| تعداد نشریات | 21 |
| تعداد شمارهها | 664 |
| تعداد مقالات | 9,701 |
| تعداد مشاهده مقاله | 69,060,665 |
| تعداد دریافت فایل اصل مقاله | 48,503,031 |
A Biogeography-based optimization algorithm for data clustering | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 11 آبان 1404 اصل مقاله (500.81 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.33516.4995 | ||
| نویسندگان | ||
| Mohammadreza Shahriari* 1؛ Arash Zaretalab2 | ||
| 1Faculty of Industrial Management, South Tehran Branch, Islamic Azad University, Tehran, Iran | ||
| 2Department of Business Management, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran | ||
| تاریخ دریافت: 21 اسفند 1402، تاریخ بازنگری: 01 اردیبهشت 1403، تاریخ پذیرش: 07 اردیبهشت 1403 | ||
| چکیده | ||
| Data clustering is a pivotal technique in data mining, essential for organizing data into meaningful groups across diverse domains such as engineering, medicine, and biology. This study introduces a Biogeography-based Optimization (BBO) algorithm to optimize data partitioning by effectively navigating the solution space towards optimal cluster configurations. The algorithm leverages migration and mutation mechanisms inspired by natural biogeography to enhance clustering accuracy. The proposed method is evaluated using various datasets of different scales and complexities, and its performance is benchmarked against conventional clustering algorithms, including K-means, Genetic Algorithm (GA), Simulated Annealing (SA), Ant Colony Optimization (ACO), and Particle Swarm Optimization (PSO). Comprehensive comparative analyses demonstrate that BBO not only achieves superior clustering accuracy but also exhibits robustness in handling diverse data distributions, underscoring its potential as a valuable tool in data clustering applications. | ||
| کلیدواژهها | ||
| Data Clustering؛ Biogeography-based Optimization؛ k-means؛ ACO؛ PSO؛ GA | ||
| مراجع | ||
|
[1] E. Ahmady, N. Ahmady, T. Allahviranloo, and M. Shahriari, A multi-step method to solve bipolar-fuzzy initial value problem, Comput. Appl. Math. 43 (2024), no. 1, 74. [2] M. Akram, I. Ullah, T. Allahviranloo, and M. Shahriari, An integrated weighted multi-criteria decision making method using Z-number and its application in failure modes and effect analysis, J. Ind. Inf. Integ. 30 (2025), 100805. [3] C.L. Blake and C.J. Merz, UCI repository of machine learning databases, http://www.ics.uci.edu/ mlearn/MLRepository.html, 1998. [4] D. Cao and K.J. Cios, GAKREM: a novel hybrid clustering algorithm, Inf. Sci. 178 (2008), 4205–4227. [5] L.Y. Chuang, C.J. Hsiao, and C.H. Yang, Chaotic particle swarm optimization for data clustering, Expert Syst. Appl. 38 (2011), 14555–14563. [6] M.C. Cowgill, R.J. Harvey, and L.T. Watson, A genetic algorithm approach to cluster analysis, Comput. Math. Appl. 37 (1999), 99–108. [7] T. Cura, A particle swarm optimization approach to clustering, Expert Syst. Appl. 39 (2012), 1582–1588. [8] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis, New York: Wiley, 1973. [9] M. Fathian, B. Amiri, and A. Marcosi, Application of honey-bee mating optimization algorithm on clustering, Appl. Math. Comput. 190 (2007), 1502–1513. [10] S. Garcia, A. Fernández, J. Luengo, and F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power, Inf. Sci. 180 (2010), 2044–2064. [11] F. Hosseinzadeh Lotfi, T. Allahviranloo, W. Pedrycz, M. Shahriari, H. Sharafi, and S. Razipour GhalehJough, Foundations of decision, In: Fuzzy decision analysis: multi attribute decision making approach, Stud. Comput. Intell. Springer, Cham. 1121 (2023), 1–56. [12] F. Hosseinzadeh Lotfi, T. Allahviranloo, W. Pedrycz, M. Shahriari, H. Sharafi and S. Razipour GhalehJough, Weight determination methods in fuzzy environment, Fuzzy decision analysis: multi attribute decision making approach, Stud. Comput. Intell. Springer, Cham. 1121 (2023), 83–100. [13] F. Hosseinzadeh Lotfi, T. Allahviranloo, W. Pedrycz, M. Shahriari, H. Sharafi and S. Razipour GhalehJough, The Criteria importance through inter-criteria correlation (CRITIC) in uncertainty environment, In: Fuzzy decision analysis: multi attribute decision making approach, Stud. Comput. Intell. Springer, Cham. 1121 (2023), 309–324. [14] F. Hosseinzadeh Lotfi, T. Allahviranloo, W. Pedrycz, M. Shahriari, H. Sharafi, and S. Razipour GhalehJough, The multi-objective optimization ratio analysis (MOORA) in uncertainty environment, Fuzzy decision analysis: multi attribute decision making approach, Stud. Comput. Intell. Springer, Cham. 1121 (2023), 325–344. [15] Y.T. Kao, E. Zahara, and I.W. Kao, A hybridized approach to data clustering, Expert Syst. Appl. 34 (2008), 1754–1762. [16] U. Maulik and S. Bandyopadhyay, Genetic algorithm-based clustering technique, Pattern Recogn. 33 (2000), 1455–1465. [17] V. Mohagheghi, S.M. Mousavi, B. Valdani and M.R. Shahriari, *R&D project evaluation and project portfolio selection by a new interval type-2 fuzzy optimization approach*, Neural Comput. Appl. 28 (2017), 3869–3888. [18] T. Niknam and B. Amiri, An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis, Appl. Soft Comput. 10 (2010), 183–197. [19] R.W. Po, Y.Y. Guh and M.S. Yang, A new clustering approach using data envelopment analysis, Eur. J. Oper. Res. 199 (2009), 276–284. [20] B. Rahmanjperchkolaei, Z. Taeeb, M. Shahriari, F. Hosseinzadeh Lotfi, and S. Saati, Discrete and combinatorial optimization, T. Allahviranloo, W. Pedrycz and A. Seyyedabbasi (Eds.), Decision-making models, Elsevier, Academic Press, 2024, pp. 177–208. [21] B. Rahmanjperchkolaei, Z. Taeeb, M. Shahriari, F. Hosseinzadeh Lotfi, and S. Saati, Applied optimization problems, T. Allahviranloo, W. Pedrycz and A. Seyyedabbasi (Eds.), Decision-making models, Elsevier, Academic Press, 2024, pp. 237–299. [22] M.A. Shafiei, M.R. Shahriari, F. Lotfi Hosseinzadeh, and R. Radfar, Presenting a multi-objective mathematical model for time-cost trade off problem considering time value of money and solve it by mopso algorithm, J. New Res. Math. 4 (2018), no. 14, 35–50. [23] M.R. Shahriari, A cultural algorithm for data clustering, Int. J. Ind. Math. 8 (2016), no. 2. [24] M.R. Shahriari, Set a bi-objective redundancy allocation model to optimize the reliability and cost of the Series-parallel systems using NSGA II problem, Int. J. Ind. Math. 8 (2016), no. 3, 171–176. [25] M. Shahriari, Multi-objective optimization of discrete time-cost tradeoff problem in project networks using non-dominated sorting genetic algorithm, J. Ind. Eng. Int. 12 (2016), no. 2, 159–169. [26] M.R. Shahriari, Soft computing based on a modified MCDM approach under intuitionistic fuzzy sets, Iran. J. Fuzzy Syst. 14 (2017), no. 1, 23–41. [27] M. Shahriari, Using genetic algorithm to optimize a system with repairable components and multi-vacations for repairmen, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 2, 3139–3144. [28] M. Shahriari, Set a bi-objectives model for suppliers selection with capacity constraint and reducing lead-time with meta-heuristic algorithms, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 2, 3291–3305. [29] M. Shahriari, Using a hybrid NSGA-II to solve the redundancy allocation model of series-parallel systems, Int. J. Ind. Math. 14 (2022), no. 4, 503–513. [30] M. Shahriari, Redundancy allocation optimization based on the fuzzy universal generating function approach in the series-parallel systems, Int. J. Ind. Math. 15 (2023), no. 1, 69–77. [31] M. Shahriari, F. Hosseinzadeh Lotfi, B. Rahmanjperchkolaei, Z. Taeeb, and S. Saati, Data optimization and analysis, T. Allahviranloo, W. Pedrycz and A. Seyyedabbasi (Eds.), Decision-making models, Elsevier, Academic Press, 2024, pp. 209–236. [32] M. Sharifi, G. Cheragh, K. Dashti Maljaji, A. Zaretalab, and M. Shahriari, Reliability and cost optimization of a system with k-out-of-n configuration and choice of decreasing the components failure rates, Scientia Iranica, 28 (2021), no. 6, 3602–3616. [33] M. Sharifi, P. Pourkarim Guilani, and M. Shahriari, Using NSGA II algorithm for a three objectives redundancy allocation problem with k-out-of-n sub-systems, J. Optimization Industr. Eng. 9 (2016), no. 19, 87–96. [34] M. Sharifi, M.R. Shahriari, and S. Khoshniat, Availability optimization of a system with k-out-of-n sub-systems considering different types of components failure using BBQ algorithm, Int. J. Ind. Math. 11 (2019), no. 4, 239–248. [35] M. Sharifi, M.R. Shahriari and A. Zaretalab, The effects of technical and organizational activities on redundancy allocation problem with choice of selecting redundancy strategies using the memetic algorithm, Int. J. Ind. Math. 11 (2019), no. 3, 165–176. [36] P.S. Shelokar, V.K. Jayaraman, and B.D. Kulkarni, An ant colony approach for clustering, Anal. Chem. Acta 509 (2004), 187–195. [37] D. Simon, Biogeography-based optimization, IEEE Trans. Evolut. Comput. 12 (2008), no. 6, 702–713. [38] C.S. Sung and H.W. Jin, A tabu-search-based heuristic for clustering, Pattern Recogn. 33 (2000), 849–858. | ||
|
آمار تعداد مشاهده مقاله: 5 تعداد دریافت فایل اصل مقاله: 2 |
||