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Abstract

The purpose of this paper is to present some fixed point results in spaces endowed with a vector-valued F-metric.
The results are extensions or generalizations of results proved by Perov [24]. To show the usability of our results, we
present two examples.
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1 Introduction

Fixed point theory play a vital role for solving problems in various branches of mathematical, such as nonlinear
analysis, integral and differential equations (see [5, 19, 29, 31]). There exist many interesting generalizations of metric
spaces (see for example [2, 6, 7, 15, 23, 27]). In particular, Jleli et al. [17] introduced and studied the concept of
F-metric space as a generalization of metric space and presented the contraction mapping in F-metric spaces that is
generalization of the Banach contraction principle in metric spaces. (see e.g. [4, 9, 10, 11, 22] and references therein).
In this work, we introduce the concept of vector-valued F-metrics and establish some of fixed point theorems. The
theory is illustrated with some examples.

2 Preliminaries

Let us recall [17] that F be the family of all functions f : (0,+∞) → R satisfying the following conditions:
F1) f is non-decreasing, that is, 0 < s < t implies f(s) ≤ f(t).
F2) For every sequence {αn} ⊂ (0,+∞), we have

lim
n→+∞

αn = 0 if and only if lim
n→+∞

f(αn) = −∞.
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Definition 2.1. [17] Let X be a (nonempty) set. A function D : X × X → [0,+∞) is called a F-metric on X if
there exists (f, L) ∈ F × [0,+∞) such that for all x, y ∈ X the following conditions hold:

(D1) D(x, y) = 0 if and only if x = y.

(D2) D(x, y) = D(y, x).

(D3) For every N ∈ N, N ≥ 2 and for every (ui)
N
i ⊂ X with (u1, uN ) = (x, y), we have

D(x, y) > 0 implies f(D(x, y)) ≤ f(

N−1∑
i=1

D(ui, ui+1)) + L.

In this case, D is called an F-metric on X and the pair (X,D) is called an F-metric space.

Example 2.2. [17] Let X = R and D : X ×X → [0,+∞) be defined as follows:

D(x, y) =

{
(x− y)2 (x, y) ∈ [0, 3]× [0, 3],

|x− y| otherwise,

and let f(t) = ln(t) for all t > 0 and L = ln(3). Then, D is a F-metric on X. Since D(1, 3) = 4 ≥ D(1, 2)+D(2, 3) = 2,
Then D is not a metric on X.

Definition 2.3. [17] Let (X,D) be an F-metric space and {yn} be a sequence in X.

1) A sequence {xn} is called F-convergent to x ∈ X, if limn→+∞ D(xn, x) = 0.

2) A sequence {xn} is called F-Cauchy, if limn,m→+∞ D(xn, xm) = 0.

3) A F-metric space (X,D) is called F-complete, if every F-Cauchy sequence in X is F-convergent to some element
in X.

Jleli et al. in [17] proved the following fixed point theorem.

Theorem 2.4. [17] Let (X,D) be F-complete F-metric space and let T : X → X be a self-mapping satisfying

D(Tx, Ty) ≤ αD(x, y),

for all x, y ∈ X where 0 ≤ α < 1. Then T has a unique fixed point.

Definition 2.5. [1] Let T and S be self maps of a setX. Two self-mappings T and S are said to be weakly compatible
if they commute at their coincidence points; i.e., if T (x) = S(x) for some x ∈ X, then T (S(x)) = S(T (x)).

Let T and S be weakly compatible self maps of a setX. If T and S have a unique point of coincidence w = Tx = Sx,
then w is the unique common fixed point of T and S [1].

The classical Banach contraction principle was extended for contraction mappings on spaces endowed with vector-
valued metrics by Perov (see e.g. [12, 13, 14, 16, 18, 20, 21, 24, 25, 26, 28, 30] and references therein).

Let X be a nonempty set. A mapping d : X × X → Rm is called a vector-valued metric on X if the following
properties are satisfied:

1) d(x, y) ≻ θ for all x, y ∈ X; d(x, y) = θ if and only if x = y;

2) d(x, y) = d(y, x) for all x, y ∈ X;

3) d(x, y) ⪯ d(x, z) + d(z, y) for all x, y, z ∈ X.

A nonempty set X endowed with a vector-valued metric d is called a generalized metric space and it will be denoted
by (X, d).

Remark 2.6. If α, β ∈ Rm with α = (α1, ..., αm), β = (β1, ..., βm), then by α ⪯ β (respectively α ≺ β), we mean that
αi ≤ βi (respectively αi < βi), for all i = 1, ...,m.
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Throughout this paper we denote by Mm×m(R+) the set of all m ×m matrices with positive elements, by 0 the
zero m ×m matrix and by I the identity m ×m matrix. A matrix A ∈ Mm×m(R+) is said to be matrix convergent
to zero if An → 0 as n → +∞.

Theorem 2.7. [12] Let A ∈ Mm×m(R+). Then following assertions are equivalent

1. A is convergent towards zero.

2. An → 0 as n → +∞.

3.The matrix (I −A) is nonsingular and

(I −A)−1 = I +A+A2 + · · ·+An + · · · .

4.The matrix (I −A) is nonsingular and (I −A)−1 has nonnegative elements.

5. Anq → 0 and qAn → 0 as n → +∞, for each q ∈ Rm. Where q in the first case is the column of matrices of type
m× 1 and in the second case q is the type of matrices of type 1×m.

Example 2.8. Some examples of matrix convergent to zero are

1. Any matrix A =

[
a a
b b

]
, where a, b ∈ R+ and a+ b < 1.

2. Any matrix A =

[
a b
a b

]
, where a, b ∈ R+ and a+ b < 1.

2. A =

[
1
4

1
2

0 1
4

]
.

Perov [24] proved the following generalization of Banach contraction principle.

Theorem 2.9. Let (X, d) be a complete generalized metric space and T : X → X be an self-mapping. Suppose there
exists a matrix A ∈ Mm×m(R+) convergent to zero such that

d(T (x), T (y)) ⪯ Ad(x, y).

Then the following statements hold:

1. T has a unique fixed point x∗.

2. The Picard iterative sequence xn = Tn(x0), n ∈ N converges to x∗ for all x0 ∈ X.

3. d(xn, x
∗) ⪯ An(I −A)−1d(x0, x1), for all n ∈ N, where A ∈ Mm×m(R+) is a matrix convergent to zero.

3 Main results

In this section of the paper, by considering the technique of Jleli et al. [17], we introduce a generalization of
F-metric.

Definition 3.1. Let f : Rm
+ → Rm be a function which satisfies the following conditions:

(F1) f is strictly increasing; for all a = (ai)
m
i=1, b = (bi)

m
i=1 ∈ Rm

+ , where

a ≺ b implies f(a) ⪯ f(b),

(F2) For each sequence {an} = (a
(n)
1 , a

(n)
2 , ..., a

(n)
m ) of Rm

+ , we have

lim
n→+∞

a
(n)
i = 0 if and only if lim

n→+∞
b
(n)
i ,= −∞,

for every i = 1, 2, ...,m, where f(a
(n)
1 , a

(n)
2 , ..., a

(n)
m ) = (b

(n)
1 , b

(n)
2 , ..., b

(n)
m ). Here, Rm

+ is the set of all m× 1 real matrix
with positive elements. The set of all functions f satisfying (F1− F2) is denoted as Fm.
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Remark 3.2. Let fi ∈ F , for all i = 1, 2, ...,m. Define f : Rm
+ → Rm, where f(a1, ..., am) = (f1a1, f2a2, ..., fmam) for

each (a1, ..., am) ∈ Rm
+ . Then f ∈ Fm.

Definition 3.3. Let X be a nonempety set and D : X × X → Rm be a mapping. Suppose that there exists
(f, α) ∈ Fm ×Rm

+ such that:

(D1) For all (x, y) ∈ X ×X,D (x, y) ≻ θ and D(x, y) = θ if and only if x = y (where θ = (0, ..., 0) ∈ Rm).

(D2) For all (x, y) ∈ X ×X, D(x, y) = D(y, x).

(D3) For every (x, y) ∈ X×X , for every N ∈ N, N ≥ 2, and for every (ui)
N
i=1 ⊂ X with (u1, uN ) = (x, y), we have

D(x, y) ≻ 0 implies f(D(x, y)) ⪯ f(

N−1∑
i=1

D(ui, ui+1)) + α.

Then D is called an vector valued F - metric on X and the pair (X,D) is called an generalized F -metric space.
Also, if m = 1, we obtain F -metric.

Example 3.4. The following functions f : R3
+ → R3 are the elements of F3:

(1) f((α1, α2, α3)) = (ln α1, ln α2, ln α3),

(2) f((α1, α2, α3)) = (ln α1 + α1, ln α2 + α2, ln α3 + α3),

(3) f((α1, α2, α3)) = (ln α1,
−1√
α2

, ln α3)

Theorem 3.5. Let (X,D) be an F -complete generalized F-metric apace and T : X → X be an self mapping on X
such that

D(Tx, Ty) ⪯ AD(x, y) +BD(y, Tx) + CD(x, Tx), (3.1)

for all x, y ∈ X, where A,B,C ∈ Mm×m(R+) and A+C converges to zero. Then T has at least one fixed point in X.
If additionally, the matrix A+B converges to zero, then T has a unique fixed point in X.

Proof . Let x0 be an arbitrary point in X. We can define a sequence {xn} such that xn+1 = Txn for each n ∈ N∪{0}.
From (3.1), we have

D(xn, xn+1) = D(Txn−1, Txn)

⪯ AD(xn−1, xn) +BD(xn, Txn−1) + CD(xn−1, Txn−1)

= (A+ C)D(xn−1, xn),

for all n ∈ N. which yields

D(xn, xn+1) ⪯ (A+ C)D(xn−1, xn) ⪯ (A+ C)2D(xn−2, xn−1) ⪯ ... ⪯ (A+ C)nD(x0, x1), n ∈ N. (3.2)

Using (3.2), we can write

m−1∑
k=n

D(xk, xk+1)) ⪯ (A+ C)n(I + (A+ C) + (A+ C)2 + ...+ (A+ C)m−n−1)D(x0, x1)

⪯ (A+ C)n(I − (A+ C))−1D(x0, x1),m > n.

Since limn→+∞(A+ C)n(I − (A+ C))−1D(x0, x1) = θ, for any δ > 0 there exists some n′ ∈ N such that

θ ≺ (A+ C)n(I − (A+ C))−1D(x0, x1) ≺ δ, n ≥ n′. (3.3)

Furthermore, let ε ≻ θ be fixed. Since (f, α) ∈ Fm ×Rm
+ satisfies (D3), by (F2) it follows that there is some δ ≻ θ

such that

θ ≺ t ≺ δ implies f(t) ≺ f(ε)− α. (3.4)
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By (3.3) and (3.4), we get

f(

m−1∑
k=n

D(xk, xk+1))) ≤ f((A+ C)n(I − (A+ C))−1D(x0, x1)) < f(ε)− α,m > n ≥ n′.

By (D3) and the above inequality, we obtain

D(xn, xm) ≻ θ, m > n > n′ implies f(D(xn, xm)) ≺ f(ε).

This shows
D(xn, xm) ≺ ε,m > n ≥ n′.

Hence, we showed that (xn) is an F-Cauchy sequence in X. Since X is F-complete, there exists x∗ ∈ X such
that (xn) is F-convergent to x∗, i.e, limn→+∞ D(xn, x

∗) = θ. We shall prove that x∗ is a fixed point of T . Suppose
D(Tx∗, x∗) ≻ θ. From (D3) for all n ∈ N, we have,

f(D(x∗, Tx∗)) ⪯ f(D(x∗, Txn) +D(Txn, Tx
∗)) + α.

Using (3.1) and F1, we obtain

f(D(x∗, Tx∗)) ⪯ f(D(x∗, xn+1) +AD(xn, x
∗) +BD(x∗, Txn) + CD(xn, Txn)) + α.

Since limn→+∞(D(x∗, xn+1) +AD(xn, x
∗) +BD(x∗, Txn) + CD(xn, Txn)) = 0, from F2, we have

lim
n→+∞

f(D(x∗, xn+1) +AD(xn, x
∗) +BD(x∗, Txn) + CD(xn, Txn)) + α = −∞,

which is a contradiction. Therefore, we have D(Tx∗, x∗) = θ, i.e. Tx∗ = x∗. Finally, we shall show that the fixed
point is unique. To this end, we assume that there exists another fixed point z∗ and D(x∗, z∗) ≻ θ. From (3.1), we
have

D(x∗, z∗) = D(Tx∗, T z∗)

⪯ AD(x∗, z∗) +BD(z∗, Tx∗) + CD(x∗, Tx∗)

= (A+B)D(x∗, z∗).

Thus (I − A − B)D(x∗, z∗) ⪯ θ. Since A + B converges to zero, we get that I − A − B is non-singular and
(I −A−B)−1 ∈ Mmm(R+). Hence D(x∗, z∗) ⪯ θ which is a contradiction and hence x∗ = z∗. □

Corollary 3.6. Putting B = C = 0, Theorem 3.5 reduces to Perov Theorem 2.9.

In order to support Theorem 3.5, we present the following example:

Example 3.7. Let X = [0, 1]× [0, 1] and D : X ×X → R2 be defined as follows:

D(x, y) = D((x1, x2), (y1, y2)) =

{
(e|x1−y1|, e|x2−y2|) if (x1, x2) ̸= (y1, y2)

0 if (x1, x2) = (y1, y2),

for each x, y ∈ X. Take f(t1, t2) = (− 1
t1
,− 1

t2
), t1, t2 > 0 and α = (1, 1). Then (X,D) is an generalized F -metric space.

Define T : X → X by T ((x1, x2)) = ( 12 (x1 + 1), x2

3 ). Suppose that A =

[
2
3 0
0 2

3

]
, B = 0 and C =

[
3
4 0
0 3

4

]
. Thus,

Theorem 3.5 implies that T has a unique fixed point in X. Note that (1, 0) is fixed point of T .

Theorem 3.8. Let (X,D) be an F -complete generalized F-metric apace and let the mappings T, S : X → X be
self-mappings on X which satisfy,

D(Sx, Sy) ⪯ AD(Tx, Ty), (3.5)

for all x, y ∈ X, where A ∈ Mmm(R+) be a nonzero matrix convergent to zero. Let T and S be weakly compati-
ble,S(X) ⊆ T (X) and T (X) is an F-complete subset of X. Then T and S have a unique common fixed point in
X.
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Proof . We choose elements x0, x1 ∈ X such that T (x1) = S(x0). Since S(X) ⊆ T (X), we can define a sequence
{xn} such that T (xn) = S(xn−1) for each n ∈ N ∪ {0}. From (3.5), we have

D(T (xn+1), T (xn)) = D(S(xn), S(xn−1))

⪯ AD(T (xn), T (xn−1)),

for all n ∈ N. Inductively, we get

D(T (xn+1), T (xn)) ⪯ AnD(T (x1), T (x0)), (3.6)

for all n ∈ N. Using (3.6), we can write

m−1∑
k=n

D(T (xk+1, xk)) ⪯ An(I +A+A2 + ...+Am−n−1)D(T (x1), T (x0))

⪯ An(I −A)−1D(T (x1), T (x0)), m > n.

Since limn→+∞ An(I −A)−1D(T (x1), T (x0)) = θ, for any δ > 0 there exists some n′ ∈ N such that

θ ≺ An(I −A)−1D(T (x1), T (x0)) ≺ δ, n ≥ n′ (3.7)

Furthermore, let ε ≻ θ be fixed. Since (f, α) ∈ Fm × Rm
+ satisfies (D3), by F2) it follows that there is some δ ≻ θ

such that

θ ≺ t ≺ δ implies f(t) ≺ f(ε)− α. (3.8)

By (3.7) and (3.8), we write

f(

m−1∑
k=n

D(T (xk+1, xk))) ⪯ f(An(I −A)−1D(T (x1), T (x0)) ≺ f(ε)− α,m > n ≥ n′.

By (D3) and the above inequality, we obtain

D(T (xn), T (xm)) ≻ θ, m > n > n′ implies f(D(T (xn), T (xm))) ≺ f(ε).

This shows
D(T (xn), T (xm)) ≺ ε, m > n ≥ n′.

Hence, {T (xn)} is an F-Cauchy sequence in T (X). Since T (X) is F-complete, there exists x∗ ∈ X such that
limn→+∞ D(T (xn), T (x

∗)) = θ and z = T (x∗). We show that S(x∗) = z. Using (D3) and (3.5), we obtain

f(D(T (x∗), S(x∗))) = f((D(T (x∗), T (xn)) +D(T (xn), S(x
∗)) + α

⪯ f((D(T (x∗), T (xn)) +D(S(xn−1), S(x
∗)) + α

⪯ f((D(T (x∗), T (xn)) +AD(T (xn−1), T (x
∗))) + α

for all n ∈ N. Since limn→+∞(D(T (x∗), T (xn)) +AD(T (xn−1), T (x
∗))) = θ, from F2, we have

lim
n→+∞

f(D(T (x∗), T (xn)) +AD(T (xn−1), T (x
∗))) + α = −∞.

This is a contraction, unless D(T (x∗), S(x∗)) = θ, i.e T (x∗) = S(x∗) = z and x∗ is a coincidence point and z is
a point of coincidence of T and S. Now we show that T and S have a unique point of coincidence. For this, assume
that there exists another point q in X such that z1 = Tz∗ = Sz∗. Suppose, to the contrary, D(z, z1) ≻ θ. Using (3.5),
we have

D(z, z1) = D(S(x∗), S(z∗))

⪯ AD(T (x∗), T (z∗))

= AD(z, z1).
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Thus (I−A)D(z, z1) ⪯ θ. Since A converges to zero, we get that I−A is non-singular and (I−A)−1 ∈ Mmm(R+).
Hence D(z, z1) ⪯ θ, which is a contradiction and hence D(z, z1) = θ and we get that z = z1. Therefore, z is the
unique point of coincidence of T and S. Now, if T and S are weakly compatible then by Proposition 1, T and S have
a unique common fixed point. □

Corollary 3.9. In the case that T = IX the identity mapping on X, we obtain Perov Theorem 2.9.

Example 3.10. Let X = [0, 1] × [2, 3] and vector valued F - metric D : X × X → R2 be defined as Example 3.7.

Define T : X → X by T ((x1, x2)) = ( 3x1−1
2 , 2x2 − 2) and S((x1, x2)) = (x1+1

2 , x2) . Suppose that A =

[
2
3 0
0 2

3

]
. Thus,

Theorem 3.8 implies that T and S have a unique common fixed point in X. Note that (1, 2) is common fixed point of
T and S.
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[20] N. Mirković, S. Radenović, and S. Radojević, Some new observations for F-contractions in vector-valued metric
spaces of Perov’s type, Axioms 10 (2021), no. 2, 127.
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[25] S. Radenović and F. Vetro, Some remarks on Perov type mappings in cone metric spaces, Mediterr. J. Math. 14
(2017), no. 6, paper no. 240, 15 pp.
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