Int. J. Nonlinear Anal. Appl. In Press, 1–8

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2024.33837.5047

Fixed point results of Perov type contractive mappings in generalized F-metric spaces

Hamid Faraji^{a,*}, Stojan Radenović^b, Vuk Stojiljković^c

(Communicated by Ali Farajzadeh)

Abstract

The purpose of this paper is to present some fixed point results in spaces endowed with a vector-valued \mathcal{F} -metric. The results are extensions or generalizations of results proved by Perov [24]. To show the usability of our results, we present two examples.

Keywords: Fixed point, Vector-valued \mathcal{F} -metric, Weakly compatible

2020 MSC: 47H10, 54H25, 55M20

1 Introduction

Fixed point theory play a vital role for solving problems in various branches of mathematical, such as nonlinear analysis, integral and differential equations (see [5, 19, 29, 31]). There exist many interesting generalizations of metric spaces (see for example [2, 6, 7, 15, 23, 27]). In particular, Jleli et al. [17] introduced and studied the concept of \mathcal{F} -metric space as a generalization of metric space and presented the contraction mapping in \mathcal{F} -metric spaces that is generalization of the Banach contraction principle in metric spaces. (see e.g. [4, 9, 10, 11, 22] and references therein). In this work, we introduce the concept of vector-valued \mathcal{F} -metrics and establish some of fixed point theorems. The theory is illustrated with some examples.

2 Preliminaries

Let us recall [17] that \mathcal{F} be the family of all functions $f:(0,+\infty)\to\mathbb{R}$ satisfying the following conditions:

- \mathcal{F}_1) f is non-decreasing, that is, 0 < s < t implies $f(s) \le f(t)$.
- \mathcal{F}_2) For every sequence $\{\alpha_n\} \subset (0, +\infty)$, we have

$$\lim_{n\to +\infty}\alpha_n=0 \text{ if and only if } \lim_{n\to +\infty}f(\alpha_n)=-\infty.$$

Received: April 2024 Accepted: October 2024

^aDepartment of Mathematics, Islamic Azad University, South Tehran Branch, Tehran, Iran

^bFaculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd 35, Serbia

^cFaculty of Science, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Serbia

^{*}Corresponding author

Email addresses: hf.math.ac@gmail.com (Hamid Faraji), radens@beotel.rs (Stojan Radenović), vuk.stojiljkovic999@gmail.com (Vuk Stojiljković)

Definition 2.1. [17] Let X be a (nonempty) set. A function $D: X \times X \to [0, +\infty)$ is called a \mathcal{F} -metric on X if there exists $(f, L) \in \mathcal{F} \times [0, +\infty)$ such that for all $x, y \in X$ the following conditions hold:

- (D_1) D(x,y) = 0 if and only if x = y.
- $(D_2) D(x,y) = D(y,x).$
- (D_3) For every $N \in \mathbb{N}, N \geq 2$ and for every $(u_i)_i^N \subset X$ with $(u_1, u_N) = (x, y)$, we have

$$D(x,y) > 0$$
 implies $f(D(x,y)) \le f(\sum_{i=1}^{N-1} D(u_i, u_{i+1})) + L.$

In this case, D is called an \mathcal{F} -metric on X and the pair (X,D) is called an \mathcal{F} -metric space.

Example 2.2. [17] Let $X = \mathbb{R}$ and $D: X \times X \to [0, +\infty)$ be defined as follows:

$$D(x,y) = \begin{cases} (x-y)^2 & (x,y) \in [0,3] \times [0,3], \\ |x-y| & \text{otherwise,} \end{cases}$$

and let f(t) = ln(t) for all t > 0 and L = ln(3). Then, D is a \mathcal{F} -metric on X. Since $D(1,3) = 4 \ge D(1,2) + D(2,3) = 2$, Then D is not a metric on X.

Definition 2.3. [17] Let (X, D) be an \mathcal{F} -metric space and $\{y_n\}$ be a sequence in X.

- 1) A sequence $\{x_n\}$ is called \mathcal{F} -convergent to $x \in X$, if $\lim_{n \to +\infty} D(x_n, x) = 0$.
- 2) A sequence $\{x_n\}$ is called \mathcal{F} -Cauchy, if $\lim_{n,m\to+\infty} D(x_n,x_m)=0$.
- 3) A \mathcal{F} -metric space (X, D) is called \mathcal{F} -complete, if every \mathcal{F} -Cauchy sequence in X is \mathcal{F} -convergent to some element in X.

Jleli et al. in [17] proved the following fixed point theorem.

Theorem 2.4. [17] Let (X,D) be \mathcal{F} -complete \mathcal{F} -metric space and let $T:X\to X$ be a self-mapping satisfying

$$D(Tx, Ty) \le \alpha D(x, y),$$

for all $x, y \in X$ where $0 \le \alpha < 1$. Then T has a unique fixed point.

Definition 2.5. [1] Let T and S be self maps of a set X. Two self-mappings T and S are said to be weakly compatible if they commute at their coincidence points; i.e., if T(x) = S(x) for some $x \in X$, then T(S(x)) = S(T(x)).

Let T and S be weakly compatible self maps of a set X. If T and S have a unique point of coincidence w = Tx = Sx, then w is the unique common fixed point of T and S [1].

The classical Banach contraction principle was extended for contraction mappings on spaces endowed with vector-valued metrics by Perov (see e.g. [12, 13, 14, 16, 18, 20, 21, 24, 25, 26, 28, 30] and references therein).

Let X be a nonempty set. A mapping $d: X \times X \to \mathbb{R}^m$ is called a vector-valued metric on X if the following properties are satisfied:

- 1) $d(x,y) > \theta$ for all $x,y \in X$; $d(x,y) = \theta$ if and only if x = y;
- 2) d(x,y) = d(y,x) for all $x, y \in X$;
- 3) $d(x,y) \leq d(x,z) + d(z,y)$ for all $x,y,z \in X$.

A nonempty set X endowed with a vector-valued metric d is called a generalized metric space and it will be denoted by (X, d).

Remark 2.6. If $\alpha, \beta \in \mathbb{R}^m$ with $\alpha = (\alpha_1, ..., \alpha_m), \beta = (\beta_1, ..., \beta_m)$, then by $\alpha \leq \beta$ (respectively $\alpha < \beta$), we mean that $\alpha_i \leq \beta_i$ (respectively $\alpha_i < \beta_i$), for all i = 1, ..., m.

Throughout this paper we denote by $M_{m\times m}(R_+)$ the set of all $m\times m$ matrices with positive elements, by 0 the zero $m\times m$ matrix and by I the identity $m\times m$ matrix. A matrix $A\in M_{m\times m}(\mathbb{R}_+)$ is said to be matrix convergent to zero if $A^n\to 0$ as $n\to +\infty$.

Theorem 2.7. [12] Let $A \in M_{m \times m}(R_+)$. Then following assertions are equivalent

- 1. A is convergent towards zero.
- 2. $A^n \to 0$ as $n \to +\infty$.
- 3. The matrix (I A) is nonsingular and

$$(I-A)^{-1} = I + A + A^2 + \dots + A^n + \dots$$

- 4. The matrix (I A) is nonsingular and $(I A)^{-1}$ has nonnegative elements.
- 5. $A^nq \to 0$ and $qA^n \to 0$ as $n \to +\infty$, for each $q \in \mathbb{R}^m$. Where q in the first case is the column of matrices of type $m \times 1$ and in the second case q is the type of matrices of type $1 \times m$.

Example 2.8. Some examples of matrix convergent to zero are

- 1. Any matrix $A = \begin{bmatrix} a & a \\ b & b \end{bmatrix}$, where $a, b \in \mathbb{R}_+$ and a + b < 1.
- 2. Any matrix $A = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$, where $a, b \in \mathbb{R}_+$ and a + b < 1.
- 2. $A = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} \\ 0 & \frac{1}{4} \end{bmatrix}$.

Perov [24] proved the following generalization of Banach contraction principle.

Theorem 2.9. Let (X,d) be a complete generalized metric space and $T: X \to X$ be an self-mapping. Suppose there exists a matrix $A \in M_{m \times m}(\mathbb{R}_+)$ convergent to zero such that

$$d(T(x), T(y)) \leq Ad(x, y).$$

Then the following statements hold:

- 1. T has a unique fixed point x^* .
- 2. The Picard iterative sequence $x_n = T^n(x_0), n \in \mathbb{N}$ converges to x^* for all $x_0 \in X$.
- 3. $d(x_n, x^*) \leq A^n(I A)^{-1}d(x_0, x_1)$, for all $n \in \mathbb{N}$, where $A \in M_{m \times m}(R_+)$ is a matrix convergent to zero.

3 Main results

In this section of the paper, by considering the technique of Jleli et al. [17], we introduce a generalization of \mathcal{F} -metric.

Definition 3.1. Let $f: \mathbb{R}^m_+ \to \mathbb{R}^m$ be a function which satisfies the following conditions:

(F1) f is strictly increasing; for all $a = (a_i)_{i=1}^m, b = (b_i)_{i=1}^m \in \mathbb{R}_+^m$, where

$$a \prec b$$
 implies $f(a) \leq f(b)$,

(F2) For each sequence $\{a_n\} = (a_1^{(n)}, a_2^{(n)}, ..., a_m^{(n)})$ of \mathbb{R}_+^m , we have

$$\lim_{n \to +\infty} a_i^{(n)} = 0 \text{ if and only if } \lim_{n \to +\infty} b_i^{(n)}, = -\infty,$$

for every i=1,2,...,m, where $f(a_1^{(n)},a_2^{(n)},...,a_m^{(n)})=(b_1^{(n)},b_2^{(n)},...,b_m^{(n)})$. Here, \mathbb{R}_+^m is the set of all $m\times 1$ real matrix with positive elements. The set of all functions f satisfying (F1-F2) is denoted as \mathcal{F}^m .

Remark 3.2. Let $f_i \in \mathcal{F}$, for all i = 1, 2, ..., m. Define $f : \mathbb{R}^m_+ \to \mathbb{R}^m$, where $f(a_1, ..., a_m) = (f_1 a_1, f_2 a_2, ..., f_m a_m)$ for each $(a_1, ..., a_m) \in \mathbb{R}^m_+$. Then $f \in \mathcal{F}^m$.

Definition 3.3. Let X be a nonempety set and $D: X \times X \to R^m$ be a mapping. Suppose that there exists $(f,\alpha) \in \mathcal{F}^m \times R^m_+$ such that:

- (D1) For all $(x,y) \in X \times X$, $D(x,y) \succ \theta$ and $D(x,y) = \theta$ if and only if x = y (where $\theta = (0,...,0) \in \mathbb{R}^m$).
- (D2) For all $(x, y) \in X \times X$, D(x, y) = D(y, x).
- (D3) For every $(x,y) \in X \times X$, for every $N \in \mathbb{N}, N \geq 2$, and for every $(u_i)_{i=1}^N \subset X$ with $(u_1,u_N) = (x,y)$, we have

$$D(x,y) \succ 0$$
 implies $f(D(x,y)) \leq f(\sum_{i=1}^{N-1} D(u_i, u_{i+1})) + \alpha$.

Then D is called an vector valued F- metric on X and the pair (X, D) is called an generalized F-metric space. Also, if m = 1, we obtain F-metric.

Example 3.4. The following functions $f: \mathbb{R}^3_+ \to \mathbb{R}^3$ are the elements of \mathcal{F}^3 :

- $(1) f((\alpha_1, \alpha_2, \alpha_3)) = (\ln \alpha_1, \ln \alpha_2, \ln \alpha_3),$
- (2) $f((\alpha_1, \alpha_2, \alpha_3)) = (\ln \alpha_1 + \alpha_1, \ln \alpha_2 + \alpha_2, \ln \alpha_3 + \alpha_3),$
- (3) $f((\alpha_1, \alpha_2, \alpha_3)) = (\ln \alpha_1, \frac{-1}{\sqrt{\alpha_2}}, \ln \alpha_3)$

Theorem 3.5. Let (X, D) be an F-complete generalized F-metric apace and $T: X \to X$ be an self mapping on X such that

$$D(Tx, Ty) \le AD(x, y) + BD(y, Tx) + CD(x, Tx), \tag{3.1}$$

for all $x, y \in X$, where $A, B, C \in M_{m \times m}(R_+)$ and A + C converges to zero. Then T has at least one fixed point in X. If additionally, the matrix A + B converges to zero, then T has a unique fixed point in X.

Proof. Let x_0 be an arbitrary point in X. We can define a sequence $\{x_n\}$ such that $x_{n+1} = Tx_n$ for each $n \in \mathbb{N} \cup \{0\}$. From (3.1), we have

$$D(x_n, x_{n+1}) = D(Tx_{n-1}, Tx_n)$$

$$\leq AD(x_{n-1}, x_n) + BD(x_n, Tx_{n-1}) + CD(x_{n-1}, Tx_{n-1})$$

$$= (A + C)D(x_{n-1}, x_n),$$

for all $n \in \mathbb{N}$, which yields

$$D(x_n, x_{n+1}) \leq (A+C)D(x_{n-1}, x_n) \leq (A+C)^2 D(x_{n-2}, x_{n-1}) \leq \dots \leq (A+C)^n D(x_0, x_1), n \in \mathbb{N}.$$
 (3.2)

Using (3.2), we can write

$$\sum_{k=n}^{m-1} D(x_k, x_{k+1}) \leq (A+C)^n (I + (A+C) + (A+C)^2 + \dots + (A+C)^{m-n-1}) D(x_0, x_1)$$

$$\leq (A+C)^n (I - (A+C))^{-1} D(x_0, x_1), m > n.$$

Since $\lim_{n\to+\infty} (A+C)^n (I-(A+C))^{-1} D(x_0,x_1) = \theta$, for any $\delta > 0$ there exists some $n' \in \mathbb{N}$ such that

$$\theta \prec (A+C)^n (I-(A+C))^{-1} D(x_0, x_1) \prec \delta, \ n \ge n'.$$
 (3.3)

Furthermore, let $\varepsilon \succ \theta$ be fixed. Since $(f, \alpha) \in \mathcal{F}^m \times \mathbb{R}^m_+$ satisfies (D3), by (F2) it follows that there is some $\delta \succ \theta$ such that

$$\theta \prec t \prec \delta \text{ implies } f(t) \prec f(\varepsilon) - \alpha.$$
 (3.4)

By (3.3) and (3.4), we get

$$f(\sum_{k=n}^{m-1} D(x_k, x_{k+1}))) \le f((A+C)^n (I-(A+C))^{-1} D(x_0, x_1)) < f(\varepsilon) - \alpha, m > n \ge n'.$$

By (D3) and the above inequality, we obtain

$$D(x_n, x_m) > \theta, m > n > n' \text{ implies } f(D(x_n, x_m)) \prec f(\varepsilon).$$

This shows

$$D(x_n, x_m) \prec \varepsilon, m > n \ge n'$$
.

Hence, we showed that (x_n) is an \mathcal{F} -Cauchy sequence in X. Since X is \mathcal{F} -complete, there exists $x^* \in X$ such that (x_n) is \mathcal{F} -convergent to x^* , i.e, $\lim_{n \to +\infty} D(x_n, x^*) = \theta$. We shall prove that x^* is a fixed point of T. Suppose $D(Tx^*, x^*) \succ \theta$. From (D_3) for all $n \in \mathbb{N}$, we have,

$$f(D(x^*, Tx^*)) \leq f(D(x^*, Tx_n) + D(Tx_n, Tx^*)) + \alpha.$$

Using (3.1) and \mathcal{F}_1 , we obtain

$$f(D(x^*, Tx^*)) \leq f(D(x^*, x_{n+1}) + AD(x_n, x^*) + BD(x^*, Tx_n) + CD(x_n, Tx_n)) + \alpha.$$

Since $\lim_{n\to+\infty}(D(x^*,x_{n+1})+AD(x_n,x^*)+BD(x^*,Tx_n)+CD(x_n,Tx_n))=0$, from \mathcal{F}_2 , we have

$$\lim_{n \to +\infty} f(D(x^*, x_{n+1}) + AD(x_n, x^*) + BD(x^*, Tx_n) + CD(x_n, Tx_n)) + \alpha = -\infty,$$

which is a contradiction. Therefore, we have $D(Tx^*, x^*) = \theta$, i.e. $Tx^* = x^*$. Finally, we shall show that the fixed point is unique. To this end, we assume that there exists another fixed point z^* and $D(x^*, z^*) > \theta$. From (3.1), we have

$$\begin{split} D(x^*, z^*) &= D(Tx^*, Tz^*) \\ &\preceq AD(x^*, z^*) + BD(z^*, Tx^*) + CD(x^*, Tx^*) \\ &= (A + B)D(x^*, z^*). \end{split}$$

Thus $(I-A-B)D(x^*,z^*) \leq \theta$. Since A+B converges to zero, we get that I-A-B is non-singular and $(I-A-B)^{-1} \in M_{mm}(\mathbb{R}_+)$. Hence $D(x^*,z^*) \leq \theta$ which is a contradiction and hence $x^*=z^*$. \square

Corollary 3.6. Putting B = C = 0, Theorem 3.5 reduces to Perov Theorem 2.9.

In order to support Theorem 3.5, we present the following example:

Example 3.7. Let $X = [0,1] \times [0,1]$ and $D: X \times X \to \mathbb{R}^2$ be defined as follows:

$$D(x,y) = D((x_1, x_2), (y_1, y_2)) = \begin{cases} (e^{|x_1 - y_1|}, e^{|x_2 - y_2|}) & \text{if } (x_1, x_2) \neq (y_1, y_2) \\ 0 & \text{if } (x_1, x_2) = (y_1, y_2), \end{cases}$$

for each $x, y \in X$. Take $f(t_1, t_2) = (-\frac{1}{t_1}, -\frac{1}{t_2}), t_1, t_2 > 0$ and $\alpha = (1, 1)$. Then (X, D) is an generalized F-metric space.

Define $T: X \to X$ by $T((x_1, x_2)) = (\frac{1}{2}(x_1 + 1), \frac{x_2}{3})$. Suppose that $A = \begin{bmatrix} \frac{2}{3} & 0 \\ 0 & \frac{2}{3} \end{bmatrix}$, B = 0 and $C = \begin{bmatrix} \frac{3}{4} & 0 \\ 0 & \frac{3}{4} \end{bmatrix}$. Thus,

Theorem 3.5 implies that T has a unique fixed point in X. Note that (1,0) is fixed point of T.

Theorem 3.8. Let (X, D) be an F-complete generalized F-metric apace and let the mappings $T, S : X \to X$ be self-mappings on X which satisfy,

$$D(Sx, Sy) \le AD(Tx, Ty),\tag{3.5}$$

for all $x, y \in X$, where $A \in M_{mm}(R_+)$ be a nonzero matrix convergent to zero. Let T and S be weakly compatible, $S(X) \subseteq T(X)$ and T(X) is an \mathcal{F} -complete subset of X. Then T and S have a unique common fixed point in X.

Proof. We choose elements $x_0, x_1 \in X$ such that $T(x_1) = S(x_0)$. Since $S(X) \subseteq T(X)$, we can define a sequence $\{x_n\}$ such that $T(x_n) = S(x_{n-1})$ for each $n \in \mathbb{N} \cup \{0\}$. From (3.5), we have

$$D(T(x_{n+1}), T(x_n)) = D(S(x_n), S(x_{n-1}))$$

\$\times AD(T(x_n), T(x_{n-1})),\$

for all $n \in \mathbb{N}$. Inductively, we get

$$D(T(x_{n+1}), T(x_n)) \le A^n D(T(x_1), T(x_0)), \tag{3.6}$$

for all $n \in \mathbb{N}$. Using (3.6), we can write

$$\sum_{k=n}^{m-1} D(T(x_{k+1}, x_k)) \leq A^n (I + A + A^2 + \dots + A^{m-n-1}) D(T(x_1), T(x_0))$$

$$\leq A^n (I - A)^{-1} D(T(x_1), T(x_0)), \ m > n.$$

Since $\lim_{n\to+\infty} A^n(I-A)^{-1}D(T(x_1),T(x_0))=\theta$, for any $\delta>0$ there exists some $n'\in\mathbb{N}$ such that

$$\theta \prec A^n(I-A)^{-1}D(T(x_1), T(x_0)) \prec \delta, \ n \ge n'$$
 (3.7)

Furthermore, let $\varepsilon \succ \theta$ be fixed. Since $(f, \alpha) \in \mathcal{F}^m \times \mathbb{R}^m_+$ satisfies (D3), by F2) it follows that there is some $\delta \succ \theta$ such that

$$\theta \prec t \prec \delta \text{ implies } f(t) \prec f(\varepsilon) - \alpha.$$
 (3.8)

By (3.7) and (3.8), we write

$$f(\sum_{k=n}^{m-1} D(T(x_{k+1}, x_k))) \leq f(A^n(I - A)^{-1} D(T(x_1), T(x_0)) < f(\varepsilon) - \alpha, m > n \geq n'.$$

By (D3) and the above inequality, we obtain

$$D(T(x_n), T(x_m)) > \theta, m > n > n' \text{ implies } f(D(T(x_n), T(x_m))) \prec f(\varepsilon).$$

This shows

$$D(T(x_n), T(x_m)) \prec \varepsilon, m > n > n'.$$

Hence, $\{T(x_n)\}$ is an \mathcal{F} -Cauchy sequence in T(X). Since T(X) is \mathcal{F} -complete, there exists $x^* \in X$ such that $\lim_{n \to +\infty} D(T(x_n), T(x^*)) = \theta$ and $z = T(x^*)$. We show that $S(x^*) = z$. Using (D3) and (3.5), we obtain

$$f(D(T(x^*), S(x^*))) = f((D(T(x^*), T(x_n)) + D(T(x_n), S(x^*)) + \alpha$$

$$\leq f((D(T(x^*), T(x_n)) + D(S(x_{n-1}), S(x^*)) + \alpha$$

$$\leq f((D(T(x^*), T(x_n)) + AD(T(x_{n-1}), T(x^*))) + \alpha$$

for all $n \in \mathbb{N}$. Since $\lim_{n \to +\infty} (D(T(x^*), T(x_n)) + AD(T(x_{n-1}), T(x^*))) = \theta$, from \mathcal{F}_2 , we have

$$\lim_{n \to +\infty} f(D(T(x^*), T(x_n)) + AD(T(x_{n-1}), T(x^*))) + \alpha = -\infty.$$

This is a contraction, unless $D(T(x^*), S(x^*)) = \theta$, i.e $T(x^*) = S(x^*) = z$ and x^* is a coincidence point and z is a point of coincidence of T and S. Now we show that T and S have a unique point of coincidence. For this, assume that there exists another point q in X such that $z_1 = Tz^* = Sz^*$. Suppose, to the contrary, $D(z, z_1) > \theta$. Using (3.5), we have

$$D(z, z_1) = D(S(x^*), S(z^*))$$

$$\leq AD(T(x^*), T(z^*))$$

$$= AD(z, z_1).$$

Thus $(I-A)D(z,z_1) \leq \theta$. Since A converges to zero, we get that I-A is non-singular and $(I-A)^{-1} \in M_{mm}(\mathbb{R}_+)$. Hence $D(z,z_1) \leq \theta$, which is a contradiction and hence $D(z,z_1) = \theta$ and we get that $z=z_1$. Therefore, z is the unique point of coincidence of T and S. Now, if T and S are weakly compatible then by Proposition 1, T and S have a unique common fixed point. \square

Corollary 3.9. In the case that $T = I_X$ the identity mapping on X, we obtain Perov Theorem 2.9.

Example 3.10. Let $X = [0,1] \times [2,3]$ and vector valued F- metric $D: X \times X \to \mathbb{R}^2$ be defined as Example 3.7. Define $T: X \to X$ by $T((x_1, x_2)) = (\frac{3x_1 - 1}{2}, 2x_2 - 2)$ and $S((x_1, x_2)) = (\frac{x_1 + 1}{2}, x_2)$. Suppose that $A = \begin{bmatrix} \frac{2}{3} & 0 \\ 0 & \frac{2}{3} \end{bmatrix}$. Thus, Theorem 3.8 implies that T and S have a unique common fixed point in X. Note that (1, 2) is common fixed point of T and S.

References

- [1] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. **341** (2008), no. 1, 416–420.
- [2] R.P. Agarwal, M.A. El-Gebeily, and D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008), no.1, 109–116.
- [3] S. Aleksić, Z. Kadelburg, Z. D. Mitrović, and S. Radenović, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst. 9 (2019), 93–121.
- [4] A. Asif, M. Nazam, M. Arshad, and S.O. Kim, F-Metric, F-Contraction and Common Fixed-Point Theorems with Applications, Mathematics 7 (2019), 586.
- [5] S. Banach, Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fund. Math. 3 (1922), 133-181.
- [6] I. Beg and A.R. Butt, Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. 71 (2009), no. 9, 3699—3704.
- [7] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), no. 2, 263–276.
- [8] Z. Fadail and A. Savić, and S. Radenović, New distance in cone S-metric spaces and common fixed point theorems,
 J. Math. Computer Sci. 26 (2022), 368–378.
- [9] H. Faraji and S. Radenovic, Some fixed point results for FG-contraction in F-metric spaces endowed with a graph, J. Math. Exten. 16 (2022), no. 5, 1–18.
- [10] H. Faraji, N. Mirkov, Z.D. Mitrović, R. Ramaswamy, O.A. Abdelnaby, and S. Radenović, Some new results for (α, β) admissible mappings in F-metric spaces with applications to differential equatios, Symmetry 14 (2022), 2429.
- [11] H. Faraji and S. Radenovic, Some fixed point results for convex contraction mappings on F-metric spaces, Ser. Math. Inf. **35** (2020), 939–948.
- [12] A.D. Flip and A. Petrusel, Fixed point theorems on space endowed with vector valued metrics, Fixed Point Theory Appl. **2010** (2010), Art. ID 281381, 15 pp.
- [13] R. George, R. Rajagopalan, H.A. Nabwey, and S. Radenović, Dislocated Cone Metric Spaces over Banach Algebra and Fixed Points of α-Quasi Contraction Mappings of Perov type, Fixed Point Theory Appl. 2017 (20170, 24.
- [14] L. Guran, M.-F.Bota, A.Naseem, Z.D. Mitrović, M. de la Sen, and S. Radenović, On some new multivalued results in the metric spaces of Perov's type, Mathematics 8 (2020), no. 3, 1–12.
- [15] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468–1476.
- [16] J. Jachymski and J. Klima, Around Perov's fixed point theorem for mappings on generalized metric spaces, Fixed Point Theory 17 (2016), no. 2, 367–380.

- [17] M. Jleli and B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl. 20 (2018), no. 3, Paper No. 128, 20 pp.
- [18] Z. Kadelburg, N. Fabiano, N. Mirkov, and S. Radenović, On ordered topological vector groups -new results, J. Nonlinear Convex Anal. 23 (2022), no. 6, 1231–1254.
- [19] G.N.V. Kishore, R.P. Agarwal, B.S. Rao, and R.V.N.S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory Appl. 2018 (2018), 1—13.
- [20] N. Mirković, S. Radenović, and S. Radojević, Some new observations for F-contractions in vector-valued metric spaces of Perov's type, Axioms 10 (2021), no. 2, 127.
- [21] N. Mirković, N. Fabiano, and S. Radenović, Critical remarks on "A new fixed point result of Perov type and its application to a semilinear operator system, TWMS J. Pure Appl. Math. 14 (2023), no. 1, 141–145.
- [22] Z.D. Mitrovic, H. Aydi, N. Hussain, and A. Mukheimer, Reich, Jungck, and Berinde common fixed point results on F-metric spaces and an application, Mathematics 7 (2019), 387.
- [23] Z. Mustafa and H. Obiedat, A fixed point theorem of Reich in G-metric spaces, Cubo 12 (2010), no. 1, 83-93.
- [24] A.I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uvavn. 2 (1964), 115–134.
- [25] S. Radenović and F. Vetro, Some remarks on Perov type mappings in cone metric spaces, Mediterr. J. Math. 14 (2017), no. 6, paper no. 240, 15 pp.
- [26] A. Savić, N. Fabiano, N. Mirkov, A. Sretenović, and S. Radenović, Some significant remarks on multivalued Perov type contractions on cone metric spaces with a directed graph, Aims Math. 7 (2022), no. 1, 187–198.
- [27] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1861–1869.
- [28] F. Vetro and S. Radenović, Some results of Perov type on rectangular cone metric spaces, J. Fixed Point Theory Appl. 20 (2018), no. 1, Article 41.
- [29] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. **2012** (2012), 94, 6 pp.
- [30] S. Xu, Y. Han, S. Aleksić, and S. Radenović, Fixed Point Results for Nonlinear Contractions of Perov Type in Abstract Metric Spaces with Applications, Aims Math. 7 (2022), no. 8, 14895–14921.
- [31] K. Zoto, Z.D. Mitrović, and S.N. Radenović, Unified setting of generalized contractions by extending simulation mappings in b-metric-like spaces, Acta Math. Univ. Comenianae 9 (2022), 247–258.