel function of the first kind of order p and it is defined by

$$\omega_{p,b,c}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k c^k}{k! \Gamma\left(p+k+\frac{b+1}{2}\right)} \left(\frac{z}{2}\right)^{2k+p}$$
(1.8)

equation (1.8) satisfies the second order linear ordinary differential equation

$$z^{2}\omega''(z) + bz\omega'(z) + [cz^{2} - p^{2} + (1-b)p]\omega(z) = 0$$
(1.9)

where $p, b, c \in \mathbb{C}$. On different choices of b and c, classical Bessel function, modified Bessel function, spherical Bessel function and modified spherical Bessel function of the first kind order p can be obtained respectively from equation (1.9). Next is to consider the function $U_{p,b,c}(z)$ defined by the transformation

$$\begin{split} U_{p,b,c}(z) = & 2^{p} \Gamma\left(p + \frac{b+1}{2}\right) z^{-p/2} \omega_{p,b,c}(\sqrt{z}) \\ = & 2^{p} \Gamma\left(p + \frac{b+1}{2}\right) z^{-p/2} \sum_{k=0}^{\infty} \frac{(-1)^{k} c^{k}}{k! \Gamma\left(p + k + \frac{b+1}{2}\right)} \left(\frac{z}{2}\right)^{2k+p} \\ = & \sum_{k=0}^{\infty} \frac{(-1)^{k} (c/4)^{k} \Gamma\left(p + \frac{b+1}{2}\right)}{k! \Gamma\left(p + k + \frac{b+1}{2}\right)} z^{k} \end{split}$$

using Pochhammer symbol in terms of Gamma, written as

$$(m)_k = \frac{\Gamma(m+k)}{\Gamma(m)}$$

and for conveniences sake, we write $U_{p,b,c}(z)$ as $U_p(z)$.

$$U_p(z) = \sum_{k=0}^{\infty} \frac{(-c/4)^k}{(m)_k \, k!} z^k \tag{1.10}$$

where $m=\left(p+\frac{b+1}{2}\right)\neq 0,-1,-2,...U_p(z)$ is called the generalized and normalized Bessel function of the first kind of order p. The function $U_p(z)$ is analytic in $\mathbb C$ and satisfies the second order ordinary differential equation

$$4z^2u''(z) + 4kzu'(z) + czu(z) = 0.$$

Consider the linear operator $I(c, m): A \longrightarrow A$ defined by

$$I(c,m)f(z) = z(U_p(z)) * f(z) = z + \sum_{k=0}^{\infty} \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-1)!} a_k z^k$$

for

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

where $z(U_p(z)) * f(z)$ is the Hadarmand product of $z(U_p(z))$ and f(z). If c < 0 and m > 0, then

$$z(2 - U_p(z)) = z - \sum_{k=2}^{\infty} \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-1)!} z^k.$$
(1.11)

Opoola differential operator was introduced by Opoola in [22]. In geometric function theory, some researchers that have studied Opoola differential operator include but not limited [8, 9, 13, 14, 15, 17, 18, 19, 23, 24, 31]. The operator has been used to define various new subclasses of univalent, p-valent and bi-univalent functions, their geometric properties were also established by these researchers. Due to the work of Baricz in [5, 6, 7], Ramachandran et al in [26] and Dixit and Pal in [11], it is observed that the study of generalized Bessel functions of the first kind and it's application to subclasses of analytic functions in geometric function theory started recently. Motivated by [10], Cho et al defined two subclasses of univalent functions and studied the characterization property of function $z(2 - U_p(z))$ (derived from the generalized Bessel functions of the first kind of order p) to be in the new subclasses $G(\lambda, \alpha)$ and $K(\lambda, \alpha)$ of analytic functions. The geometric properties of the new classes of analytic functions defined in inequalities (1.3)-(1.5) will be studied and new results for these classes will also be established by the following theorems.

2 Main Results

Coefficients Inequalities for classes $Q_n(\lambda, \alpha, \beta, \mu, t)$, $P_n(\lambda, \alpha, \beta, \mu, t)$ and $P_n^*(\lambda, \alpha, \beta, \mu, t)$.

Theorem 2.1. A function $f(z) \in A$ belongs to the class $Q_n(\lambda, \alpha, \beta, \mu, t)$ if

$$\sum_{k=2}^{\infty} [k + \lambda k(k-1) - \alpha] M_k |a_n| \le 1 - \alpha$$

$$(2.1)$$

where $M_k = [1 + (k + \beta - \mu - 1)t]^n, 0 \le \lambda < 1, 0 \le \alpha < 1, n \in \mathbb{N}_0, t \ge 0, 0 \le \beta \le \mu \le 1, z \in \mathbb{U}.$

Proof. Let $f(z) \in A$ belongs to the class $Q_n(\lambda, \alpha, \beta, \mu, t)$, then by the Definition of $Q_n(\lambda, \alpha, \beta, \mu, t)$ in inequality (1.3), it implies that

$$\left| \frac{z(D^n f(z))' + \lambda z^2 (D^n f(z))''}{D^n f(z)} - 1 \right| < 1 - \alpha.$$
 (2.2)

Inequality (2.2) implies that $\frac{z(D^n f(z))' + \lambda z^2 (D^n f(z))''}{D^n f(z)}$ lies in a circle centered at v = 1, radius $(1 - \alpha)$ and

$$\left| \frac{z(D^n f(z))' + \lambda z^2 (D^n f(z))''}{D^n f(z)} - 1 \right| = \left| \frac{z(D^n f(z))' + \lambda z^2 (D^n f(z))'' - D^n f(z)}{D^n f(z)} \right|
= \left| \frac{\sum_{k=2}^{\infty} [k + \lambda k(k-1) - 1] M_k a_k z^{k-1}}{1 + \sum_{k=2}^{\infty} M_k a_k z^{k-1}} \right|
= \frac{\left| \sum_{k=2}^{\infty} [k + \lambda k(k-1) - 1] M_k a_k z^{k-1} \right|}{|1 + \sum_{k=2}^{\infty} M_k a_k z^{k-1}|}$$
(2.3)

Using the principle of triangle inequality, equation (2.3) can now be written as

$$\frac{\left|\sum_{k=2}^{\infty}[k+\lambda k(k-1)-1]M_ka_kz^{k-1}\right|}{|1+\sum_{k=2}^{\infty}M_ka_kz^{k-1}|}\leq \frac{\sum_{k=2}^{\infty}[k+\lambda k(k-1)-1]M_k|a_k||z|^{k-1}}{1-\sum_{k=2}^{\infty}M_k|a_k||z|^{k-1}}.$$

Taking the value of z on the real axis as |z| < 1

$$\frac{\sum_{k=2}^{\infty}[k+\lambda k(k-1)-1]M_k|a_k||z|^{k-1}}{1-\sum_{k=2}^{\infty}M_k|a_k||z|^{k-1}}\leq \frac{\sum_{k=2}^{\infty}[k+\lambda k(k-1)-1]M_k|a_k|}{1-\sum_{k=2}^{\infty}M_k|a_k|}.$$

Suppose

$$\frac{\sum_{k=2}^{\infty} [k + \lambda k(k-1) - 1] M_k |a_k|}{1 - \sum_{k=2}^{\infty} M_k |a_k|} \le 1 - \alpha$$

then

$$\sum_{k=2}^{\infty} [k + \lambda k(k-1) - 1] M_k |a_k| \le (1 - \alpha) \left\{ 1 - \sum_{k=2}^{\infty} M_k |a_k| \right\}$$

which implies that

$$\sum_{k=2}^{\infty} [k + \lambda k(k-1) - 1 + 1 - \alpha] M_k |a_k| \le 1 - \alpha.$$

Hence,

$$\sum_{k=2}^{\infty} [k + \lambda k(k-1) - \alpha] M_k |a_k| \le 1 - \alpha.$$

Theorem 2.2. A function $f(z) \in A$ belongs to the class $P_n(\lambda, \alpha, \beta, \mu, t)$ if

$$\sum_{k=2}^{\infty} k[k + \lambda k(k-1) - \alpha] M_k |a_k| \le 1 - \alpha \tag{2.4}$$

where $M_k = [1 + (k + \beta - \mu - 1)t]^n, 0 \le \lambda < 1, 0 \le \alpha < 1, n \in \mathbb{N}_0, t \ge 0, 0 \le \beta \le \mu \le 1, z \in \mathbb{U}.$

Proof. Let $f(z) \in A$ be in the class $P_n(\lambda, \alpha, \beta, \mu, t)$ and from the Definition of $P_n(\lambda, \alpha, \beta, \mu, t)$, expansion of inequality (1.4) yields the following equation

$$\left| \frac{z[z(D^n f(z))' + \lambda z^2 (D^n f(z))'']'}{z(D^n f(z))'} - 1 \right| = \frac{\left| \sum_{k=2}^{\infty} (k^2 + \lambda k^2 (k-1) - k) M_k a_k z^{k-1} \right|}{|1 + \sum_{k=2}^{\infty} k M_k a_k z^{k-1}|}$$

Using the principle of triangle inequality, then

$$\frac{\left|\sum_{k=2}^{\infty}(k^2 + \lambda k^2(k-1) - k)M_k a_k z^{k-1}\right|}{|1 + \sum_{k=2}^{\infty}kM_k a_k z^{k-1}|} \le \frac{\sum_{k=2}^{\infty}(k^2 + \lambda k^2(k-1) - k)M_k |a_k||z|^{k-1}}{1 - \sum_{k=2}^{\infty}kM_k |a_k||z|^{k-1}}$$

And taking the value of z on the real axis as |z| < 1

$$\frac{\sum_{k=2}^{\infty} (k^2 + \lambda k^2 (k-1) - k) M_k |a_k| |z|^{k-1}}{1 - \sum_{k=2}^{\infty} k M_k |a_k| |z|^{k-1}} \le \frac{\sum_{k=2}^{\infty} (k^2 + \lambda k^2 (k-1) - k) M_k |a_k|}{1 - \sum_{k=2}^{\infty} k M_k |a_k|}$$

Suppose

$$\frac{\sum_{k=2}^{\infty} (k^2 + \lambda k^2 (k-1) - k) M_k |a_k|}{1 - \sum_{k=2}^{\infty} k M_k |a_k|} \le 1 - \alpha$$

then

$$\sum_{k=2}^{\infty} (k^2 + \lambda k^2 (k-1) - k) M_k |a_k| \le (1 - \alpha) \left(1 - \sum_{k=2}^{\infty} k M_k |a_k| \right).$$

Hence,

$$\sum_{k=2}^{\infty} k(k + \lambda k(k-1) - \alpha) M_k |a_k| \le 1 - \alpha.$$

Theorem 2.3. A function $f(z) \in \mathbb{T}$ belongs to the class $P_n^*(\lambda, \alpha, \beta, \mu, t)$ if

$$\sum_{k=2}^{\infty} k[k + \lambda k(k-1) - \alpha] M_k |a_k| \le 1 - \alpha$$

$$(2.5)$$

where

$$M_k = [1 + (k + \beta - \mu - 1)t]^n, 0 \le \lambda < 1, 0 \le \alpha < 1, n \in \mathbb{N}_0, t \ge 0, 0 \le \beta \le \mu \le 1, z \in \mathbb{U}.$$

Lemma 2.4. [12] If a function $f(z) \in A$ belong the class $\mathbb{R}^{\tau}(A, B)$, then

$$|a_k| \le \frac{(A-B)|\tau}{k}. (2.6)$$

Characterization Properties for $z(2-U_p(z))$ to be in classes $Q_n(\lambda,\alpha,\beta,\mu,t)$ and $P_n(\lambda,\alpha,\beta,\mu,t)$.

Theorem 4. If $c < 0, m > 0, t \ge 0, 0 \le \beta \le \mu \le 1, n \in \mathbb{N} \cup \{0\}, 0 \le \alpha < 1 \text{ and } 0 \le \lambda < 1, \text{ then } z(2 - U_p(z)) \text{ is in } Q_n(\lambda, \alpha, \beta, \mu, t) \text{ if}$

$$\lambda H_p''(1) + (1+2\lambda)H_p'(1) + \{(1-\alpha)H_p(1)\} \le (1-\alpha)(1+M_1). \tag{2.7}$$

Proof. Let $z(2-U_p(z))$ be in $Q_n(\lambda,\alpha,\beta,\mu,t)$, then from equation (1.11)

$$z(2 - U_p(z)) = z - \frac{\sum_{k=2}^{\infty} (-c/4)^{k-1}}{(m)_{k-1}(k-1)!} z^n.$$

By virtue of inequality (2.1), it suffices to show that

$$\sum_{k=2}^{\infty} (k + \lambda k(k-1) - \alpha) M_k \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-1)!} \le 1 - \alpha.$$

Let

$$L(v) = \sum_{k=2}^{\infty} (k + \lambda k(k-1) - \alpha) \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-1)!} M_k$$
(2.8)

writing $k^2 = (k-1)(k-2) + 3(k-1) + 1$ and k = (k-1) + 1, equation (2.8) can be re-written as

$$\begin{split} L(v) &\leq \sum_{k=2}^{\infty} \lambda(k-1)(k-2) \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-1)!} M_k + (1+2\lambda(k-1)) \sum_{k=2}^{\infty} \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-1)!} M_k + (1-\alpha) \sum_{k=2}^{\infty} \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-1)!} M_k \\ &= \lambda \sum_{k=3}^{\infty} \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-3)!} M_k + (1+2\lambda) \sum_{k=2}^{\infty} \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-2)!} M_k + (1-\alpha) \sum_{k=2}^{\infty} \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-1)!} M_k \\ &= \lambda \sum_{k=1}^{\infty} \frac{(-c/4)^{k+1}}{(m)_{k+1}(k-1)!} M_{k+2} + (1+2\lambda) \sum_{k=0}^{\infty} \frac{(-c/4)^{k+1}}{(m)_{k+1}k!} M_{k+2} + (1-\alpha) \sum_{k=0}^{\infty} \frac{(-c/4)^{k+1}}{(m)_{k+1}(k+1)!} M_{k+1} \\ &= \lambda \frac{(-c/4)^2}{m(m+1)} \sum_{k=0}^{\infty} \frac{(-c/4)^k}{(m+2)_k k!} M_{k+3} + (1+2\lambda) \frac{(-c/4)}{m} \sum_{k=0}^{\infty} \frac{(-c/4)^k}{(m+1)_k k!} M_{k+2} + (1-\alpha) \sum_{k=0}^{\infty} \frac{(-c/4)^{k+1}}{(m)_{k+1}(k+1)!} M_{k+2} \\ &= \lambda \frac{(-c/4)^2}{m(m+1)} \left\{ M_3 + M_4 \frac{(-c/4)}{(m+2)} + \sum_{k=2}^{\infty} \frac{(-c/4)^k}{(m+2)_k k!} \right\} + (1+2\lambda) \frac{(-c/4)}{m} \left\{ M_2 + \sum_{k=1}^{\infty} \frac{(-c/4)}{(m+1)_k k!} \right\} \\ &+ (1-\alpha) \sum_{k=0}^{\infty} \frac{(-c/4)^{k+1}}{(m)_{k+1}(k+1)!} M_{k+2} \\ &= \lambda \frac{(-c/4)^2}{m(m+1)} \sum_{k=2}^{\infty} \frac{(-c/4)^{k-2}}{(m+2)_{k-2}(k-2)!} M_{k+1} + (1+2\lambda) \frac{(-c/4)}{m} \sum_{k=1}^{\infty} \frac{(-c/4)^{k-1}}{(m+1)_{k-1}(k-1)!} M_{k+1} \\ &+ (1-\alpha) \sum_{k=0}^{\infty} \frac{(-c/4)^{k+1}}{(m)_{k+1}(k+1)!} M_{k+2} \\ &= \lambda \sum_{k=2}^{\infty} \frac{(-c/4)^{k+1}}{(m)_{k+1}(k+1)!} M_{k+2} \\ &= \lambda \sum_{k=2}^{\infty} \frac{(-c/4)^{k+1}}{(m)_{k+1}(k+1)!} M_{k+2} \\ &= \lambda \sum_{k=2}^{\infty} \frac{(-c/4)^{k+1}}{(m)_{k+1}(k+1)!} M_{k+1} + (1-\alpha) \sum_{k=1}^{\infty} \frac{(-c/4)^k}{(m)_{k+1}(k+1)!} M_{k+1} + (1-\alpha) \sum_{k=0}^{\infty} \frac{(-c/4)^{k+1}}{(m)_{k+1}(k+1)!} M_{k+2} \\ &= \lambda \sum_{k=2}^{\infty} \frac{(-c/4)^k}{(m)_k (k-2)!} M_{k+1} + (1-\alpha) \{ M_{k+1}(k-1)! M_{k+1}(k-1)! M_{k+1}(k-1)! M_{k+2} \\ &= \lambda H_n''(1) + (1+2\lambda) H_n'(1) + (1-\alpha) \{ H_n(1) - M_1 \}. \end{split}$$

Hence, the last expression is bounded above by $1 - \alpha$ if

$$\lambda H_p''(1) + (1+2\lambda)H_p'(1) + (1-\alpha)H_p(1) \le (1-\alpha)(1+M_1)$$

where

$$H_p(z) = \sum_{k=0}^{\infty} \frac{(-c/4)^k}{(m)_k k!} M_{k+1} z^k.$$

Corollary 2.5. By taking $\lambda = 0$, inequality (2.7) reduces to

$$H_p'(1) + (1 - \alpha)[H_p(1)] \le (1 - \alpha)(1 + M_1).$$
 (2.9)

Remark 2.6. When n = 0;

- $H_p(z)$ reduces to $U_p(z)$
- Inequality (2.7) reduces to inequality (2.1) in [11].

Theorem 2.7. If $c < 0, m > 0, t \ge 0, 0 \le \beta \le \mu \le 1, n \in \mathbb{N}_0, 0 \le \alpha < 1$ and $0 \le \lambda < 1$, then $z(2 - U_p(z))$ is in $P_n(\lambda, \alpha, \beta, \mu, t)$ if

$$\lambda H_p'''(1) + (1+5\lambda)H_p''(1) + (3+4\lambda-\alpha)H_p'(1) + (1-\alpha)H_p(1) \le (1-\alpha)(1+M_1). \tag{2.10}$$

Proof . Let $z(2 - U_p(z)) \in P_n(\lambda, \alpha, \beta, \mu, t)$. Since

$$z(2 - U_p(z)) = z - \sum_{k=2}^{\infty} \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-1)!} z^k$$

and by the condition of Theorem 2, it is sufficient to show that

$$\sum_{k=2}^{\infty} (k^3 + \lambda k^2 (k-1) - k\alpha) M_k \frac{(-c/4)^{k-1}}{(m)_{k-1} (k-1)!} \le 1 - \alpha.$$

Let

$$H(v) = \sum_{k=2}^{\infty} (k^3 + \lambda k^2 (k-1) - k\alpha) M_k \frac{(-c/4)^{k-1}}{(m)_{k-1} (k-1)!}.$$
 (2.11)

Writing $k^3 = (k-1)(k-2)(k-3) + 6(k-1)(k-2) + 7(k-1) + 1$ and $k^2 = (k-1)(k-2) + 3(k-1) + 1$, equation (2.11) can then be written as

$$\begin{split} H(v) \leq & \lambda \sum_{k=2}^{\infty} (k-1)(k-2)(k-3) \frac{(-c/4)^{k-1} M_k}{(m)_{k-1}(k-1)!} + (1+5\lambda) \sum_{k=2}^{\infty} (k-1)(k-2) \frac{(-c/4)^{k-1} M_k}{(m)_{k-1}(k-1)!} \\ & + (3+4\lambda-\alpha) \sum_{k=2}^{\infty} (k-1) \frac{(-c/4)^{k-1} M_k}{(m)_{k-1}(k-1)!} + (1-\alpha) \frac{(-c/4)^{k-1} M_k}{(m)_{k-1}(k-1)!} \\ & = \frac{\lambda (-c/4)^3}{m(m+1)(m+2)} \sum_{k=0}^{\infty} \frac{(-c/4)^k M_{k+4}}{(m+3)_k k!} + (1+5\lambda) \frac{(-c/4)^2}{m(m+1)} \sum_{k=0}^{\infty} \frac{(-c/4)^k M_{k+3}}{(m+2)_k k!} \\ & + (3+4\lambda-\alpha) \sum_{k=1}^{\infty} \frac{(-c/4)^k M_{k+1}}{(m)_k (k-1)!} + (1-\alpha) \sum_{k=0}^{\infty} \frac{(-c/4)^{k+1} M_{k+2}}{(m)_{k+1}(k+1)!} \\ & = \lambda \sum_{k=3}^{\infty} \frac{(-c/4)^k M_{k+1}}{(m)_k (k-3)!} + (1+5\lambda) \sum_{k=2}^{\infty} \frac{(-c/4)^k M_{k+1}}{(m)_k (k-2)!} + (3+4\lambda-\alpha) \sum_{k=1}^{\infty} \frac{(-c/4)^k M_{k+1}}{(m)_k (k-1)!} \\ & + (1-\alpha) \sum_{k=0}^{\infty} \frac{(-c/4)^{k+1} M_{k+2}}{(m)_{k+1}(k+1)!} \\ & = \lambda H_p'''(1) + (1+5\lambda) H_p''(1) + (3+4\lambda-\alpha) H_p'(1) + (1-\alpha) [H_p(1)-M_1]. \end{split}$$

The last equation is bounded above by $1 - \alpha$ if

$$\lambda H_p'''(1) + (1+5\lambda)H_p''(1) + (3+4\lambda-\alpha)H_p'(1) + (1-\alpha)H_p(1) \le (1-\alpha)(1+M_1),$$

where

$$H_p(z) = \sum_{k=0}^{\infty} \frac{(-c/4)^k}{(m)_k k!} M_{k+1} z^k.$$

Corollary 2.8. when $\lambda = 0$, inequality (2.10) reduces to

$$H_p''(1) + (3 - \alpha)H_p'(1) + (1 - \alpha)[H_p(1)] \le (1 - \alpha)(1 + M_1).$$

Remark 2.9. When n=0

- $H_p(z)$ reduces to $U_p(z)$.
- Inequality (2.11) reduces to inequality (2.4) in [11].

Convolution Properties for I(c,m) to be in the classes $P_n(\lambda,\alpha,\beta,\mu,t)$ and $P_n^*(\lambda,\alpha,\beta,\mu,t)$

Theorem 2.10. Let $c < 0, m > 0, t \ge 0, 0 \le \mu \le \beta, n \in \mathbb{N} \cup \{0\}, 0 \le \alpha < 1 \text{ and } 0 \le \lambda < 1.$ If

$$f \in \left| \frac{f'(z) - 1}{(A - B)\tau - B[f'(z) - 1]} \right| < 1, \quad (z \in \mathbb{U})$$

and

$$(A-B)|\tau|[\lambda H_p''(1) + (1+2\lambda)H_p'(1) + (1-\alpha)[H_p(1) - M_1] \le (1-\alpha)(1+M_1)$$
(2.12)

is satisfied, then $I(c, m) f(z) \in P_n(\lambda, \alpha, \beta, \mu, t)$.

Proof. Let $f(z) \in \mathbb{R}^{\tau}(A, B)$, it can be recalled from equation (1.11) that

$$z(2 - U_p(z)) = z - \sum_{k=2}^{\infty} \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-1)!} z^k.$$

Also,

$$I(c,m)f(z) = z(U_p(z)) * f(z) = z + \sum_{k=0}^{\infty} \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-1)!} a_k z^k$$

for

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

To show that $I(c,m)f(z) \in P_n(\lambda,\alpha,\beta,\mu,t)$ is to show that by Theorem 2 and Inequality (2.4)

$$\sum_{k=2}^{\infty} k(k^2\lambda + k(1-\lambda) - \alpha) \frac{(-c/4)^{k-1} M_k}{(m)_{k-1}(k-1)!} |a_k| \le 1 - \alpha.$$
(2.13)

Since by the condition of the class $\mathbb{R}^{\tau}(A, B)$ which is defined by

$$\left| \frac{f'(z) - 1}{(A - B)\tau - B[f'(z) - 1]} \right| < 1, \qquad (z \in \mathbb{U})$$

and applying Lemma 1, inequality (2.13) gives

$$\sum_{k=2}^{\infty} k(k^2\lambda + k(1-\lambda) - \alpha) \frac{(-c/4)^{k-1} M_k}{(m)_{k-1}(k-1)!} |a_k| \le \sum_{k=2}^{\infty} k(k^2\lambda + k(1-\lambda) - \alpha) \frac{(-c/4)^{k-1} M_k}{(m)_{k-1}(k-1)!} \frac{(A-B)}{k} |\tau|$$

Let

$$F(k) = \sum_{k=2}^{\infty} (k^2 \lambda + k(1-\lambda) - \alpha) \frac{(-c/4)^{k-1} M_k}{(m)_{k-1} (k-1)!} (A-B) |\tau|.$$

To show that $F(k) \le 1 - \alpha$, we write $k^2 = (k-1)(k-2) + 3(k-1) + 1$, then F(k) can be re-written as;

$$F(k) \leq (A-B)|\tau| \sum_{k=2}^{\infty} \lambda(k-1)(k-2) \frac{(-c/4)^{k-1}M_k}{(m)_{k-1}(k-1)!} + (A-B)|\tau|(1+2\lambda) \sum_{k=2}^{\infty} (k-1) \frac{(-c/4)^{k-1}M_k}{(m)_{k-1}(k-1)!}$$

$$+ (A-B)|\tau|(1-\alpha) \sum_{k=2}^{\infty} \frac{(-c/4)^{k-1}M_k}{(m)_{k-1}(k-1)!}$$

$$= (A-B)|\tau|\lambda \frac{(-c/4)^2}{m(m+1)} \sum_{k=2}^{\infty} \frac{(-c/4)^{k-2}M_{k+1}}{(m+2)_{k-2}(k-2)!} + (A-B)|\tau|(1+2\lambda) \frac{(-c/4)}{m} \sum_{k=1}^{\infty} \frac{(-c/4)^{k-1}M_{k+1}}{(m+1)_k(k-1)!}$$

$$+ (A-B)|\tau|(1-\alpha) \sum_{k=0}^{\infty} \frac{(-c/4)^{k+1}M_{k+2}}{(m)_{k+1}(k+1)!}$$

$$= (A-B)|\tau|\lambda \sum_{k=2}^{\infty} \frac{(-c/4)^kM_{k+1}}{(m)_k(k-2)!} + (A-B)|\tau|(1+2\lambda) \sum_{k=1}^{\infty} \frac{(-c/4)^kM_{k+1}}{(m)_k(k-1)!}$$

$$+ (A-B)|\tau|(1-\alpha) \sum_{k=0}^{\infty} \frac{(-c/4)^{k+1}M_{k+2}}{(m)_{k+1}(k+1)!}$$

$$= (A-B)|\tau|(\lambda H_n'')(1) + (1+2\lambda)H_n'(1) + (1-\alpha)[H_n(1)-M_1]$$

$$(2.14)$$

where

$$H_p(z) = \sum_{k=0}^{\infty} \frac{(-c/4)^k}{(m)_k k!} M_{k+1} z^k.$$

Corollary 2.11. When $\lambda = 0$, Inequality (2.12) reduces to

$$(A-B)|\tau|[H_p'(1) + (1-\alpha)[H_p(1) - M_1]] \le 1 - \alpha.$$

Remark 2.12. When n = 0;

- $H_p(z)$ reduces to $U_p(z)$.
- Inequality (2.14) reduces to inequality (2.3) in [11].

Theorem 2.13. For $t \ge 0, 0 \le \mu \le \beta, n \in \mathbb{N} \cup \{0\}, 0 \le \alpha < 1 \text{ and } 0 \le \lambda < 1.$ Let c < 0, and m > 0. Then

$$\int_0^z (2 - U_p(t))dt$$

is in the class $P_n^*(\lambda, \alpha, \beta, \mu, t)$ if and only if the inequality

$$\lambda H_p''(1) + (1+2\lambda)H_p'(1) + (1-\alpha)\{H_p(1) - M_1\} \le 1 - \alpha \tag{2.15}$$

is satisfied.

Proof. If the generalized Bessel function is given as

$$U_p(z) = \sum_{k=2}^{\infty} \frac{(-c/4)^k}{(m)_k k!} z^k$$

then, let

$$2 - U_p(z) = 1 - \sum_{k=2}^{\infty} \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-1)!} z^{k-1}$$

which implies that

$$\int_0^z (2 - u_p(t))dt = \int_0^z \left(1 - \sum_{k=2}^\infty \frac{(-c/4)^{k-1}}{(m)_{k-1}(k-1)!} t^{k-1} \right) dt$$
$$= z - \sum_{k=2}^\infty \frac{(-c/4)^{k-1}}{(m)_{k-1}k!} z^k.$$

To show that

$$\int_0^z (2 - u_p(t))dt \in P_n^*(\lambda, \alpha, \beta, \mu, t)$$

is to show that by the condition of the class $P_n^*(\lambda, \alpha, \beta, \mu, t)$ and Theorem 3,

$$\sum_{k=2}^{\infty} \frac{(-c/4)^{k-1}}{(m)_{k-1}} k[k^2 \lambda + k(1-\lambda) - \alpha] M_k \le 1 - \alpha.$$

Let

$$L(c, m, z) = \sum_{k=2}^{\infty} \frac{(-c/4)^{k-1}}{(m)_{k-1}} k[k^2 \lambda + k(1-\lambda) - \alpha] M_k$$

then it is sufficient to prove that $L(c, m, z) \leq 1 - \alpha$

$$L(c, m, z) = \sum_{k=2}^{\infty} k(k^2 \lambda + k(1 - \lambda) - \alpha) M_k \frac{(-c/4)^{k-1}}{(m)_{k-1} k!}$$

following the same steps for the proofs of Theorems 5 and 6, then

$$L(c, m, z) = \lambda H_p''(1) + (1 + 2\lambda)H_p'(1) + (1 - \alpha)[H_p(1) - M_1]$$
(2.16)

Equation (2.16) is bounded above by $1 - \alpha$ if

$$\lambda H_n''(1) + (1+2\lambda)H_n'(1) + (1-\alpha)\{H_n(1) - M_1\} \le 1 - \alpha \tag{2.17}$$

where

$$H_p(z) = \sum_{k=0}^{\infty} \frac{(-c/4)^k}{(m)_k k!} M_{k+1} z^k.$$

Corollary 2.14. When $\lambda = 0$, inequality (2.15) reduces to $H'_p(1) + (1 - \alpha)\{H_p(1) - M_1\} \le 1 - \alpha$

Remark 2.15. When n = 0;

- $H_p(z)$ reduces to $U_p(z)$.
- Inequality (2.15) reduces to inequality (3.5) in [11].

Concluding Remark

The geometric properties of the newly defined classes $Q_n(\lambda, \alpha, \beta, \mu, t)$, $P_n(\lambda, \alpha, \beta, \mu, t)$ and $P_n^*(\lambda, \alpha, \beta, \mu, t)$ of analytic univalent functions were established. The result obtained are generalization of the existing results in literature specifically Cho et al in [10] and it also represents a step forward in understanding geometric function theory of complex analysis.

Acknowledgments

The authors sincerely appreciate the referees' time taken to review and give constructive comments which improved this research.

References

- [1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. **2004** (2004), no. 27, 1429–1436.
- [2] J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17 (1915–1916), 12–22.
- [3] R. Bernhard, Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, Göttingen, 1851.
- [4] L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. (1916), 940–955.
- [5] A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73 (2008), no. 1-2, 155–178.
- [6] A. Baricz, Geometric properties of generalized Bessel functions of complex order, Mathematica (Cluj) 48 (2006), no. 71, 13–18.
- [7] A. Baricz, Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, Vol. 1994, Springer-Verlag, 2010.
- [8] S. Bitrus and T. O. Opoola, On a class of p-valent functions with negative coefficients defined by Opoola differential operator, Open J. Math. Anal. 6 (2022), no. 2, 35–50.
- [9] S. Bitrus and T.O. Opoola, A new univalent integral operator defined by Opoola differential operator, Int. J. Nonlinear Anal. Appl. 15 (2024), no. 8, 53–64
- [10] N.E. Cho, G. Murugusundaramoorthy, and T. Janani, *Inclusion properties for certain subclasses of analytic functions associated with Bessel functions*, J. Comput. Anal. Appl. **20** (2016), no. 1.
- [11] K.K. Dixit and S.K. Pal, On a class of univalent functions related to complex order, Indian J. Pure Appl. Math. 26 (1995), no. 9, 889–896.
- [12] P.L. Duren, Univalent Functions, Springer, New York, NY, USA, 1983.
- [13] O.A. Ezekiel, S.R. Sammy, and T.O. Opoola, Ruschwey derivative and a new generalized operator involving convolution, Int. J. Math. Trends Technol. 67 (2021), no. 1, 88–100.
- [14] L.M. Fatunsin and T.O. Opoola, New results on subclasses of analytic functions defined by Opoola differential operator, J. Math. Sci. Syst. 7 (2017), 289–295.
- [15] L. M. Fatunsin and T.O. Opoola, Upper estimates of the initial coefficients of analytic functions belonging to a certain class of bi-univalent functions, Asian J. Math. Comput. Res. 29 (2022), no. 2, 1–6.
- [16] P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven, Math.-Phys. Kl. (1907), 191–210, 633–669.
- [17] A.O. Lasode and T.O. Opoola, Some properties of a family of univalent functions defined by a generalized Opoola differential operator, General Mathematics 30 (2022), no. 1.
- [18] A.O. Lasode, T.O. Opoola, I. Al-Shbeil, T.G. Shaba, and H. Alsaud, Concerning a novel integral operator and a specific category of starlike functions, Mathematics 11 (2023), 4519.
- [19] A.O. Lasode and T.O. Opoola, Some properties of a class of generalized Janowski-type q-starlike functions associated with Opoola q-differential operator and q-differential subordination, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 73 (2024), no. 2, 349–364.
- [20] D.O. Makinde, T.O. Opoola, and R.F. Efendiev, Fekete-Szegö problem for a class of starlike and convex functions involving Hadamard product of certain analytic multiplier transform, 7th Int. Conf. Control Optim. Ind. Appl., 26–28 August, 2020, Baku, Azerbaijan, pp. 248–250.
- [21] Z. Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975.
- [22] T.O. Opoola, On a subclass of univalent functions defined by a generalized differential operator, International Journal of Mathematical Analysis 11 (2017), no. 18, 869–876.
- [23] E.A. Oyekan, I.T. Awoleke, and P.O. Adepoju, Results for a new subclass of analytic functions connected with

- Opoola differential operator and Gegenbauer polynomials, Acta Univ. Apulensis 74 (2023), 23–42.
- [24] T.O. Opoola, E.A. Oyekan, S.D. Oluwasegun, and P.O. Adepoju, New subfamilies of univalent functions defined by Opoola differential operator and connected with sigmoid function, Malaya J. Mate. 11 (2023), no. S, 53–69.
- [25] C. Pommerenke, *Univalent Functions*, Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and Ruprecht, 1975.
- [26] C. Ramachandran, S. Annamalai, and S. Sivasubramanian, *Inclusion relations for Bessel functions for domains bounded by conical domains*, Advances in Difference Equations (2014), 1–12.
- [27] B. Richard and B.S. Gabriel, Shaum Outline Series of Differential Equations, Third edition, 2006.
- [28] M.S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), 374-408.
- [29] G.S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian Seminar, Lecture Notes in Mathematics, Vol. 1013, Springer, Berlin, 1983, pp. 362–372.
- [30] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109–116.
- [31] G.S. Timilehin, G. Mural, and Halit Orhan, Fekete Szegö problems for some subclasses of holomorphic functions defined by combination of Opoola and Babalola differential operators, Anal. Univ. Oradea Fasc. Math. 29 (2022), no. 2, 5–16.