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HERMITIAN METRIC ON QUANTUM SPHERES

ABASALT BODAGHI ∗

Abstract. The paper deal with non-commutative geometry. The notion of quan-
tum spheres was introduced by podles. Here we define the quantum hermitian
metric on the quantum spaces and find it for the quantum spheres.

1. Introduction

The basic idea of algebraic geometry is the familiar correspondence between geo-
metric spaces and commutative algebras. The extension of this correspondence to
the non-commutative case leads to the non-commutative geometry. General tools
of functional analysis show that C∗-algebras constitute a natural framework for the
non-commutative geometry. Quantum spaces are generalizations of manifolds. They
are identified by the C∗-algebra of functions on them. On the other hand, quantum
groups (pseudogroups, twisted groups) are quantum spaces endowed with a group
structure [4]. Twisted SU(2) groups (SµU(2), µ ∈ (−1, 1)\{0}) were introduced in
[4]. They act on quantum spaces S2

µc (c ∈ [0, 1]) in a similar way to SU(2) acting on

two-dimensional sphere S2. Differential calculus on compact matrix pseudogroups
is presented in [6] by Woronowicz. Podles in [1] introduced the family of quantum
spheres S2

µc by their corresponding C∗-algebras. Later, Podles in [2] introduced a

differential calculus on quantum 2-spheres S2
µc and then, he in [3] classified exte-

rior algebras of differential forms on S2
µc, for µ ∈ [−1, 1]\{0}, c ∈ [0,∞] (c = 0 for

µ = ±1). A natural question which arises here is the metric tensor on these spaces.
We generalize the definition of hermitian metric on complex manifolds to the case
of Podles quantum spheres. This metric is defined in such a way that when the
deformation parameter tend to 1 it gives us the usual hermitian metric on complex
spheres.

2. Quantum spheres

We start this section with definition of compact matrix pseudogroups which are
a background for quantum spheres.
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Definition 2.1. Let A be a C∗-algebra with unity, u be a N×N matrix with entries
belonging to A: u = (ukl)kl=1,2,...,N , ukl ∈ A, and A be the ∗-subalgebra of A generated
by the entries of u. We say that (A, u) is a compact matrix pseudogroup if
1) A is dense in A.
2) There exists a C∗-homomorphism

Φ : A −→ A⊗ A, (2.1)

such that

Φ(ukl) =
N∑

r=1

ukr ⊗ url, (2.2)

for any k =, l = 1, 2, ..., N .
3) There exists a linear antimultiplicative mapping

κ : A −→ A, (2.3)

such that

κ(κ(a∗)∗) = a (2.4)

for any a ∈ A and

N∑
r=1

κ(ukr)url = δklI (2.5)

N∑
r=1

ukrκ(url) = δklI (2.6)

for any k =, l = 1, 2, ..., N . δkl denotes the Kronecker symbol equal to 1 for k = l
and 0 otherwise, I is the unity of the algebra A.

Let G be a compact group of N ×N matrices with complex entries: G ⊂ MN(C).
We denote by C(G) the commutative C∗-algebra of all continuous functions on G.
for any g ∈ G and any k =, l = 1, 2, ..., N , we denote by wkl(g) the matrix element
of g standing in the kth row and the lth column:

g = (wkl(g))k=,l=1,2,...,N . (2.7)

Clearly wkl(g) depends continuously on g, i.e., wkl are continuous functions defined
on G : wkl ∈ C(G). Let wG = (wkl)k=,l=1,2,...,N . Then the following Theorem is
proved in [4].

Theorem 2.2. (C(G), wG) is a compact matrix pseudogroup.

Let µ be a nonzero real number in the interval [-1,1] and A be the C∗-algebra
generated by two elements α and β satisfying the following relations:

α∗α + γ∗γ = I, αα∗ + µ2γγ∗ = I. (2.8)

γ∗γ = γγ∗, µγα = αγ µγ∗α = αγ∗. (2.9)

We consider 2× 2 matrix
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u =

[
α −µν∗

ν α∗

]
.

Then (A, u) is a compact matrix pseudogroup (see [6] for details and proofs).
If µ = 1 then A is a commutative and (A, u) is identical with (C(G), wG), where
G = SU(2). In the general case (A, u) is called the twisted SU(2) group and denoted
by SµU(2).

Now we consider a family of quantum spaces by corresponding C∗-algebras is
introduced by Podles in [1]. C(Xµλρ), λ, ρ ∈ R denote the C∗-algebra generated by
three elements e−1, e0, e1 satisfying the following relations

e∗i = e−i, i = −1, 0, 1, (2.10)

(1 + µ2)(e−1e1 + µ−2e1e−1) + e2
0 = ρI, (2.11)

e0e−1 − µ2e−1e0 = λe−1, (2.12)

(1 + µ2)(e−1e1 + e1e−1) + (1− µ2)e2
0 = λe0, (2.13)

e1e0 − µ2e0e1 = λe1. (2.14)

In short the elements e−1, e0, e1 satisfying the relation (2.10) and the following rela-
tions

almelem = ρI, (2.15)

blmkelem = (1− µ2)ek, (2.16)

where the real numbers alm, blmk, µ, ρ, (l,m, r = −1, 0, 1) are given in (2.11)-(2.15).
Also we set

ẽ−2 = e−1e−1, ẽ−1 = e−1e0 + µ2e0e−1,

ẽ0 = e0e0 − µ−2e−1e1 − µ2e1e−1 ẽ1 = e0e1 + µ2e1e0 ẽ2 = e1e1

i.e.,

ẽr = clm,relem, r = −2,−1, 0, 1, 2 (2.17)

where the real numbers clm,r are in the above relations.
It is shown in [1] there exists a C∗-homomorphism

σµλρ : C(Xµλρ) −→ C(Xµλρ)⊗ C(SµU(2))

such that σµλρei = e′i · σµλρ is an action of SµU(2) on Xµλρ, where

e′i =
1∑

j=−1

ej ⊗ d1,ji, i = −1, 0, 1,

in which d1 is a representation and has the matrix

(d1,ij)i,j=−1,0,1 =

 α∗2 −(µ2 + 1)α∗γ −µγ2

γ∗α∗ I − (µ2 + 1)γ∗γ αγ
−µγ∗2 −(µ2 + 1)γ∗α α2

 ∈ M3 ⊗ C(SµU(2)).

Let
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S2
µc = Xµ,1−µ2,(1+µ2)2µ−2c+1, (c ∈ R) (2.18)

S2
µ∞ = Xµ,0,(1+µ2)2µ−2 , (2.19)

and σµc be the corresponding actions. For 0 < µ < 1, each Xµλρ considered
together with the action of SµU(2), is isomorphic to one of the above quantum
spaces. S2

µc defined by the above algebra of functions on it is called quantum sphere.
If we set

e1 = i(x1 + ix2), e−1 = −i(x1 − ix2), e0 = 2x3, (2.20)

then we can interpret xi’s as the cartesian coordinates on C(S2
µc) and in this way

S2
10
∼= S2, the unit sphere.

3. Hermitian Structure on Podles Quantum spheres

A pre-Hilbert module over a C∗-algebra A is a complex linear space E which is
a left A-module (and λ(ax) = (λa)x = a(λx) where λ ∈ C, a ∈ A, and x ∈ E)
equipped with an A-valued inner product 〈., .〉 : E × E → A satisfying:
1. 〈x, x〉 ≥ 0,
2. 〈x, x〉 = 0 ⇔ x = 0,
3. 〈x + λy, z〉 = 〈x, z〉 = +λ〈y, z〉,
4. 〈x, y〉∗ = 〈y, x〉,
5. 〈ax, y〉 = a〈x, y〉,
For all x, y, z ∈ E, a ∈ A, and λ ∈ C.

A pre-Hilbert A-module is called a Hilbert A-module or Hilbert C∗-module over
A, if it is complete with respect to the norm ‖x‖ = ‖〈x, x〉‖1/2. If the closed linear
span of the set {〈x, y〉 : x, y ∈ E} is dense in A then E is called full. For example
every C∗-algebra is a full Hilbert A-module whenever we define 〈x, y〉 = xy∗.
Let A be a C∗-algebra and E be pre-Hilbert module over A. Recall that a Hermitian
structure on A-bimodule E ia a sesquilinear functional 〈., .〉 : E × E → A in which
〈x, ya〉 = 〈x, y〉a, for all x, y ∈ E, a ∈ A. It follows the last equality for each
x, y ∈ E, a ∈ A, we have

〈xa, y〉 = 〈y, xa〉∗ = (〈y, x〉a)∗ = a∗〈y, x〉∗ = a∗〈x, y〉.
Let S∧ =

⊕∞
n=0 S∧n, where

S∧n = span{a0da1 ∧ ...dan : a0, a1, ..., an ∈ β}
is the bimodule of exterior differential forms on S2 of nth degree, which are gen-

erated by the base β of the set of smooth functions on S2. We denote the exterior
derivative by d : S∧ −→ S∧. Let ∗ : S∧ −→ S∧ be the complex conjugation:

(a0da1 ∧ ...dan)∗ = a∗0d(a∗1) ∧ ...d(a∗n), a0, a1, ..., an ∈ β.

Now let A ⊂ C(SµU(2)) is the ∗-algebra of polynomials on SµU(2) and σ∧ :
S∧ −→ S∧ ⊗A is a graded homomorphism such that

(id⊗ e)σ∧ = id, (σ∧ ⊗ id)σ∧ = (id⊗ Φ)σ∧, σ∧0 = σ|β,
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where Φ is the map in Theorem 2.2 and ∧ denotes multiplication in S∧. In the
following we assume that µ ∈ [−1, 1]\{0}, c ∈ [0,∞] (c = 0 for µ = ±1) andAµ is the
∗-algebra of polynomials on S2

µc generated by e−1, e0, e1, and the ∗-homomorphism

σµc : Aµ −→ Aµ ⊗A describes the action of SµU(2) on S2
µc, β = Aµ, σ = σµc.

Let S∧ be as in the above and P = aklekdel(akl were used in (2.15)). Using (5)
of [2] we get σ∧P = P ⊗ I, i.e., P is σ∧1-invariant. Moreover, we can check that P
is unique (up to a scalar) σ∧1-invariant element of Aµ·span{d−1, de0, de1} (see [3]).
If µ = 1, then P ≡ 4xkdxk. In this case dxk, k = 1, 2, 3, generate the left module
S∧1 with only one constraint(see (2.3)), namely P = 0. Now put A = C(S2

µc.

Then Ω1(A), the module of one forms on S2
µc is generated as a left A-module by

β = {dek|k = −1, 0, 1} which the following formulas hold [3]:

alm(del)em = 0, (3.1)

blm,k(del)em = (1− µ2)dek − blm,keldem, k = −1, 0, 1, (3.2)

clm,r(del)em = clm,rel[dem + µ−2(1− µ2)bkn,mekden], r = −2,−1, ..., 2., (3.3)

(dek)
∗ = de−1, k = −1, 0, 1, (3.4)

where alm, blm,k, clm,r, l, m = −1, 0, 1, were in (2.15),(2.16), and (2.17). We can show
that with the above relations Ω1(A) becomes a bimodule over A ([3, Theorem]), and
makes Ω1(A) into a pre-Hilbert A-module.

Theorem 3.1. There is a Hermitian structure on Ω1(C(S2
µc)) as a finitely generated

C(S2
µc)-module. In particular, for µ = 1, c = 0, this structure is the usual hermitian

metric on complex unit sphere S2.

Proof. We consider the sesquilinear map

T = 〈., .〉 : Ω1(C(S2
µc))× Ω1(C(S2

µc)) −→ C(S2
µc),

satisfying the following equations:

T (φ, φ∗) ≥ 0, T (φ, η) = (T (η, φ))∗, T (φa, ηb) = a∗T (φ, η)b (3.5)

for all φ, η ∈ Ω1(C(S2
µc)), and a, b ∈ C(S2

µc). Put Ti,j = 〈dei, dej〉. Then, from the
relation (2.1) and (3.1), we have

(1 + µ2)Ti,−1e1 + (1 + µ−2)Ti,1e−1 + Ti,0e0 = 0. (3.6)

for all i = −1, 0, 1. Using from (2.12), (3.2) and (3.5), we conclude

Ti,0e1 − Ti,1e0 − (1− µ2)Ti,1 = 0, (3.7)

and

µ2Ti,−1e0 − µ2Ti,0e−1 + (1− µ2)Ti,−1 = 0. (3.8)

for all i = −1, 0, 1. Also from (2.13), (3.2) and (3.5), we get

(1 + µ2)Ti,−ses − (1 + µ2)Ti,ses − (1− µ2)Ti,0 = 0, (3.9)

and

2µ2Ti,0e0 + (1− µ2)T0,0 = 0. (3.10)
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for all i = −1, 0, 1 and s = −1, 1. Now, from (2.14) and (3.2), we deduce the
following relations

Ti,1e0 − Ti,0e−1 − (1− µ2)Ti,1 = 0, (3.11)

and

µ2Ti,0e1 − µ2Ti,1e0 + (1− µ2)Ti,1 = 0. (3.12)

for all i = −1, 0, 1. Using from the above relations which is lengthy and tedious, we
obtain the following matrix

T = (Tij)i,j=−1,0,1 =


−µ2e0−(1−µ2)I

1+µ2 e1 0

e−1 (1− µ2)(e0 − I) −µ2e1

0 −µ2e−1
e0−(1−µ2)I

1+µ−2

 , (3.13)

where obviously we have T ∗
i,j = Tj,i. Setting µ = 1 in (3.13) and using from (2.20),

we have

T = (Tij)i,j=−1,0,1 =

 x3 −x2 + ix1 0
−x2 − ix1 0 x2 − ix1

0 x2 + ix1 x3

 ,

which is a C∗-algebra of functions on unit sphere S2. �
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