| تعداد نشریات | 21 |
| تعداد شمارهها | 667 |
| تعداد مقالات | 9,728 |
| تعداد مشاهده مقاله | 69,208,510 |
| تعداد دریافت فایل اصل مقاله | 48,536,530 |
Integrated Two‐Stage Stochastic Security‐Constrained Unit Commitment with EV V2G, Utility‐Scale Storage, and Flexible Loads under High Renewable Penetration | ||
| Modeling and Simulation in Electrical and Electronics Engineering | ||
| دوره 5، شماره 2 - شماره پیاپی 20، آذر 2025، صفحه 37-61 اصل مقاله (1.3 M) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/mseee.2025.38263.1219 | ||
| نویسندگان | ||
| Abbas Safari1؛ Mehdi Jafari Shahbazzadeh1؛ Mahdiyeh Eslami1؛ Hesam Rahbarimagham* 2 | ||
| 1Department of Electrical Engineering, Ke.C., Islamic Azad University, Kerman, Iran. | ||
| 2Department of Electrical and Computer Engineering, Raf.C., Islamic Azad University, Rafsanjan, Iran. | ||
| تاریخ دریافت: 23 تیر 1404، تاریخ بازنگری: 18 شهریور 1404، تاریخ پذیرش: 08 مهر 1404 | ||
| چکیده | ||
| This paper presents a comprehensive two‐stage stochastic security‐constrained unit commitment (SCUC) framework that fully integrates electric vehicles (EVs) with vehicle‐to‐grid (V2G) capabilities, utility‐scale energy storage systems (ESS), and flexible demand response under high levels of wind and solar generation. In the first stage, thermal unit on/off decisions and charge/discharge statuses for ESS and EV fleets are co‐optimized to secure reserves and meet mobility constraints. The second stage dispatches generation, reserves, and flexible load adjustments for each renewable‐forecast scenario, while enforcing N‑1 contingency criteria for both generator and transmission‐line outages. Key innovations include a novel EV‐V2G submodel that tracks state‐of‐charge (SoC), enforces arrival/departure requirements, and co‐optimizes reserve provision; an ESS formulation that co‐optimizes energy arbitrage with spinning and non‐spinning reserves; and a flexible‐load shifting paradigm that permits both time‐shiftable consumption and curtailment at a user‐dissatisfaction penalty. Renewable uncertainty is captured through a scenario‐reduction technique applied to correlated wind and solar forecasting errors. A nested Benders‐decomposition algorithm exploits scenario and contingency decomposition for tractability. Numerical experiments on a modified IEEE‑118 bus system—using real‐world wind/solar traces and realistic EV/ESS parameters—demonstrate that the proposed model decreases expected operating and reserve‐procurement costs by up to 8.5% relative to deterministic SCUC, cuts renewable curtailment from 35% to 20%, and reduces expected load‐shedding under contingencies by over 75%. The joint flexibility of EVs, ESS, and flexible loads significantly enhances system reliability and economic performance in high‐renewable power systems. | ||
| کلیدواژهها | ||
| Stochastic unit commitment؛ electric vehicles؛ energy storage systems؛ flexible loads؛ renewable energy | ||
| مراجع | ||
| ||
|
آمار تعداد مشاهده مقاله: 15 تعداد دریافت فایل اصل مقاله: 1 |
||