- Gao, X., Chen, J., Feng, J. and Peng, X., 2013. Numerical and experimental investigations of the effects of the breakup of oil droplets on the performance of oil–gas cyclone separators in oil-injected compressor systems. International journal of refrigeration, 36(7), pp.1894-1904. https://doi.org/10.1016/j.ijrefrig.2013.06.004.
- Markt, D.P., Pathak, A. and Raessi, M., 2018. Advanced computational simulations of surface impingement of a train of ethanol drops: A pathway to developing spray-wall interaction submodels. Computing in Science & Engineering, 20(4), pp.56-65. DOI: 10.1109/MCSE.2018.042781326.
- Park, D. and Go, J.S., 2020. Design of cyclone separator critical diameter model based on machine learning and cfd. Processes, 8(11), p.1521.https://doi.org/10.3390/pr8111521
- Parvaz, F., Hosseini, S.H., Elsayed, K. and Ahmadi, G., 2018. Numerical investigation of effects of inner cone on flow field, performance and erosion rate of cyclone separators. Separation and Purification Technology, 201, pp. 223-237. https://doi.org/10.1016/j.seppur.2018.03.001.
- Dorfeshan. M, Moghaddam. S, Parvaz. F., 2025. The Impression of Roughness on Flow Pattern and Performance of Axial Gas Cyclone Along with Erosion Rate. Journal of Gas Technology, 9(2), pp. 70-87. https://doi.org/20.1001.1/jgt.2025.2057137.1054.
- Izadi, M., Makvand, A.M., Assareh, E. and Parvaz, F., 2020. Optimizing the design and performance of solid–liquid separators. International Journal of Thermofluids, 5, p.100033. https://doi.org/10.1016/j.ijft.2020.100033.
- Vahedi, S.M., Parvaz, F., Kamali, M. and Jafari Jebeli, H., 2018. Numerical investigation of the impact of inlet channel numbers on the flow pattern, performance, and erosion of gas-particle cyclone. Iranian Journal of Oil and Gas Science and Technology, 7(4), pp.59-78. https://ijogst.put.ac.ir/article_57757.html.
- Parvaz, F., 2024. The effect of curves of tangential channel on gas cyclone performance. Computational Methods in Engineering Sciences, 1(4), pp.9-18. https://doi.org/10.22034/cmes.2024.2024131.1022.
- Parvaz, F., Rafee, R. and Talebi, F., 2018. Effects of the Outlet Pipe Diameter on the Performance of Aerocyclone in Gas Droplet Two-Phase Flow. Journal of Mechanical Engineering, 48, pp. 45–53. https://tumechj.tabrizu.ac.ir/article_7816.html.
- Vahedi, S.M., Parvaz, F., Rafee, R. and Khandan Bakavoli, M., 2018. Computational fluid dynamics simulation of the flow patterns and performance of conventional and dual-cone gas-particle cyclones. Journal of Heat and Mass Transfer Research, 5(1), pp. 27-38. https://doi.org/10.22075/jhmtr.2017.11918.1170.
- Parvaz, F., Vahedi, S.M. and Khandan, M., 2018. Numerical investigation of the effects of geometry variation on the flow pattern and performance of Gas-Particle cyclones. Iranian Journal of Mechanical Engineering Transactions of ISME, 19(4), pp.101-122.
- Dehdarinejad. E, Hossein. S, Parvaz. F, Dehdarinejad. M, Ahmadi. G, Olazar, M., 2026. Comprehensive study on the role of wall roughness in square cyclone performance : Flow field , erosion rate , and separation efficiency. Chemical Engineering Science, 321, Part B, p.122860. https://doi.org/10.1016/j.ces.2025.122860
- Parvaz, F., Hosseini, S.H., Bastan, A.R., Foroozesh, J., Babaoğlu, N.U., Elsayed, K. and Ahmadi, G., 2023. Influence of gas exhaust geometry on flow pattern, performance, and erosion rate of a gas cyclone. Korean Journal of Chemical Engineering, 40(7), pp. 1587-1597. https://doi.org/10.1007/s11814-023-1430-2.
- Elsayed, K., Parvaz, F., Hosseini, S.H. and Ahmadi, G., 2020. Influence of the dipleg and dustbin dimensions on performance of gas cyclones: An optimization study. Separation and Purification Technology, 239, p.116553. https://doi.org/10.1016/j.seppur.2020.116553.
- Parvaz, F., Hosseini, S.H., Elsayed, K. and Ahmadi, G., 2020. Influence of the dipleg shape on the performance of gas cyclones. Separation and Purification Technology, 233, p.116000. https://doi.org/10.1016/j.seppur.2019.116000.
- Vahedi, S.M., Parvaz, F., Khandan, B.M. and Kamali, M., 2020. Effect of Surface Roughness on Vortex Length and Efficiency of Gas-oil Cyclones through CFD Modelling. Iranian Journal of Oil and Gas Science and Technology, 9, pp. 68–84. https://doi.org/10.22050/ijogst.2018.102377.1417.
- Dehdarinejad, E., Bayareh, M., Parvaz, F., Hosseini, S.H. and Ahmadi, G., 2023. Performance analysis of a gas cyclone with a converging-diverging vortex finder. Chemical Engineering Research and Design, 193, pp.587-599. https://doi.org/10.1016/j.cherd.2023.04.012.
- Dehdarinejad, E., Parvaz, F., Hosseini, S.H., Ahmadi, G. and Elsayed, K., 2023. Performance analysis of a gas cyclone with a dustbin inverted hybrid solid cone. Aerosol Science and Technology, 57(9), pp.911-924. https://doi.org/10.1080/02786826.2023.2217873.
- Foroozesh, J., Parvaz, F., Hosseini, S.H., Ahmadi, G., Elsayed, K. and Babaoğlu, N.U., 2021. Computational fluid dynamics study of the impact of surface roughness on cyclone performance and erosion. Powder Technology, 389, pp.339-354. https://doi.org/10.1016/j.powtec.2021.05.041.
- Babaoğlu, N.U., Parvaz, F., Foroozesh, J., Hosseini, S.H., Ahmadi, G. and Elsayed, K., 2023. Geometry optimization of axial cyclone for high performance and low acoustic noise. Powder Technology, 427, p.118738. https://doi.org/10.1016/j.powtec.2023.118738.
- Babaoğlu, N.U., Parvaz, F., Hosseini, S.H., Elsayed, K. and Ahmadi, G., 2021. Influence of the inlet cross-sectional shape on the performance of a multi-inlet gas cyclone. Powder Technology, 384, pp.82-99. https://doi.org/10.1016/j.powtec.2021.02.008.
- Dehdarinejad, E., Bayareh, M. and Ashrafizaadeh, M., 2021. A numerical study on combined baffles quick-separation device. International Journal of Chemical Reactor Engineering, 19(5), pp.515-526. https://doi.org/10.1515/ijcre-2021-0007.
- Dehdarinejad, E., Bayareh, M. and Ashrafizaadeh, M., 2022. Impact of cone wall roughness on turbulence swirling flow in a cyclone separator. Chemical Papers, 76(9), pp. 5579-5599. https://doi.org/10.1007/s11696-022-02261-6.
- Bayareh, M. and Dehdarinejad, E., 2022. Impact of Baffle and Cone Roughness on the Performance of a Solid-gas Separator Cyclone. In 41st ISTANBUL International Conference on Advances in Science, Engineering & Technology (IASET-22), pp. 94–100. https://doi.org/10.17758/dirpub11.dir0522123.
- Kumar, M., Prakash, O. and Brar, L.S., 2025. Analyzing the impact of inclined single and multi-inlet configurations on the turbulent flow field in cyclone separators using large-eddy simulation. Separation and Purification Technology, p.134111. https://doi.org/10.1016/j.seppur.2025.134111.
- Vivek, R., Venkatesh, S. and Babu, K.S., 2025. Investigation on flow pattern and performance of square and cylindrical cyclone by experimental and numerical approach. Powder Technology, p.121427. https://doi.org/10.1016/j.powtec.2025.121427.
- Dehdarinejad, E. and Bayareh, M., 2022. Performance improvement of a cyclone separator using spiral guide vanes with variable pitch length. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(11), p.516. https://doi.org/10.1007/s40430-022-03788-1.
- Dehdarinejad, E. and Bayareh, M., 2023. Analysis of the vortical flow in a cyclone using four vortex identification methods. Powder Technology, 428, p.118897. https://doi.org/10.1016/j.powtec.2023.118897.
- Dehdarinejad, E. and Bayareh, M., 2023. Experimental and numerical investigation on the performance of a gas-solid cyclone with twisted baffles and roughened cone surface. Powder Technology, 420, p.118401. https://doi.org/10.1016/j.powtec.2023.118401.
- Dehdarinejad, E. and Bayareh, M., 2021. An overview of numerical simulations on gas‐solid cyclone separators with tangential inlet. ChemBioEng Reviews, 8(4), pp.375-391. https://doi.org/10.1002/cben.202000034.
- Dehdarinejad, E. and Bayareh, M., 2023. Performance analysis of a novel cyclone separator using RBFNN and MOPSO algorithms. Powder Technology, 426,118663. https://doi.org/10.1016/j.powtec.2023.118663.
- Dehdarinejad, E. and Bayareh, M., 2023. Effect of a new pattern of surface roughness on flow field and erosion rate of a cyclone. International Journal of Chemical Reactor Engineering, 21(2),153-167. https://doi.org/10.1515/ijcre-2022-0064.
- Dehdarinejad, E. and Bayareh, M., 2022. Impact of non-uniform surface roughness on the erosion rate and performance of a cyclone separator. Chemical Engineering Science, 249,117351. https://doi.org/10.1016/j.ces.2021.117351.
- Dehdarinejad, E., Bayareh, M. and Ashrafizaadeh, M., 2022. Impact of cone wall roughness on turbulence swirling flow in a cyclone separator. Chemical Papers, 76(9), pp.5579-5599. https://doi.org/10.1007/s11696-022-02261-6.
- Fu, S., Tao, L., Shen, Z., Xu, M., Yang, D., Hu, Y. and Zhou, F., 2025. Effects of helical guide vanes on droplet behavior and separation performance in cyclone separators. Chemical Engineering and Processing-Process Intensification, 209,110197. https://doi.org/10.1016/j.cep.2025.110197.
- Dai, R., Fu, S. and Yuan, H., 2024. Study on the wall film behavior and droplet catching performance of a micro cyclone in hydrogen fuel cells. International Journal of Hydrogen Energy, 61,125-136. https://doi.org/10.1016/j.ijhydene.2024.02.183.
- Cao, G., Sun, G., Yuan, S. and Wu, Y., 2025. Study on the influence of spiral guide vanes on gas/particle flow characteristics in FCC cyclone separator. Separation and Purification Technology, 353,128352. https://doi.org/10.1016/j.seppur.2024.128352.
- Sun, Z., Yang, H., Zhang, K., Wang, Z., Hong, Z. and Yang, G., 2024. Self-cleaning effect and secondary swirling clean gas for suppressing particle deposition on vortex finder of gas cyclones. Particuology, 90,72-87. https://doi.org/10.1016/j.partic.2023.11.021.
- Barua, S., Batcha, M.F.M., Mohammed, A.N., Saif, Y., Al-Alimi, S., Al-fakih, M.A. and Zhou, W., 2024. Numerical Investigation of Inlet Height and Width Variations on Separation Performance and Pressure Drop of Multi-Inlet Cyclone Separators. Processes, 12(9),1820. https://doi.org/10.3390/pr12091820.
- Madaliev, M., Abdulkhaev, Z., Khusanov, Y., Mirzababayeva, S. and Abobakirova, Z., 2024. Numerical study of highly efficient centrifugal cyclones. Acta hydrotechnica, 37(67), pp.137-151. https://doi.org/10.15292/acta.hydro.2024.08.
- Samadi, M., Mesbah, M. and Majidi, S., 2024. A novel approach to designing compact cyclones for efficient natural gas filtration. Powder Technology, 448, p.120259. https://doi.org/10.1016/j.powtec.2024.120259.
- Tang, Y., Xie, N., He, Y., Zhou, Y., Li, Z. and Wang, G., 2024. Study on the performance of downhole spiral-cyclone coupling separator for natural gas hydrate. Advanced Powder Technology, 35(10),104638. https://doi.org/10.1016/j.apt.2024.104638.
- Sun, Z., Yang, H., Zhang, K., Yan, Z., Su, N., Li, K. and Yang, G., 2024. 3D-printed elliptical cyclone separator with additional self-excited force field for enhancing the gas-solid separation. Advanced Powder Technology, 35(7),104496. https://doi.org/10.1016/j.apt.2024.104496.
- Zhao, J., Hao, X., Guo, X., Gao, F., Fan, J., Zhang, P. and Chen, G., 2025. Effect of local erosion on flow pattern and particle self-rotation in a cyclone separator. Advanced Powder Technology, 36(7),104949. https://doi.org/10.1016/j.apt.2025.104949.
- Liang, Y., Cheng, T., Li, Q., Liu, J., Li, Q., Li, J., Ma, S., Jiang, X., Wang, H. and Fu, P., 2024. CFD-DEM simulation of cyclone self-rotation drying: Particle high-speed self-rotation and heat transfer. Energy, 290,130277. https://doi.org/10.1016/j.energy.2024.130277.
- Hoffmann, A.C., Stein, L.E., 2008. Gas cyclones and swirl tubes: Principles, Des. Oper. 2nd Ed. Springer. https://doi.org/10.1007/978-3-540-74696-6.
- Griffiths, W.D. and Boysan, F., 1996. Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers. Journal of Aerosol Science, 27(2),281-304. https://doi.org/10.1016/0021-8502(95)00549-8.
- Bogodage, S.G. and Leung, A.Y.T., 2016. Improvements of the cyclone separator performance by down-comer tubes. Journal of Hazardous Materials, 311, pp.100-114. https://doi.org/10.1016/j.jhazmat.2016.02.072.
- Bogodage, S.G. and Leung, A.Y., 2015. CFD simulation of cyclone separators to reduce air pollution. Powder Technology, 286,488-506. https://doi.org/10.1016/j.powtec.2015.08.023.
- Cortes, C. and Gil, A., 2007. Modeling the gas and particle flow inside cyclone separators. Progress in energy and combustion Science, 33(5),409-452. https://doi.org/10.1016/j.pecs.2007.02.001.
- Zhao, B., 2005. Development of a new method for evaluating cyclone efficiency. Chemical Engineering and Processing: Process Intensification, 44(4),447-451. https://doi.org/10.1016/j.cep.2004.06.007.
- Theodore, L. and Paola, V.D., 1980. Predicting cyclone efficiency. Journal of the Air Pollution Control Association, 30(10),1132-1133. https://doi.org/10.1080/00022470.1980.10465160.
- Lapple, C.E., 1950. Gravity and centrifugal separation. American Industrial Hygiene Association Quarterly, 11(1),40-48. https://doi.org/10.1080/00968205009344283.
- Dirgo, J. and Leith, D., 1985. Cyclone collection efficiency: comparison of experimental results with theoretical predictions. Aerosol science and technology, 4(4),401-415. https://doi.org/10.1080/02786828508959066.
- Gimbun, J., Chuah, T.G., Choong, T.S. and FakhrúL-Razi, A., 2006. Evaluation on empirical models for the prediction of cyclone efficiency. Journal-The institution of Engineers, Malaysia, 67(3),54-58. https://www.academia.edu/19574858/Evaluation_on_empirical_models_for_the_prediction_of_cyclone_efficiency.
- Xiang, R., Park, S.H. and Lee, K.W., 2001. Effects of cone dimension on cyclone performance. Journal of Aerosol Science, 32(4),549-561. https://doi.org/10.1016/S0021-8502(00)00094-X.
- Leith, D. and Mehta, D., 1973. Cyclone performance and design. Atmospheric Environment (1967), 7(5),527-549. https://doi.org/10.1016/0004-6981(73)90006-1.
- Wan, G., Sun, G., Xue, X. and Shi, M., 2008. Solids concentration simulation of different size particles in a cyclone separator. Powder technology, 183(1),94-104. https://doi.org/10.1016/j.powtec.2007.11.019.
- Xue, X., Sun, G., Wan, G. and Shi, M., 2007. Numerical simulation of particle concentration in a gas cyclone separator. Petroleum Science, 4(3),76-83. https://doi.org/10.1007/s12182-007-0013-x.
- Mothe, H. and Loffler, F., 1988. Prediction of Particle Removal in Cyclone Separator. International Journal of Chemical Engineering, 28,231-240.
- Danckwerts, P.V., 1995. Continuous flow systems. Distribution of residence times. Chemical engineering science, 50(24),3857-3866. https://doi.org/10.1016/0009-2509(96)81811-2.
- Iozia, D.L. and Leith, D., 1990. The logistic function and cyclone fractional efficiency. Aerosol Science and Technology, 12(3),598-606. https://doi.org/10.1080/02786829008959373.
- Kim, J.C. and Lee, K.W., 1990. Experimental study of particle collection by small cyclones. Aerosol Science and Technology, 12(4),1003-1015. https://doi.org/10.1080/02786829008959410.
- Clift, R., Ghadiri, M. and Hoffman, A.C., 1991. A critique of two models for cyclone performance. AIChE Journal, 37(2),285-289. https://doi.org/10.1002/aic.690370217.
- Muschelknautz, U. and Muschelknautz, E., 1999. Separation efficiency of recirculating cyclones in circulating fluidized bed combustions. VGB PowerTech, 4,99. https://www.mkengineering.de/english/pdf/VGBZWSEN.PDF.
- Muschelknautz, U. and Muschelknautz, E., 1999. Improvements of cyclones in CFB power plants and quantitative estimations of their effects on the boilers solids inventory. https://www.osti.gov/etdeweb/biblio/20054162.
- Hoffmann, A.C. and Stein, L.E., 2008. How cyclones work. In Gas Cyclones and Swirl Tubes: Principles, Design and Operation (pp. 37-48). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74696-6.
- Hoffmannc, A.C., Van Santen, A., Allen, R.W.K. and Clift, R., 1992. Effects of geometry and solid loading on the performance of gas cyclones. Powder Technology, 70(1),83-91. https://doi.org/10.1016/0032-5910(92)85058-4.
- Dietz, P.W., 1981. Collection efficiency of cyclone separators. AIChE Journal, 27(6),888-892. https://doi.org/10.1002/aic.690270603.
- Patterson, P.A. and Munz, R.J., 1996. Gas and particle flow patterns in cyclones at room and elevated temperatures. The Canadian Journal of Chemical Engineering, 74(2),213-221. https://doi.org/10.1002/cjce.5450740206.
- Stairmand, C.J., 1951. The design and performance of cyclone separators. Transactions of the Institution of Chemical Engineers, 29,356-362. https://cir.nii.ac.jp/crid/1571698599847452416.
- Salcedo, R.L. and Coelho, M.A., 1999. Turbulent dispersion coefficients in cyclone flow: An empirical approach. The Canadian Journal of Chemical Engineering, 77(4),609-617. https://doi.org/10.1002/cjce.5450770401.
- Zhao, B., Wang, D., Su, Y. and Wang, H.L., 2020. Gas-particle cyclonic separation dynamics: modeling and characterization. Separation & Purification Reviews, 49(2),112-142. https://doi.org/10.1080/15422119.2018.1528278.
- Barth, W., 1956. Design and layout of the cyclone separator on the basis of new investigations. Warme Kraft, 8(1), p.9.
- Enliang, L. and Yingmin, W., 1989. A new collection theory of cyclone separators. AIChE Journal, 35(4),666-669. https://doi.org/10.1002/aic.690350419.
- Ray, M.B., Hoffmann, A.C. and Postma, R.S., 2000. Performance of different analytical methods in evaluating grade efficiency of centrifugal separators. Journal of aerosol science, 31(5), 563-581. https://doi.org/10.1016/S0021-8502(99)00543-1.
- Gil, A., Romeo, L.M. and Cortés, C., 2001. Cold flow model of a PFBC cyclone. Powder technology, 117(3),207-220. https://doi.org/10.1016/S0032-5910(00)00371-5.
- Zhao, B.I.N.G.T.A.O., 2004. A theoretical approach to pressure drop across cyclone separators. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 27(10),1105-1108. https://doi.org/10.1002/ceat.200402089.
- McK, R., 1949. Fundamentals of cyclone design and operation. Proceedings of the Australian Institute of Mining and Metallurgy, 152,203. https://cir.nii.ac.jp/crid/1573668924879693312.
- Shephered, C.B. and Lapple, C.E., 1939. Flow pattern and pressure drop in cyclone dust collectors. Industrial & Engineering Chemistry, 31(8),972-984. https://doi.org/10.1021/ie50356a012.
- Stairmand, C.J., 1949. Pressure drop in cyclone separators. 168, p.409.
- Basu, P., 2006. Gas–Solid Separators. In Combustion and Gasification in Fluidized Beds (pp. 381-416). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781420005158-12/gas%E2%80%93solid-separators-prabir-basu.
- Ji, Z., Xiong, Z., Wu, X., Chen, H. and Wu, H., 2009. Experimental investigations on a cyclone separator performance at an extremely low particle concentration. Powder Technology, 191(3),254-259. https://doi.org/10.1016/j.powtec.2008.10.015.
- Casal, J. and JM, M.B., 1983. A better way to calculate cyclone pressure drop. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL83X0128572.
- McK, R., 1949. Fundamentals of cyclone design and operation. Aust. Inst. Mining Met., 152, p. 203. https://cir.nii.ac.jp/crid/1573668924879693312.
- Belkner, J., Leineweber, J., Hein, G., Stauffenberg, J., Barth, A., Kissinger, T., Manske, E. and Fröhlich, T., 2025. An integrated exposure and measurement tool for 5-DOF direct laser writing based on chromatic differential confocal sensing. Journal of the European Optical Society-Rapid Publications, 21(1),27. https://doi.org/10.1051/jeos/2025017.
- Kuo, K.Y. and Tsai, C.J., 2001. On the theory of particle cutoff diameter and collection efficiency of cyclones. Aerosol and air quality research, 1(1),47-56. https://doi.org/10.4209/aaqr.2001.06.0005.
- MOORE, M.E. and McFARLAND, A.R., 1990. Design of Stairmand-type sampling cyclones. American Industrial Hygiene Association Journal, 51(3),151-159. https://doi.org/10.1080/15298669091369475.
- Trefz, M. and Muschelknautz, E., 1993. Extended cyclone theory for gas flows with high solids concentrations. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 16(3),153-160. https://doi.org/10.1002/ceat.270160303.
- Gil, A., Romeo, L.M. and Cortes, C., 2002. Effect of the solid loading on a PFBC cyclone with pneumatic extraction of solids. Chemical engineering & technology, 25(4), 407-415. https://doi.org/10.1002/1521-4125(200204)25:4%3C407::AID-CEAT407%3E3.0.CO;2-4.
- Fassani, F.L. and Goldstein Jr, L., 2000. A study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency. Powder Technology, 107(1-2),60-65. https://doi.org/10.1016/S0032-5910(99)00091-1.
- Kang, S.K., Kwon, T.W. and Kim, S.D., 1989. Hydrodynamic characteristics of cyclone reactors. Powder technology, 58(3), pp. 211-220. https://doi.org/10.1016/0032-5910(89)80116-0.
- Yuu, S., Jotaki, T., Tomita, Y. and Yoshida, K., 1978. The reduction of pressure drop due to dust loading in a conventional cyclone. Chemical Engineering Science, 33(12), 1573-1580. https://doi.org/10.1016/0009-2509(78)85132-X.
- KIMURA, N., HASEGAWA, Z. and AKAMATSU, T., 1972. Dust collection characteristics of collectron. Journal of the Research Association of Powder Technology, Japan, 9(6),392-398. https://doi.org/10.4164/sptj1964.9.392.
- Ter Linden, A.J., 1949. Investigations into cyclone dust collectors. Proceedings of the Institution of Mechanical Engineers, 160(1),233-251. https://doi.org/10.1243/PIME_PROC_1949_160_025_02.
- Alexander, R.M., 1988. Elastic mechanisms in animal movement. The Cambridge University. https://www.cambridge.org/tf/universitypress/subjects/life-sciences/zoology/elastic-mechanisms-animal-movement.
- Häfner, H., Riecher-Rössler, A., Hambrecht, M., Maurer, K., Meissner, S., Schmidtke, A., Fätkenheuer, B., Löffler, W. and van der Heiden, W., 1992. IRAOS: an instrument for the assessment of onset and early course of schizophrenia. Schizophrenia research, 6(3),209-223. https://doi.org/10.1016/0920-9964(92)90004-O.
- Derksen, J.J., Sundaresan, S. and Van den Akker, H.E.A., 2006. Simulation of mass-loading effects in gas–solid cyclone separators. Powder technology, 163(1-2),59-68. https://doi.org/10.1016/j.powtec.2006.01.006.
- Qian, F., Huang, Z., Chen, G. and Zhang, M., 2007. Numerical study of the separation characteristics in a cyclone of different inlet particle concentrations. Computers & chemical engineering, 31(9),1111-1122. https://doi.org/10.1016/j.compchemeng.2006.09.012.
- Hugi, E. and Reh, L., 2000. Focus on solids strand formation improves separation performance of highly loaded circulating fluidized bed recycle cyclones. Chemical Engineering and Processing: Process Intensification, 39(3),263-273. https://doi.org/10.1016/S0255-2701(99)00072-0.
- Hoffmann, A.C., De Jonge, R., Arends, H. and Hanrats, C., 1995. Evidence of the ‘natural vortex length’and its effect on the separation efficiency of gas cyclones. Filtration & Separation, 32(8),799-804. https://doi.org/10.1016/S0015-1882(97)84131-6.
- Comas, M., Comas, J., Chetrit, C. and Casal, J., 1991. Cyclone pressure drop and efficiency with and without an inlet vane. Powder technology, 66(2), 143-148. https://doi.org/10.1016/0032-5910(91)80095-Z.
- Hoffmann, A.C., Arends, H. and Sie, H., 1991. An experimental investigation elucidating the nature of the effect of solids loading on cyclone performance. Filtration & separation, 28(3), 188-193. https://doi.org/10.1016/0015-1882(91)80074-F.
- Mothes, H. and Löffler, F., 1985. Motion and deposition of particles in cyclones. German chemical engineering, 8(4),223-233. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9230220.
- Baskakov, A.P., Dolgov, V.N. and Goldobin, Y.M., 1990. Aerodynamics and heat transfer in cyclones with particle-laden gas flow. Experimental Thermal and Fluid Science, 3(6),597-602. https://doi.org/10.1016/0894-1777(90)90076-J.
- Huang, Y., Mo, X., Yang, H., Zhang, M. and Lv, J., 2016, July. Effects of Cyclone Structures on the Pressure Drop Across Different Sections in Cyclone Under Gas–Solid Flow. In Clean Coal Technology and Sustainable Development: Proceedings of the 8th International Symposium on Coal Combustion (pp. 301-307). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-2023-0_40.
- El Ashry, Y., Abdelrazek, A.M. and Elshorbagy, K.A., 2018. Numerical and experimental study on the effect of solid particle sphericity on cyclone pressure drop. Separation Science and Technology, 53(15),2500-2516. https://doi.org/10.1080/01496395.2018.1458878.
- Hwang, I.S., Jeong, H.J. and Hwang, J., 2019. Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model. Powder Technology, 356,129-138. https://doi.org/10.1016/j.powtec.2019.08.008.
- Li, S., Yang, H., Wu, Y.U.X.I.N. and Zhang, H., 2011. An Improved Cyclone Pressure Drop Model at High Inlet Solid Concentrations. Chemical engineering & technology, 34(9),1507-1513. https://doi.org/10.1002/ceat.201100087.
- Wu, X., Liu, J., Xu, X. and Xiao, Y., 2011. Modeling and experimental validation on pressure drop in a reverse-flow cyclone separator at high inlet solid loading. Journal of Thermal Science, 20(4),343-348. https://doi.org/10.1007/s11630-011-0479-0.
- Nakhaei, M., Lu, B., Tian, Y., Wang, W., Dam-Johansen, K. and Wu, H., 2020. CFD modeling of gas–solid cyclone separators at ambient and elevated temperatures. Processes, 8(2),228. https://doi.org/10.3390/pr8020228.
- Dewil, R., Baeyens, J. and Caerts, B., 2008. CFB cyclones at high temperature: Operational results and design assessment. Particuology, 6(3),149-156. https://doi.org/10.1016/j.partic.2008.01.002.
- Bohnet, M., 1995. Influence of the gas temperature on the separation efficiency of aerocyclones. Chemical Engineering and Processing: Process Intensification, 34(3),151-156. https://doi.org/10.1016/0255-2701(94)04001-X.
- Patterson, P.A. and Munz, R.J., 1989. Cyclone collection efficiencies at very high temperatures. The Canadian Journal of Chemical Engineering, 67(2),321-328. https://doi.org/10.1002/cjce.5450670219.
- Gimbun, J., 2008. CFD simulation of aerocyclone hydrodynamics and performance at extreme temperature. Engineering Applications of Computational Fluid Mechanics, 2(1),22-29. https://doi.org/10.1080/19942060.2008.11015208.
- Rajan, K.S., Dhasandhan, K., Srivastava, S.N. and Pitchumani, B., 2008. Studies on gas–solid heat transfer during pneumatic conveying. International Journal of Heat and Mass Transfer, 51(11-12), pp. 2801-2813. https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.042.
- Szekely, J. and Carr, R., 1966. Heat transfer in a cyclone. Chemical Engineering Science, 21(12), 1119-1132. https://doi.org/10.1016/0009-2509(66)85033-9.
- Danyluk, S., Shack, W.J., Park, J.Y. and Mamoun, M.M., 1980. The erosion of a type 310 stainless steel cyclone from a coal gasification pilot plant. Wear, 63(1),95-104. https://doi.org/10.1016/0043-1648(80)90076-9.
- McK, R., 1949. Fundamentals of cyclone design and operation. Proceedings of the Australian Institute of Mining and Metallurgy, 152,203. https://cir.nii.ac.jp/crid/1573668924879693312.
- Bryant, H.S., Silverman, R.W. and Zenz, F.A., 1983. How dust in gas affects cyclone pressure drop. Hydrocarbon Process.; (United States), 62(6).
- Mothes, H., 1988. Prediction removal in cyclone separators. International Journal of Chemical Engineering, 28, pp. 231–240.
- Ji, Z., Wu, X. and Shi, M., 1993. Experimental research on the natural turning length in the cyclone. Acta Petrolei Sinica (Petroleum Processing Section), 9,86-86.
- Hoffmann, A.C., De Groot, M., Peng, W., Dries, H.W.A. and Kater, J., 2001. Advantages and risks in increasing cyclone separator length. AIChE journal, 47(11),2452-2460. https://doi.org/10.1002/aic.690471109.
- Qian, F. and Zhang, M., 2005. Study of the natural vortex length of a cyclone with response surface methodology. Computers & chemical engineering, 29(10), pp. 2155-2162. https://doi.org/10.1016/j.compchemeng.2005.07.011.
- Maclean, P., Brown, J.D., Hoy, H.D., Cantwell, J.E., 1978. UK patent application GB 2011285A, United Kingdom.
- Li, X., Song, J., Sun, G., Jia, M., Yan, C., Yang, Z. and Wei, Y., 2016. Experimental study on natural vortex length in a cyclone separator. The Canadian Journal of Chemical Engineering, 94(12),2373-2379. https://doi.org/10.1002/cjce.22598.
|