
Abstract-- This paper presents a comprehensive two‐stage 

stochastic security‐constrained unit commitment (SCUC) 

framework that fully integrates electric vehicles (EVs) with 

vehicle‐to‐grid (V2G) capabilities, utility‐scale energy storage 

systems (ESS), and flexible demand response under high levels 

of wind and solar generation. In the first stage, thermal unit 

on/off decisions and charge/discharge statuses for ESS and EV 

fleets are co‐optimized to secure reserves and meet mobility 

constraints. The second stage dispatches generation, reserves, 

and flexible load adjustments for each renewable‐forecast 

scenario, while enforcing N-1 contingency criteria for both 

generator and transmission‐line outages. Key innovations 

include a novel EV‐V2G submodel that tracks state‐of‐charge 

(SoC), enforces arrival/departure requirements, and co‐

optimizes reserve provision; an ESS formulation that co‐

optimizes energy arbitrage with spinning and non‐spinning 

reserves; and a flexible‐load shifting paradigm that permits both 

time‐shiftable consumption and curtailment at a user‐

dissatisfaction penalty. Renewable uncertainty is captured 

through a scenario‐reduction technique applied to correlated 

wind and solar forecasting errors. A nested Benders‐

decomposition algorithm exploits scenario and contingency 

decomposition for tractability. Numerical experiments on a 

modified IEEE-118 bus system—using real‐world wind/solar 
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traces and realistic EV/ESS parameters—demonstrate that the 

proposed model decreases expected operating and reserve‐

procurement costs by up to 8.5% relative to deterministic 

SCUC, cuts renewable curtailment from 35% to 20%, and 

reduces expected load‐shedding under contingencies by over 

75%. The joint flexibility of EVs, ESS, and flexible loads 

significantly enhances system reliability and economic 

performance in high‐renewable power systems. 

Keywords: Stochastic unit commitment, electric vehicles, energy 

storage systems, flexible loads, renewable energy 

I .INTRODUCTION 

Integrating large-scale wind and solar generation into 

modern power systems offers significant opportunities for 

reducing carbon emissions, but also introduces substantial 

operational challenges due to the variable and uncertain 

nature of renewable output. Traditional unit commitment 

models, which were developed around predictable thermal 

generation, struggle to accommodate the rapid fluctuations of 

renewable resources and maintain sufficient reserves to 

ensure reliable operation. As a result, system operators face 

increased risks of renewable curtailment, expensive 
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redispatch actions, and even load shedding under adverse 

conditions.  

This paper addresses the problem of determining least-cost, 

security-constrained unit commitment and dispatch decisions 

in a power system with high penetrations of renewable 

energy, while simultaneously leveraging emerging flexibility 

from electric vehicles with vehicle-to-grid capabilities, 

utility-scale energy storage systems, and responsive loads. 

The formulation takes the form of a two-stage stochastic 

mixed-integer program: the first stage involves making on/off 

decisions for thermal units and scheduling commitments for 

storage and aggregated EV fleets before actual renewable 

output is realized, ensuring minimum up/down times, 

spinning-reserve requirements, and state-of-charge 

constraints. In the second stage, for each scenario of wind and 

solar generation and each contingency event (such as a 

generator or transmission-line outage), the model optimizes 

real-time dispatch—adjusting generator outputs, storage 

charge/discharge actions, V2G injections, and flexible load 

shifts—while enforcing N-1 security criteria and meeting 

energy and reserve needs. Optimally integrating these novel 

flexibility resources into a unified unit commitment 

framework is critical for enhancing grid reliability in the face 

of renewable variability and uncertainty. Electric vehicles 

equipped with V2G capabilities can provide distributed 

storage that supports both energy arbitrage and dynamic 

reserves, while utility-scale storage smooths net-load 

ramping and supplies fast-responding reserves. Flexible 

demand response, from interruptible industrial processes to 

residential thermostatically controlled devices, further 

enhances the system’s ability to balance supply and demand. 

By co-optimizing thermal generators, renewables, storage, 

EV fleets, and responsive loads, the proposed framework 

aims to reduce operating costs, minimize renewable 

curtailment, and improve resilience to contingencies. 

Numerical experiments using realistic wind and solar traces, 

EV mobility data, and storage parameters demonstrate that 

this integrated approach can significantly lower expected 

costs and enhance renewable utilization compared to 

deterministic benchmarks, thereby supporting the reliable and 

economical transition to a low-carbon power grid. 

A.Motivation 

The rapid growth of wind and solar generation has 

introduced significant variability and uncertainty into power 

system operations, making it challenging to maintain a 

reliable and cost‐effective electricity supply under traditional 

unit commitment practices. As renewable penetration 

surpasses 30 percent in many regions, operators struggle to 

balance supply and demand, often resorting to costly 

redispatch or curtailing clean energy to uphold N-1 security 

requirements. Without additional flexibility, these measures 

undermine both economic and environmental objectives. At 

the same time, electric vehicles (EVs) with vehicle-to-grid 

capabilities, utility-scale energy storage, and demand-side 

response programs have emerged as powerful sources of 

system flexibility. EV fleets can act as distributed batteries, 

storage installations can rapidly smooth net-load fluctuations, 

and responsive loads can shift or curtail consumption during 

critical periods. However, these resources are typically 

modeled separately or in deterministic frameworks that fail to 

capture renewable uncertainty and contingency needs. 

Therefore, a concise, two-stage stochastic unit commitment 

approach that jointly integrates EV-V2G, storage, and 

flexible demand is essential to unlock their combined 

potential—lowering operating costs, minimizing curtailment, 

and enhancing resilience in high-renewable power systems. 

B. Literature review 

The increasing penetration of renewable energy 

resources, coupled with the rapid transportation 

electrification and deployment of distributed energy storage, 

has motivated extensive research on advanced unit 

commitment (UC) formulations and stochastic optimization 

frameworks. Recent works have sought to enhance 

operational flexibility and reliability while effectively 

capturing the uncertainty inherent in wind and solar power 

generation. 

Early contributions primarily focused on evolutionary and 

learning-based methods for UC under renewable uncertainty. 

For instance, a covariance matrix adaptation evolution 

strategy (CMAES)–based optimization framework was 

proposed in [1] to improve UC scheduling efficiency with the 

integration of electric vehicles (EVs) and renewables, while 

deep reinforcement learning techniques were introduced in 

[2] to enable model-free UC optimization with reduced 

computational complexity under wind variability. To address 

system reliability concerns, a stochastic UC formulation 

incorporating reliability constraints was presented in [3], 

while robust optimization approaches were employed in [4] 

and [10] to hedge against simultaneous source and load 

uncertainties. 

Recognizing the flexibility potential of EVs and demand-

side resources, several studies have explored EV-based 

ancillary services and demand response integration. In [5], a 

chance-constrained scheduling model accounted for EV-

based frequency support under multiple uncertainties, while 

a bi-level scheduling formulation in [6] enhanced microgrid 

operation by co-optimizing wind–solar uncertainty and EV 

vehicle-to-grid (V2G) capabilities. Similarly, multi-objective 

dispatch strategies were developed for PV–battery energy 

storage system (BESS)–integrated charging stations with 

V2G [7], and uncertainty-aware scheduling models for V2G 

participation in microgrids were introduced in [8]. 

Cooperative scheduling frameworks integrating distributed 

generation, storage, and load with V2G aggregators have 

been further proposed to support low-carbon grid operation 

[9]. 

Energy storage systems (ESS) have also been investigated 

extensively as key flexibility enablers. A demand response 

aggregator–based model in [11] demonstrated how large-

scale storage investment can improve market profits and 

flexibility, while stochastic vehicle scheduling models for 

renewable-building-transportation microgrids [12] 

showcased the role of EV fleets in enabling demand response. 
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Beyond traditional battery storage, electrolysis was 

considered a novel flexibility resource for offshore energy 

islands [13], and robust optimization frameworks for 

residential energy management systems integrated PV, ESS, 

EV charging, and demand response [14]. Accurate battery 

state-of-charge prediction has also been addressed through 

advanced learning models, such as multi-scale fusion 

approaches based on gated recurrent units (GRU) [15], to 

enhance BESS reliability. 

From a system integration perspective, several works 

have investigated the coupling of UC with electricity markets 

and infrastructure expansion. For instance, [16] proposed an 

autonomous smart grid energy management scheme with 

integrated market participation, while [17] examined optimal 

bidding strategies for PV and BESS portfolios considering 

carbon reduction benefits. Shared energy storage models with 

multi-time-scale allocation were introduced in [18] to align 

long-term contracts with short-term operations, whereas [19] 

highlighted the role of utility-scale BESS in providing virtual 

transmission capacity to alleviate congestion. More broadly, 

advancements in digital technologies for smart cities have 

been emphasized in [20], highlighting the convergence of 

energy, communication, and computation. Finally, co-

optimization models for battery storage investment and 

transmission expansion have been presented in [21], 

demonstrating the strategic value of storage in integrated 

energy systems. 

Despite these advancements, existing works often address 

EVs, ESS, and demand response in isolation, or within 

simplified operational frameworks that lack comprehensive 

stochastic security-constrained UC (SCUC) modeling. In 

particular, the joint co-optimization of EV V2G fleets, utility-

scale ESS, and flexible loads under high renewable 

penetration—while explicitly enforcing N−1 contingency 

constraints—remains underexplored. Moreover, scalable 

solution techniques that simultaneously handle renewable 

uncertainty and security requirements are still limited. The 

present work addresses these gaps by proposing an integrated 

two-stage stochastic SCUC formulation that jointly models 

EV V2G, ESS, and flexible demand, while ensuring 

reliability through N−1 security criteria and computational 

tractability via a nested Benders decomposition approach. 

In Table I, the advantages of the proposed paper are 

compared with a comprehensive set of recent and relevant 

works in the domain of unit commitment, energy storage, and 

electric vehicle integration. Each row in the table represents 

a specific technical feature or modeling capability, while each 

column corresponds to one of the reviewed articles. The 

presence or absence of each capability is indicated by a “Yes” 

or “No” entry. Below, each indicator used for comparison is 

briefly described to provide context for its significance. The 

first indicator refers to using a two-stage stochastic security-

constrained unit commitment (SCUC) framework. This 

modeling approach captures both day-ahead decisions and 

real-time uncertainties in renewable energy generation, 

enabling more resilient and economically efficient scheduling 

of power system resources under uncertainty. The second 

indicator represents the integration of electric vehicles with 

vehicle-to-grid (V2G) capabilities, where a detailed model 

tracks the state-of-charge (SoC), arrival and departure times, 

mobility constraints, and reserve provision. This 

comprehensive EV modeling is essential for accurately 

capturing their dual role as loads and distributed energy 

resources. The third indicator assesses whether the model 

includes utility-scale energy storage systems (ESS) that are 

co-optimized for both energy arbitrage and reserve services. 

Such a formulation maximizes the operational and economic 

value of ESS while enhancing system flexibility and 

reliability.  

The fourth indicator examines whether the model 

incorporates flexible load shifting, including both time-

shiftable consumption and curtailment, along with a penalty 

term to represent user dissatisfaction. This approach reflects 

the realistic behavioral dynamics of responsive demand and 

its economic trade-offs. The fifth indicator evaluates whether 

the model enforces N-1 security criteria for generator and 

transmission line outages. This is critical for ensuring system 

robustness against single-point failures and aligns with 

industry reliability standards. The sixth indicator highlights 

the method of handling renewable energy uncertainty using 

scenario-based modeling, enhanced by scenario reduction 

techniques. This ensures a computationally tractable yet 

statistically representative set of uncertainty scenarios, 

improving performance and realism. The seventh indicator 

refers to using a nested Benders decomposition algorithm, 

which improves the scalability of the optimization by 

exploiting the structure of scenario-based stochastic 

programs with contingency constraints. This significantly 

reduces computational burden. The eighth indicator examines 

the use of real-world data for wind and solar generation 

profiles, as well as EV and ESS behavior. The application of 

actual data ensures the practical relevance and validity of the 

simulation results. The ninth indicator evaluates whether the 

proposed model results in a quantifiable reduction in 

operational and reserve procurement costs compared to 

baseline models. This is a key economic outcome for system 

operators and stakeholders. The tenth and final indicator 

assesses whether the model achieves a reduction in both 

renewable energy curtailment and load shedding during 

contingencies, which directly impacts sustainability goals and 

service reliability. 
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TABLE I 

 Taxonomy Table 

 
 

Table I shows that the proposed paper demonstrates a 

clear and comprehensive modeling advantage over all 

reviewed papers. It is the only study that simultaneously 

integrates a two-stage stochastic SCUC, detailed EV-V2G 

modeling, co-optimized ESS operations, and demand-side 

flexibility while addressing N-1 security, scenario reduction, 

and real-world data calibration. These capabilities 

collectively lead to superior economic and reliability 

performance, including significant reductions in cost, 

curtailment, and load shedding—demonstrating the practical 

value and novelty of the proposed work. 

Despite the breadth of existing research, a critical gap 

remains in the joint co-optimization of EV-V2G, utility-scale 

storage, and flexible loads within a fully stochastic and 

security-constrained UC framework. Most prior studies 

either focus on a single flexibility resource (e.g., ESS alone 

or EVs alone) or simplify the operational models by ignoring 

key constraints such as EV mobility requirements, state-of-

charge dynamics, or N-1 security criteria. For instance, while 

[5] and [8] explore EV participation in microgrids, they do 

not integrate large-scale storage or enforce transmission 

security. Similarly, [11] and [19] investigate storage value 

but omit EV mobility and demand response. Moreover, many 
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stochastic UC models (e.g., [3], [10]) neglect contingency 

constraints altogether, leading to solutions that may not be 

practically secure. In contrast, our work introduces a unified 

two-stage stochastic SCUC that simultaneously co-optimizes 

all three flexibility resources—EVs, ESS, and flexible 

loads—while rigorously enforcing N-1 security for 

generators and transmission lines.  

Our formulation incorporates detailed EV mobility 

constraints, storage reserve co-optimization, and flexible 

load dissatisfaction penalties, all under correlated wind and 

solar uncertainty. Furthermore, we propose a nested Benders 

decomposition algorithm to efficiently handle scenario and 

contingency decomposition, a scalability feature absent in 

most existing works. This comprehensive and critical 

integration of flexibility modeling, security enforcement, and 

computational tractability distinguishes our approach from 

the literature and enables significant improvements in cost, 

reliability, and renewable utilization, as demonstrated in our 

case studies. 

C. Research gap 

While prior studies have explored stochastic unit 

commitment with either energy storage, demand response, or 

electric‐vehicle integration in isolation, few have 

simultaneously modeled the joint co‐optimization of EV‐

V2G fleets, utility‐scale storage, and flexible loads within a 

security‐constrained, two‐stage stochastic framework. 

Existing approaches often simplify EV participation by 

ignoring state‐of‐charge dynamics and mobility constraints 

or treat flexible demand with overly rigid or deterministic 

assumptions. Moreover, many stochastic SCUC formulations 

omit N-1 contingency requirements for generators and 

transmission lines, leading to solutions that may not be truly 

secure under high renewable uncertainty. As a result, there 

remains a clear need for a unified optimization model that 

captures the interplay among thermal units, high‐penetration 

renewables, EV‐V2G services, large‐scale storage arbitrage, 

and responsive load adjustments, all while enforcing rigorous 

security criteria under correlated wind and solar forecast 

errors. 

D. Contribution 

This work develops a two-stage stochastic 

security-constrained unit commitment model that uniquely 

integrates electric vehicles with vehicle-to-grid capabilities, 

utility-scale energy storage, and flexible demand into a 

unified optimization. Unlike prior formulations, which 

typically consider these flexibility options in isolation or 

under simplified deterministic assumptions, the proposed 

framework explicitly tracks EV state-of-charge dynamics, 

enforces arrival and departure constraints, and models their 

ability to provide spinning and non-spinning reserves. 

Utility-scale storage is co-optimized for energy arbitrage and 

reserve provision, while flexible loads can be time-shifted or 

curtailed according to a user-dissatisfaction penalty. The 

model ensures a holistic view of system flexibility under 

uncertainty by capturing the operational characteristics and 

interactions of these emerging resources alongside 

conventional thermal units and high-penetration wind and 

solar. 

A nested Benders decomposition algorithm is proposed to 

address the computational challenge posed by jointly 

handling renewable forecast scenarios and N-1 

contingencies. The outer layer decomposes the problem 

across renewable scenarios, while inner subproblems enforce 

security constraints for each potential generator or 

transmission-line outage. This nested decomposition not only 

reduces the overall solution time compared to a monolithic 

approach but also allows for parallel subproblem solves, 

making it more practical for large test systems. Scenario 

reduction techniques for correlated wind and solar forecast 

errors further enhance tractability without sacrificing 

solution quality. As a result, decision-makers can obtain 

near-optimal commitments and reserve schedules that 

explicitly account for the full range of uncertainties and 

contingencies. 

Numerical experiments on a modified IEEE-118 bus 

system demonstrate that co-optimizing EV-V2G, storage, 

and flexible demand under stochastic SCUC yields 

significant economic and reliability benefits. Compared with 

a deterministic benchmark, the proposed approach achieves 

up to 8.5 percent reduction in expected operating and reserve 

procurement costs, cuts renewable curtailment rates by 

nearly 40 percent, and slashes expected load-shedding under 

worst-case contingencies by over 75 percent. Furthermore, 

sensitivity analyses illustrate how varying EV penetration 

levels, storage capacities, and demand flexibility parameters 

influence system performance and costs. These results 

underscore the importance of jointly leveraging emerging 

flexibility assets to support a reliable, cost-effective 

transition to high-renewable power systems. 
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Fig.1. Conceptual framework of the proposed two-stage stochastic SCUC integrating EV-V2G, utility-scale storage, and flexible loads under renewable 

uncertainty. 

In Fig. 1, the conceptual flowchart illustrates the core 

idea of the paper, where a two-stage stochastic security-

constrained unit commitment (SCUC) framework is 

developed to integrate three key sources of flexibility—

electric vehicles with vehicle-to-grid (EV-V2G) 

capability, utility-scale storage systems, and flexible loads. 

These resources are coordinated through the SCUC model 

to respond effectively to the variability and uncertainty 

introduced by high levels of renewable energy penetration. 

The arrows from EV-V2G, storage systems, and flexible 

loads converge toward the central SCUC framework 

block, indicating their combined influence on system 

operation. The output of the SCUC framework flows 

downward into a block labeled "Renewable Uncertainty," 

representing the model’s ability to address uncertain wind 

and solar generation scenarios. Ultimately, this leads to a 

system state characterized by secure, economic, and 

flexible grid operation. The diagram emphasizes how 

emerging flexibility technologies can be systematically 

embedded into operational decision-making to enhance 

reliability and reduce costs in renewable-rich power 

systems. 

E. Paper organization 

The remainder of this paper is organized as follows. 

Section 2 introduces the two-stage stochastic SCUC 

model, including commitment and dispatch under 

uncertainties. Section 3 describes the nested Benders 

decomposition used for efficient solution. Section 4 

presents numerical results on a modified IEEE-118 bus 

system. Section 5 concludes with key insights and future 

research directions, providing a clear flow from model 

formulation to validation. 

II. TWO‐STAGE STOCHASTIC UC FRAMEWORK 

We adopt a two‐stage SUC structure: First Stage (here-

and-now decisions): decide unit on/off commitments 𝑢𝑖,𝑡, 

start-up 𝑣𝑖,𝑡, shut-down 𝑤𝑖,𝑡, ESS mode 𝑧𝑘,𝑡
ch , 𝑧𝑘,𝑡

dis , EV mode 

𝑧𝑒,𝑡
ch , 𝑧𝑒,𝑡

dis, and flexible load scheduling variables implicitly 

through minimum/maximum constraints; first-stage 

decisions must be identical across all scenarios. Second 

Stage (wait-and-see decisions): for each RES uncertainty 

scenario 𝑠, determine real power dispatch 𝑝𝑖,𝑡
𝑠 , reserve 

allocations 𝑟𝑖,𝑡
𝑠,sp

, 𝑟𝑏,𝑡
𝑠,nsp

, ESS/EV charging/discharging 

power 𝑝𝑘,𝑡
𝑠,ch

, 𝑝𝑘,𝑡
𝑠,dis

, 𝑝𝑒,𝑡
𝑠,ch

, 𝑝𝑒,𝑡
𝑠,dis

, state-of-charge evolutions 

𝑒𝑘,𝑡
𝑠 , SOC𝑒,𝑡

𝑠 , flexible load consumption 𝑑𝑓,𝑡
𝑠 , and load 

shedding Δ𝐷𝑏,𝑡
𝑠,shed

. The objective is to minimize expected 

total cost (first-stage commitment costs plus expected 

second-stage operating costs) while ensuring 𝑁 −  1 

security in each scenario. 
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Fig.2. Conceptual diagram of the proposed two-stage stochastic SCUC framework with nested Benders decomposition 

 

Fig. 2 provides a conceptual overview of this integrated 

framework. The process begins with system inputs and the 

characterization of uncertainties (RES scenarios) and 

security events (N-1 contingencies). In the First Stage, “here-

and-now” decisions are made, determining the commitment 

schedules for all resources before the actual RES output is 

known. These decisions are fixed across all potential 

scenarios. In the Second Stage, “wait-and-see” recourse 

actions are determined for each scenario. This involves 

optimizing the real-time dispatch of all assets to meet 

demand while simultaneously verifying that the system can 

withstand any single contingency event through post-

contingency adjustments. The entire problem is solved using 

a nested Benders decomposition algorithm, which breaks the 

large-scale problem into a coordinated master problem and 

several smaller subproblems. The master problem refines the 

first-stage commitment decisions based on cost and 

feasibility information (Benders cuts) passed back from the 

subproblems, which evaluate the second-stage operational 

costs and security for each scenario. This iterative process 

continues until a cost-effective and secure schedule is found. 

A. First Stage Model 

In the first stage, the model determines commitment and 

reserve‐scheduling decisions for thermal units, energy 

storage systems, EV fleets, and flexible loads before 

uncertainty is revealed, aiming to minimize fixed 

commitment costs together with expected operating costs 

under all scenarios. Equation (1a) represents the objective 

function that minimizes the sum of first‐stage commitment 

costs and the expected second‐stage operating costs, 

including generation, storage, EV charging/discharging, 

flexible load disutility, load‐shedding penalties, and 

contingency‐related dual costs. Equation (1b) enforces the 

startup‐shutdown consistency constraint, ensuring that the 

difference between startup and shutdown indicators equals 

the change in commitment status between successive time 

periods. Equation (1c) specifies the initial commitment 

consistency constraint for period 1 by relating startup and 

shutdown indicators to the commitment status at time 0.  

Equation (1d) imposes the mutual exclusivity of startup 

and shutdown in each period. Equation (1e) defines the 

binary domains for commitment, startup, and shutdown 

decision variables. Equation (1f) enforces the minimum up‐

time constraint by requiring that once a unit is started up, it 

must remain committed for its minimum up‐time. 

Equation (1g) enforces the minimum down‐time constraint 

by requiring that once a unit is shut down, it must remain 

offline for its minimum down‐time. Equation (1h) enforces 

the minimum and maximum generation limits when a unit is 

committed. Equation (1i) imposes the ramp‐up limit by 

bounding the increase in output between successive periods 

based on the previous commitment and startup status. 

Equation (1j) imposes the ramp‐down limit by bounding the 

decrease in output between successive periods based on the 

current commitment and shutdown status. Equation (1k) 

limits the spinning reserve provided by each unit to its 

maximum spinning reserve capacity and ensures that the sum 

of its dispatched generation and spinning reserve does not 
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exceed its maximum capacity. Equation (1l) enforces the 

system‐level spinning‐reserve requirement by requiring that 

the total spinning reserve from all committed units meets or 

exceeds the predefined spinning‐reserve ratio times the total 

demand. Equation (1m) enforces the non‐spinning‐reserve 

requirement by requiring that the total non‐spinning reserves 

from flexible loads and other resources, combined with 

spinning reserves already allocated, satisfy the non‐spinning‐

reserve target. 

min
𝑢,𝑣,𝑤,𝑧ch,𝑧dis

 ∑  

𝑡∈𝒯

 ∑  

𝑖∈ℐ

  (𝐶𝑖
SU 𝑣𝑖,𝑡 + 𝐶𝑖

SD 𝑤𝑖,𝑡)
⏟                  

First‐stage (commitment) cost

 

+  ∑  

𝑠∈𝒮

𝜋𝑠[

∑  

𝑡∈𝒯

  (∑  

𝑖∈ℐ

 𝐶𝑖
G(𝑝𝑖,𝑡

𝑠 )  +  ∑  

𝑘∈𝒦

  (𝐶𝑘
ESS,ch

 𝑝𝑘,𝑡
𝑠,ch + 𝐶𝑘

ESS,dis
 𝑝𝑘,𝑡
𝑠,dis) 

+ ∑  

𝑒∈ℰ

  (𝐶𝑒
EV,ch

 𝑝𝑒,𝑡
𝑠,ch + 𝐶𝑒

EV,dis
 𝑝𝑒,𝑡
𝑠,dis)

⏟                                    
Generation, ESS, EV energy cost

 

+  ∑  

𝑓∈ℱ

 𝐶𝑓
FL(𝐸𝑓 − ∑  

𝑡∈𝒯𝑓

 𝑑𝑓,𝑡
𝑠 )

⏟              
Flexible load disutility (curtailment)

 +  ∑  

𝑏∈ℬ

 𝐶𝑏,𝑡
LS  𝛥𝐷𝑏,𝑡

𝑠,shed

⏟          
Load shedding penalty

 

+  ∑  

𝜔∈𝛺

 𝜆𝜔  𝑌𝜔,𝑡
𝑠

⏟        
Contingency‐related dual costs (Lagrange terms)

] 

(1a) 

𝑣𝑖,𝑡 − 𝑤𝑖,𝑡  =  𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1, ∀𝑖, 𝑡 ∈ 𝒯, (1b) 

𝑣𝑖,1 −𝑤𝑖,1 = 𝑢𝑖,1 − 𝑢𝑖,0 (1c) 

𝑣𝑖,𝑡 + 𝑤𝑖,𝑡  ≤  1, ∀𝑖, 𝑡. (1d) 

𝑢𝑖,𝑡 ∈ {0,1}, 𝑣𝑖,𝑡 , 𝑤𝑖,𝑡 ∈ {0,1}, ∀𝑖, 𝑡. (1e) 

∑  

𝑡

𝜏=𝑡−𝑈𝑇𝑖+1

𝑣𝑖,𝜏  ≤  𝑢𝑖,𝑡 , ∀𝑖, 𝑡 = 𝑈𝑇𝑖 , … , 𝑇. 
(1f) 

∑  

𝑡

𝜏=𝑡−𝐷𝑇𝑖+1

𝑤𝑖,𝜏  ≤  1 − 𝑢𝑖,𝑡 , ∀𝑖, 𝑡 = 𝐷𝑇𝑖 , … , 𝑇. 
(1g) 

𝑃𝑖
min 𝑢𝑖,𝑡  ≤  𝑝𝑖,𝑡

𝑠  ≤  𝑃𝑖
max  𝑢𝑖,𝑡 , ∀𝑖, 𝑡, 𝑠. (1h) 

𝑝𝑖,𝑡
𝑠 − 𝑝𝑖,𝑡−1

𝑠  ≤  𝑅𝑈𝑖  𝑢𝑖,𝑡−1 +𝑀𝑈𝑖  𝑣𝑖,𝑡 , ∀𝑖, 𝑡, 𝑠, (1i) 

𝑝𝑖,𝑡−1
𝑠 − 𝑝𝑖,𝑡

𝑠  ≤  𝑅𝐷𝑖  𝑢𝑖,𝑡 +𝑀𝐷𝑖  𝑤𝑖,𝑡 , ∀𝑖, 𝑡, 𝑠, (1j) 

𝑟𝑖,𝑡
𝑠,sp  ≤  𝑅𝑖

sp, max 𝑢𝑖,𝑡 , 𝑟𝑖,𝑡
𝑠,sp + 𝑝𝑖,𝑡

𝑠  

≤  𝑃𝑖
max  𝑢𝑖,𝑡 , ∀𝑖, 𝑡, 𝑠. 

(1k) 

∑ 

𝑖∈ℐ

𝑟𝑖,𝑡
𝑠,sp  ≥  𝑅𝑅𝑡

𝑠,sp, 𝑅𝑅𝑡
𝑠,sp = 𝛼sp ∑ 

𝑏∈ℬ

𝐷𝑏,𝑡 
(1l) 

∑ 

𝑏∈ℬ

𝑟𝑏,𝑡
𝑠,nsp  ≥  𝑅𝑅𝑡

𝑠,nsp −∑  

𝑖∈ℐ

𝑟𝑖,𝑡
𝑠,sp. 

(1m) 

 

B. Second Stage Model 

In the second stage, for each scenario and contingency, 

the model determines real‐time dispatch, storage, and EV 

charging/discharging, flexible load adjustments, reserve 

allocations, power balance, and network flows to minimize 

adjustment costs subject to operational and security 

constraints. Equation (2a) (Renewable Output Limit) 

constrains each renewable’s dispatched power between zero 

and its available forecasted output. Equation (2b) (Storage 

Mode Binary Constraint) enforces that each storage unit’s 

charging and discharging mode indicators are binary and 

mutually exclusive. Equation (2c) (Storage Power Limits) 

bounds charging power by the maximum charging capacity 

when in charging mode and bounds discharging power by the 

maximum discharging capacity when in discharging mode. 

Equation (2d) (Storage State‐of‐Charge Evolution) defines 

the energy balance of each storage device as its previous 

state‐of‐charge plus charged energy times charging 

efficiency minus discharged energy divided by discharging 

efficiency. Equation (2e) (Storage SoC Bounds) ensures each 

storage unit’s state‐of‐charge remains between its minimum 

and maximum energy limits. Equation (2f) (Storage Reserve 

Limits) restricts upward reserve from discharging mode by 

the difference between maximum discharging capacity and 

current discharging power, and restricts downward reserve 

from charging mode by the difference between maximum 

charging capacity and current charging power.  

Equation (2g) (EV Availability Indicator) defines a 

binary parameter equal to one when vehicle e is connected 

between its arrival and departure times and zero otherwise. 

Equation (2h) (EV Power Limits) bounds each aggregated 

EV fleet’s charging power by its maximum charging 

capacity times its charging mode indicator and availability 

indicator, and similarly bounds discharging power by its 

maximum discharging capacity times its discharging mode 

indicator and availability indicator. Equation (2i) (EV Mode 

Binary Constraint) enforces that each EV fleet’s charging 

and discharging mode indicators are binary and mutually 

exclusive. Equation (2j) (EV SoC Evolution) updates each 

EV fleet’s state‐of‐charge at time t>1 as its previous state‐of‐

charge plus charged energy divided by the number of 

vehicles times charging efficiency minus discharged energy 

divided by the number of vehicles and by discharging 

efficiency. Equation (2k) (EV SoC Bounds) ensures each EV 

fleet’s state‐of‐charge remains between its minimum and 

maximum limits. Equation (2l) (EV Required Departure 

SoC) enforces that each EV fleet’s state‐of‐charge at its 

departure time meets or exceeds a required threshold for 

mobility.  

Equation (2m) (EV Reserve Limits) bounds upward 

reserve from EV fleets in discharging mode and availability 

by the remaining discharging capacity, and bounds 

downward reserve from EV fleets in charging mode and 

availability by the remaining charging capacity, both scaled 

by fleet size. Equation (2n) (Flexible Load Consumption 

Bounds) constrains each flexible load’s consumption 

between its minimum and maximum allowable consumption 

in each time period. Equation (2o) (Flexible Load Energy 

Requirement) requires that each flexible load’s total 

consumption over its scheduling horizon meets or exceeds its 

baseline minus a slack variable. Equation (2p) (Flexible 

Load Shortfall Slack Definition) defines the slack variable 

for each flexible load as the positive difference between its 

baseline energy and its scheduled consumption. 

Equation (2q) (Flexible Load Up‐Reserve Limit) limits each 

flexible load’s upward reserve by the difference between its 

scheduled consumption and its minimum consumption. 

Equation (2r) (Flexible Load Down‐Reserve Limit) limits 

each flexible load’s downward reserve by the difference 
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between its maximum consumption and its scheduled 

consumption.  

Equation (2s) (Non‐Spinning Reserve Requirement) 

enforces that the sum of upward reserves from all flexible 

loads, storage, and EVs meets the non‐spinning reserve 

requirement net of spinning reserves already allocated from 

thermal units. Equation (2t) (Nodal Power Balance) requires 

that, at each bus, the sum of thermal generation, renewable 

generation, discharging minus charging from storage, 

discharging minus charging from EVs, flexible load 

consumption, and negative load shedding equals the bus 

demand plus the power flows on incident lines using the DC 

approximation. Equation (2u) (Base‐Case Line Flow 

Expression) defines each line flow as its susceptance times 

the difference between voltage angles at the sending and 

receiving ends. Equation (2v) (Base‐Case Line Flow Limits) 

constrains each base‐case line flow within its thermal 

capacity limits. Equation (2w) (Post‐Contingency Generator 

Output Limits) bounds each online thermal generator’s post‐

contingency output between zero and its pre‐contingency 

output plus allocated spinning reserve, and also enforces that 

it stays above its pre‐contingency output minus its downward 

reserve or zero if that difference is negative.  

Equation (2x) (Post‐Contingency Line Flow Expression) 

defines each line’s post‐contingency flow as zero if the line 

is outaged; otherwise, it equals its susceptance times the 

difference between post‐contingency voltage angles at its 

sending and receiving buses. Equation (2y) (Post‐

Contingency Line Flow Limits) ensures each post‐

contingency line flow remains within its thermal capacity 

limits. Equation (2z) (Post‐Contingency Generator Bound 

General) enforces, for all thermal generators and 

contingencies, that post‐contingency outputs lie between 

zero and the pre‐contingency output plus allocated spinning 

reserve and lie above the pre‐contingency output minus 

downward reserve. Equation (2ab) (Load Shedding Limits) 

bounds each bus’s load shedding between zero and the sum 

of its demand plus the difference between maximum flexible 

load consumption and scheduled consumption. 

Equation (2ac) (Reference Bus Angle) sets the voltage angle 

at the reference bus to zero for each scenario and 

contingency. 

0 ≤  𝑝𝑟,𝑡
𝑠,RES  ≤  𝑊̃𝑟,𝑡

𝑠 , ∀𝑟, 𝑡, 𝑠. (2a) 

𝑧𝑘,𝑡
ch , 𝑧𝑘,𝑡

dis  ∈  {0,1}, 𝑧𝑘,𝑡
ch + 𝑧𝑘,𝑡

dis  ≤  1. (2b) 

𝑝𝑘,𝑡
𝑠,ch  ≤  𝑃𝑘

ch, max 𝑧𝑘,𝑡
ch , 𝑝𝑘,𝑡

𝑠,dis  ≤  𝑃𝑘
dis, max 𝑧𝑘,𝑡

dis . (2c) 

𝑒𝑘,𝑡
𝑠 = 𝑒𝑘,𝑡−1

𝑠  +  𝜂𝑘
ch 𝑝𝑘,𝑡

𝑠,ch  −  
𝑝𝑘,𝑡
𝑠,dis

𝜂𝑘
dis
, ∀𝑘, 𝑡, 𝑠. 

(2d) 

𝐸𝑘
min  ≤  𝑒𝑘,𝑡

𝑠  ≤  𝐸𝑘
max. (2e) 

𝑟𝑘,𝑡
𝑠,up  ≤  𝑧𝑘,𝑡

dis ⋅ (𝑃𝑘
dis, max − 𝑝𝑘,𝑡

𝑠,dis), 𝑟𝑘,𝑡
𝑠,down  

≤  𝑧𝑘,𝑡
ch ⋅ (𝑃𝑘

ch, max − 𝑝𝑘,𝑡
𝑠,ch). 

(2f) 

𝐴𝑒,𝑡 = {
1, 𝑡 ∈ [ 𝑇𝑒

arr, 𝑇𝑒
dep ],

0, otherwise.
 

(2g) 

𝑝𝑒,𝑡
𝑠,ch  ≤  𝑃𝑒

ch, max 𝑧𝑒,𝑡
ch  𝐴𝑒,𝑡 , 𝑝𝑒,𝑡

𝑠,dis  

≤  𝑃𝑒
dis, max 𝑧𝑒,𝑡

dis 𝐴𝑒,𝑡 . 

(2h) 

𝑧𝑒,𝑡
ch + 𝑧𝑒,𝑡

dis  ≤  1, 𝑧𝑒,𝑡
ch , 𝑧𝑒,𝑡

dis ∈ {0,1}, ∀𝑒, 𝑡. (2i) 

SOC𝑒,𝑡
𝑠  =  SOC𝑒,𝑡−1

𝑠  +  𝜂𝑒
ch  
𝑝𝑒,𝑡
𝑠,ch

𝑁𝑒
 

−  
1

𝜂𝑒
dis
 
𝑝𝑒,𝑡
𝑠,dis

𝑁𝑒
, ∀𝑒, 𝑡 > 1, 𝑠, 

(2j) 

SOC𝑒
min  ≤  SOC𝑒,𝑡

𝑠  ≤  SOC𝑒
max , ∀𝑒, 𝑡, 𝑠. (2k) 

SOC
𝑒,𝑇𝑒

dep
𝑠  ≥  𝐸̂𝑒

req, ∀𝑒, 𝑠. (2l) 

𝑟𝑒,𝑡
𝑠,up  ≤  𝑧𝑒,𝑡

ch  𝐴𝑒,𝑡  (
𝑝𝑒

ch, max

𝑁𝑒
−
𝑝𝑒,𝑡
𝑠,ch

𝑁𝑒
)𝑁𝑒 , 𝑟𝑒,𝑡

𝑠,down  

≤  𝑧𝑒,𝑡
dis 𝐴𝑒,𝑡  (

𝑝𝑒
dis, max

𝑁𝑒

−
𝑝𝑒,𝑡
𝑠,dis

𝑁𝑒
)𝑁𝑒 . 

(2m) 

𝑃𝑓,𝑡
min  ≤  𝑑𝑓,𝑡

𝑠  ≤  𝑃𝑓,𝑡
max, ∀𝑓, 𝑡 ∈ 𝒯𝑓 , 𝑠. (2n) 

∑  

𝑡∈𝒯𝑓

𝑑𝑓,𝑡
𝑠  ≥  𝐸𝑓 − 𝜖𝑓

𝑠, ∀𝑓, 𝑠, (2o) 

𝜖𝑓
𝑠  ≥  𝐸𝑓 −∑  

𝑡∈𝒯𝑓

𝑑𝑓,𝑡
𝑠 , 𝜖𝑓

𝑠 ≥ 0. (2p) 

0 ≤  𝑟𝑓,𝑡
𝑠,up  ≤  𝑑𝑓,𝑡

𝑠 − 𝑃𝑓,𝑡
min, ∀𝑓, 𝑡, 𝑠. (2q) 

0 ≤  𝑟𝑓,𝑡
𝑠,down  ≤  𝑃𝑓,𝑡

max − 𝑑𝑓,𝑡
𝑠 , ∀𝑓, 𝑡, 𝑠. (2r) 

∑ 

𝑓

𝑟𝑓,𝑡
𝑠,up  +  ∑  

𝑘

𝑟𝑘,𝑡
𝑠,up  +  ∑  

𝑒

𝑟𝑒,𝑡
𝑠,up  

≥  𝑅𝑅𝑡
𝑠,nsp −∑  

𝑖

𝑟𝑖,𝑡
𝑠,sp, 

(2s) 

∑  

𝑖∈ℐ𝑏

𝑝𝑖,𝑡
𝑠  +  ∑  

𝑟∈ℛ𝑏

𝑝𝑟,𝑡
𝑠,RES  +  ∑  

𝑘∈𝒦𝑏

(𝑝𝑘,𝑡
𝑠,dis − 𝑝𝑘,𝑡

𝑠,ch)  

+ ∑  

𝑒∈ℰ𝑏

(𝑝𝑒,𝑡
𝑠,dis − 𝑝𝑒,𝑡

𝑠,ch)  

+ ∑  

𝑓∈ℱ𝑏

𝑑𝑓,𝑡
𝑠  −  Δ𝐷𝑏,𝑡

𝑠,shed  

−  𝐷𝑏,𝑡  =  ∑  

ℓ∈ℒ𝑏

PTDF𝑏ℓ 𝑓ℓ,𝑡
𝑠,0, 

(2t) 

𝑓ℓ,𝑡
𝑠,0  =  𝐵ℓ (𝜃𝑏,𝑡

𝑠,0 − 𝜃
𝑏′,𝑡
𝑠,0 ), ∀ℓ, 𝑡, 𝑠. (2u) 

−𝑓ℓ
max  ≤  𝑓ℓ,𝑡

𝑠,0  ≤  𝑓ℓ
max, ∀ℓ, 𝑡, 𝑠. (2v) 

𝑝̂𝑖,𝑡
𝑠,𝜔  ≤  𝑝𝑖,𝑡

𝑠 + 𝑟𝑖,𝑡
𝑠,sp, 𝑝̂𝑖,𝑡

𝑠,𝜔  

≥ max{ 𝑝𝑖,𝑡
𝑠 − 𝑟𝑖,𝑡

𝑠,down, 0} , ∀𝑖

≠ 𝑖𝜔, 𝑡, 𝑠, 𝜔, 

(2w) 

𝑓ℓ,𝑡
𝑠,𝜔  =  {

𝐵ℓ (𝜃𝑏,𝑡
𝑠,𝜔 − 𝜃

𝑏′,𝑡
𝑠,𝜔), ℓ ≠ ℓ𝜔,

0, ℓ = ℓ𝜔,
 

(2x) 

−𝑓ℓ
max  ≤  𝑓ℓ,𝑡

𝑠,𝜔  ≤  𝑓ℓ
max. (2y) 

0 ≤  𝑝̂𝑖,𝑡
𝑠,𝜔  ≤  𝑝𝑖,𝑡

𝑠 + 𝑟𝑖,𝑡
𝑠,sp, 𝑝̂𝑖,𝑡

𝑠,𝜔  

≥  𝑝𝑖,𝑡
𝑠 − 𝑟𝑖,𝑡

𝑠,down, ∀𝑖, 𝑡, 𝑠. 

(2z) 

0 ≤  Δ𝐷𝑏,𝑡
𝑠,shed  ≤  𝐷𝑏,𝑡

+ ∑  

𝑓∈ℱ𝑏

(𝑃𝑓,𝑡
max

− 𝑑𝑓,𝑡
𝑠 ), ∀𝑏, 𝑡, 𝑠, 𝜔. 

(2ab) 

𝜃𝑏0,𝑡
𝑠,𝜔 = 0, ∀𝑡, 𝑠, 𝜔, (2ac) 

 

    Scheduling an EV fleet is analogous to managing a group 

of commuters. Each vehicle must arrive at the charging 
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station (e.g., at home in the evening) with a certain initial 

battery level and must be refilled to a required level (𝐸̂𝑒
req

) by 

its departure time (e.g., the next morning) to ensure it can 

complete its journey—this is the core mobility constraint 

enforced by Equation (2l). While plugged in and available 

(𝐴𝑒,𝑡 = 1), the fleet acts as a shared battery. The aggregate 

charging (𝑝𝑒,𝑡
𝑠,ch

) and discharging (𝑝𝑒,𝑡
𝑠,dis

) power is limited by 

the capacity of the available chargers, as shown in Equation 

(2h). The average state-of-charge per vehicle (SOC𝑒,𝑡
𝑠 ) 

evolves based on the net energy flow, adjusted for efficiency, 

much like the ESS model, but scaled by the number of 

vehicles (𝑁𝑒) as shown in Equation (2j). This ensures the 

model accurately tracks the energy available from the fleet 

while strictly respecting the driving needs of vehicle owners. 

 

 

Fig.3. Decision framework for EV-V2G fleet scheduling in the stochastic SCUC model. 

 

Fig. 3 illustrates the scheduling decision framework for an 

electric vehicle fleet with vehicle-to-grid capability. The 

diagram depicts the sequential decision-making process 

that governs the operation of each aggregated EV fleet 

within the stochastic unit commitment model. The process 

begins with vehicle arrival and initial state-of-charge 

assessment, proceeds through the operational mode 

selection based on current energy levels, incorporates 

system-wide optimization considerations, including cost 

and reserve requirements, and culminates in departure 

with guaranteed mobility energy constraints. The lower 

section of the figure summarizes the four fundamental 

mathematical constraints that govern the EV fleet 

operation throughout the scheduling horizon: availability 

status, power transfer limits, state-of-charge dynamics, 

and the crucial mobility requirement that ensures sufficient 

energy for vehicle departure. A time progression axis 

provides temporal context for the entire scheduling 

process. 

 

III. SOLUTION APPROACH 

The solution approach begins by recognizing that the two‐

stage stochastic security‐constrained unit commitment 

model contains a large number of scenarios and 

contingencies, each of which introduces its own set of real‐

time decision variables and network constraints. Solving 

the problem monolithically would require enumerating 

every scenario–contingency combination, drastically 

increasing problem size and making direct solution 

intractable for realistically sized systems. To address this 

challenge, a nested Benders decomposition is employed. 

In essence, the master problem handles the first‐stage 

commitment and reserve‐scheduling decisions, while the 

subproblems evaluate the second‐stage recourse for each 

scenario and its associated contingencies. By iteratively 

exchanging information in the form of Benders cuts—dual 

constraints that represent the impact of a particular 

commitment decision on recourse cost—the algorithm 

converges to a globally optimal solution without ever 

solving all scenario–contingency instances 

simultaneously. 
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At the outer level of decomposition, the master 

problem includes the first‐stage variables (commitment 

𝑢𝑖,𝑡, startup 𝑣𝑖,𝑡, shutdown 𝑤𝑖,𝑡, storage mode 𝑧𝑘,𝑡
ch , 𝑧𝑘,𝑡

dis , EV 

mode 𝑧𝑒,𝑡
ch , 𝑧𝑒,𝑡

dis, and flexible load scheduling) and an 

approximation of the expected second‐stage cost, 

represented by a variable for each scenario that lower‐

bounds the true recourse value. Initially, no cuts are 

present, so the master problem commits units in a manner 

that minimizes fixed costs plus a naive operational cost 

estimate. After obtaining a candidate first‐stage solution, 

each scenario subproblem (the outer subproblem) is solved 

to determine the true minimum second‐stage cost given 

that commitment pattern. If the subproblem is infeasible 

under any contingency within that scenario, feasibility cuts 

(reflecting load‐shedding or reserve shortfall penalties) are 

generated and added to the master. If feasible, an 

optimality cut (derived from the dual variables of the 

operational constraints) is constructed to bound the 

recourse cost for that scenario, capturing the marginal 

value of reserves, generation, storage dispatch, and 

flexible load adjustments. Once all scenario subproblems 

have been processed and the cuts added to the master, the 

master problem is re‐solved, yielding a new set of first‐

stage decisions. This cycle repeats until no new cuts are 

generated and the master’s estimated expected recourse 

cost matches the aggregate value returned by the scenario 

subproblems. 

Within each scenario subproblem, there is a further, 

inner layer of decomposition to enforce N‑1 security. For 

a fixed scenario and first‐stage decision, the model must 

verify that for every generator or transmission‐line outage, 

the system can re‐dispatch resources to satisfy demand and 

reserve requirements without exceeding network limits. 

Instead of enumerating all contingencies in a single large 

subproblem, each contingency is treated as a separate inner 

subproblem (the contingency subproblem). The 

contingency subproblem takes the first‐stage commitment 

and reserve allocations as parameters and solves the 

network‐constrained dispatch for that contingency, which 

may be infeasible if insufficient reserves or network 

capacity exist. Dual information from the contingency 

subproblem—specifically, the shadow prices on the nodal 

power balance and reserve constraints—is used to generate 

cuts representing the worst‐case impact of that outage on 

overall system cost or feasibility. These contingency cuts 

are then fed back to the scenario subproblem, tightening 

its representation of the feasible recourse region. If any 

contingency subproblem is infeasible even after allowing 

load shedding, a feasibility cut is added to the scenario 

subproblem to force the master to allocate more reserves 

or commit additional units. 

These dual variables (𝜆𝜔) quantitatively capture the 

marginal cost of violating the security constraints for 

contingency 𝜔. During the cut generation process, these 

values are used to form Benders optimality cuts. These 

cuts are linear inequalities added to the master problem, 

effectively informing it of the expected cost of ensuring 

security against each contingency. This process ensures 

the first-stage commitment decisions are made with a 

precise understanding of their impact on second-stage 

feasibility and cost under all possible outage events. 

The nested structure thus consists of a master problem 

(first‐stage), scenario subproblems (second‐stage for each 

renewable realization), and contingency subproblems (for 

each generator or line outage within each scenario). Each 

iteration proceeds as follows: the master selects a 

commitment pattern; each scenario subproblem solves a 

base‐case dispatch and then invokes each contingency 

subproblem in turn. If all contingencies are feasible, the 

scenario subproblem computes an optimality cut and 

returns it to the master; if any contingency is infeasible, a 

feasibility cut is generated and returned. Scenario 

subproblems run in parallel; within each scenario, 

contingency subproblems also run in parallel, significantly 

reducing wall‐clock time. By accumulating cuts over 

iterations, the master problem gradually learns the 

trade‑offs between committing additional units (or 

allocating more reserves) and the expected penalty costs 

from recourse actions under uncertainty and outages. 

Scenario reduction techniques are applied before 

optimization to limit the number of scenarios considered. 

Historical forecast‐error data for wind and solar are 

clustered (for example, via k‑means on joint error 

trajectories), and representative scenarios are selected with 

adjusted probability weights. This preserves the statistical 

properties of forecast errors while reducing the number of 

second‐stage subproblems. Similarly, contingencies may 

be screened to eliminate those with negligible impact on 

network feasibility given typical reserve levels, though all 

credible single outages must be considered in the final 

solution. As iterations progress, the magnitude of cuts 

tends to diminish. Convergence is declared when the 

difference between the master’s estimated expected 

recourse cost and the sum of the scenario subproblems’ 

true recourse costs falls below a predefined tolerance, and 

no feasibility cuts arise. This nested Benders approach 

ensures that first‑stage decisions are driven by accurate 

security requirements and renewable variability 

assessments without incurring prohibitive computational 

expense. 
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The pseudocode outlines a nested Benders 

decomposition algorithm designed to solve a two-stage 

stochastic security-constrained unit commitment problem 

with contingency analysis. The algorithm begins by 

reading in the set of renewable uncertainty scenarios, the 

set of contingency events (each representing the outage of 

a single generator or transmission line), and a convergence 

tolerance ε. Two cut sets are initialized: one for the master 

problem (which represents first-stage commitment and 

reserve decisions) and one for each scenario (which 

captures feasibility information related to contingencies 

within that scenario). Upper and lower bounds are set to 

positive and negative infinity, respectively, to track 

convergence as the algorithm proceeds. 

The main loop continues as long as the current upper 

and lower bound difference exceeds the tolerance ε. At the 

start of each iteration, the master problem is solved to 

optimality, minimizing first-stage commitment and 

reserve-allocation costs plus weighted estimates of 

second-stage recourse costs for each scenario. The 

constraints of the master problem include the first-stage 

commitment constraints (startup, shutdown, minimum 

up/down times, generation limits, and reserve 

requirements) along with any Benders cuts accumulated in 

previous iterations. From the solution of this master 

problem, precise values for the commitment indicators (for 

thermal units, storage modes, EV modes, and flexible-load 

schedules) become fixed inputs to all subsequent scenario 

subproblems. The objective value of the master problem is 

recorded as the current lower bound. 

Once the master solution is obtained, each scenario 

subproblem is solved in parallel. The first-stage decisions 

are fixed for a given scenario, and the recourse cost Q_s is 

initially set to zero. Within each scenario, an inner loop 

considers each contingency event in parallel. For each 

contingency, a contingency subproblem is solved that 

determines whether the system can be re-dispatched—

respecting fixed commitment statuses and reserve 

allocations—to meet demand without violating network 

constraints when one generator or line is removed. If the 

contingency subproblem is feasible, dual multipliers 

associated with the binding constraints (such as 

reserve−requirement or power balance constraints) are 

recorded for use in cut generation. If it is infeasible, a 

feasibility cut is generated using the infeasibility 

certificate provided by the solver; this cut captures the 

minimal adjustment to first-stage reserve or commitment 

decisions needed to satisfy the problematic contingency. 

The feasibility cut is added to the scenario’s cut set, 

ensuring that future first-stage solutions are driven toward 

contingency compliance. 

After all contingencies within a scenario have been 

evaluated, the algorithm checks whether any infeasible 

contingency was encountered. If none are infeasible, a 

base-case dispatch subproblem (with no contingency) is 

solved for the scenario using the fixed first-stage 

commitments. This problem minimizes operating costs for 

the scenario (generation, storage dispatch, EV 

charging/discharging, flexible load adjustments, 

load-shedding penalties, and any contingency dual costs) 

subject to power balance, network flow, and reserve 

constraints in the no-contingency state. The optimal 

objective value of this base-case dispatch is taken as the 

true recourse cost Q_s for that scenario. Dual variables 

from the base-case dispatch and each contingency 

subproblem are then used to form an optimality cut added 

to the master problem’s cut set. This cut bounds the 

expected recourse cost for the scenario, representing how 

sensitive the recourse cost is to first-stage decisions. 

If any contingency for the scenario was infeasible, 

instead of solving the base-case dispatch in isolation, the 

algorithm solves a combined scenario subproblem that 

incorporates all accumulated contingency feasibility cuts 

for that scenario. The combined problem seeks the 

minimal cost adjustment to real-time dispatch that 

alleviates the infeasibility identified by the contingency 

cuts. From this combined scenario problem, an aggregated 

feasibility cut is generated and passed back to the master 

problem. This aggregated cut ensures that the next master 

iteration will adjust the first-stage decisions to avoid 

infeasibility. The recourse estimate θˉs\bar\theta_sθˉs is 

then updated to Q_s (zero if no dispatch was solved 

because of infeasibilities, otherwise the value from the 

base-case dispatch). 

Once all scenarios have been processed in parallel, the 

expected recourse cost is computed as the 

probability-weighted sum of the recourse estimates 

θˉs\bar\theta_sθˉs. The algorithm then updates the upper 

bound to be the sum of the first-stage commitment cost 

(from the master solution) and this expected recourse cost. 

Another iteration begins if the upper and lower bound 

difference remains larger than ε. During each iteration, 

cuts accumulate in the master problem, progressively 

tightening the approximation of the expected recourse 

function and driving the first-stage solution toward global 

optimality. 

The algorithm terminates when the upper and lower 

bounds gap falls below the specified tolerance. The final 

output consists of the optimal first-stage commitment 

decisions (unit on/off statuses, reserve allocations, storage 

and EV mode selections, and flexible load schedules) and 

the associated recourse policies that would be applied 

under each scenario and contingency. This nested Benders 

approach allows the algorithm to avoid enumerating all 

scenario–contingency combinations in a monolithic 

model, exploiting parallelism at both the scenario and 
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contingency levels and using Benders cuts to coordinate 

information between levels. 

IV. DISCUSSION AND RESULTS 

This section presents the numerical results of the 

proposed two-stage stochastic SCUC framework that 

integrates EV-V2G, utility-scale storage systems, and 

flexible loads. The performance is evaluated using a 

modified IEEE-118 bus system under various levels of 

renewable energy penetration and flexibility resource 

availability. The results demonstrate the model's 

effectiveness in improving cost efficiency, reducing 

renewable curtailment, enhancing reliability, and 

maintaining N-1 security under uncertainty. The proposed 

two-stage stochastic SCUC model was implemented using 

Python with the Gurobi 12 solver, leveraging its built-in 

callback functionality to implement the nested Benders 

decomposition algorithm. The master problem and all 

scenario–contingency subproblems were constructed in 

the Pyomo optimization framework and solved via 

Gurobi’s branch-and-bound engine. Parallel processing 

was utilized across both scenario and contingency 

subproblems to accelerate convergence. All simulations 

were conducted on a workstation equipped with an Intel 

Core i7 processor operating at 4.60 GHz and 64 GB of 

RAM. To ensure computational tractability for large-scale 

problem instances, the CPU time was limited to a 

maximum of 2 hours per case study. The stopping criterion 

for all runs was an optimality gap of less than or equal to 

0.1%. This threshold ensured the solutions obtained were 

near-optimal while maintaining reasonable computational 

effort. 

A. Case Study 

To evaluate the performance of the proposed two-stage 

stochastic SCUC model, a comprehensive case study is 

conducted on a modified IEEE‑118 bus system. This test 

system is enriched with renewable energy sources, electric 

vehicle fleets, energy storage systems, and flexible loads 

to represent a modern grid with high renewable 

penetration and emerging flexibility options. The network 

includes 118 buses, 186 transmission lines, and 54 thermal 

generators. Renewable generation is integrated via three 

wind farms (each 30 MW) and two solar photovoltaic (PV) 

plants (each 20 MW), strategically located across the 

network. Historical wind and solar forecast error data from 

a real-world grid (e.g., ERCOT) are used to generate 1,000 

renewable forecast samples. These samples are clustered 

using scenario reduction techniques, and the 20 most 

representative scenarios (𝑆 = 20) are retained for the 

stochastic optimization.  

The thermal generators have capacities ranging from 

50 MW to 300 MW. Their cost functions include linear 

and quadratic terms based on standard IEEE test data, and 

they feature ramping limits (10–50 MW/h) as well as 

minimum up and down time constraints (3–5 hours). Start-

up and shut-down costs are fixed at $5,000 and $2,500, 

respectively. Three aggregated EV fleets are positioned at 

buses 20, 50, and 85, each comprising 500 vehicles. Every 

vehicle has a battery capacity of 60 kWh, resulting in an 

aggregated fleet energy capacity of 30 MWh. Each fleet 

can charge or discharge up to 5 MW, with charging and 

discharging efficiencies of 0.90. EVs become available at 

4 PM (arrival) and depart at 7 AM the next day, with a 

minimum state-of-charge requirement of 40 kWh. Their 

availability is modeled via a time-dependent profile 

reflecting connection times.  

Two utility-scale energy storage systems are located at 

buses 40 and 100. Each has a maximum energy capacity 

of 30 MWh, with 10 MW charging and discharging power 

limits. Round-trip efficiencies are 95%, and the initial SoC 

is set to 15 MWh. These storage units are assumed to be 

utility-owned, with zero discharge cost and a nominal 

$10/MWh charging cost. Five industrial flexible loads are 

integrated, each with a daily energy requirement of 

100 MWh to be consumed within a window from 8 AM to 

6 PM. Each load can vary between 0–20 MW per hour, and 

any shortfall in energy delivery is penalized via a disutility 

cost of $2,000/MWh. Spinning and non-spinning reserve 

requirements are set at 10% and 5% of the total system 

hourly load, respectively. The total system load profile is 

adapted from PJM real-world data and scaled to a 

4,500 MW peak, with flexible loads subtracted from the 

baseline demand to avoid double-counting. The 

contingency list includes all N‑1 events: 54 single 

generator outages and 186 single transmission line 

outages, resulting in a total of |Ω| = 240 contingencies. 

These are used in the second stage to ensure full N‑1 

security compliance in each scenario. Cost coefficients are 

randomly sampled within realistic bounds: fixed costs 𝑎𝑖 ∈

[0,50], linear costs 𝑏𝑖 ∈ [2,10] $/MWh, and quadratic 

costs 𝑐𝑖 ∈ [0.01,0.05] $/MWh². EV fleets are modeled 

with a market-based charging price of $50/MWh and a 

discounted discharging compensation of $40/MWh to 

reflect battery degradation costs. For the ESS, charging is 

priced at $10/MWh, and discharging is considered free. 

The load shedding penalty is set at $10,000/MWh to 

reflect the high cost of involuntary curtailment. 

B. Results 

Four distinct unit commitment configurations are 

evaluated and compared under identical system conditions 

to assess the proposed model's effectiveness and added 

value. These cases are designed to isolate the contribution 

of each flexibility resource and the impact of uncertainty 

modeling. 

Case 1 – Deterministic SCUC without EV/ESS/FL 

(Base): This case serves as the baseline benchmark. It uses 
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a single, deterministic forecast for renewable energy 

generation and does not include any flexible resources—

i.e., no electric vehicles (EVs), energy storage systems 

(ESS), or flexible loads (FL). The model enforces full N-1 

security constraints but assumes perfect foresight of 

renewable generation, making no provision for 

uncertainty. This configuration reflects conventional unit 

commitment practices in power system operations. 

Case 2 – Stochastic UC without EV/ESS/FL: This case 

introduces scenario-based stochastic modeling of 

renewable energy forecast uncertainty but still excludes all 

forms of flexibility. The SUC model co-optimizes thermal 

generation and reserve procurement across multiple 

wind/solar forecast scenarios while ensuring N-1 security. 

This allows the system to prepare for variability in 

renewable output but relies solely on conventional 

generators for balancing and reserves. 

Case 3 – Stochastic UC with ESS and FL (No EV): This 

configuration extends the stochastic model by integrating 

utility-scale energy storage and flexible industrial loads. 

ESS units can charge or discharge based on real-time 

system needs, while flexible loads can shift or curtail 

demand within defined energy and time constraints. 

However, EV fleets are excluded from the model. This 

case quantifies the contribution of stationary flexibility 

assets to system cost, reliability, and renewable 

integration. 

Case 4 – Proposed Model (Full): The final and most 

complete configuration corresponds to the proposed 

model. It includes all components: stochastic modeling of 

RES uncertainty, N-1 contingency handling, and co-

optimizing thermal units, ESS, flexible loads, and EV-

V2G fleets. This full integration enables stationary and 

mobile flexibility resources to contribute to energy 

balancing, reserve provision, and contingency 

management. 

Table II evaluates the cost performance of four 

different unit commitment configurations in terms of first-

stage commitment costs, expected second-stage operating 

costs, and total system costs. The first case, a deterministic 

SCUC model without flexibility or uncertainty modeling, 

yields the highest total system cost of $9,746,250. This is 

expected, as the model operates on a single forecast and 

lacks mechanisms to accommodate renewable variability. 

The system must rely on conservative, high-cost 

redispatch actions in real time, resulting in the highest 

second-stage cost of $5,198,450. Although the first-stage 

cost is the lowest at $4,547,800, these savings do not 

compensate for the high operational costs in uncertain 

conditions. In Case 2, the stochastic version of SCUC is 

introduced, considering multiple renewable generation 

scenarios but without flexibility resources.  

This approach reduces the total cost to $9,494,650, a 

2.58% improvement compared to the deterministic model. 

The expected second-stage cost drops to $4,891,700, 

reflecting better preparedness for forecast errors. 

However, the first-stage cost increases to $4,602,950 as 

the model commits more capacity in advance to hedge 

against scenario variability. The result shows that 

stochastic modeling alone offers noticeable operational 

cost savings even without physical flexibility. Case 3 

builds upon the stochastic model by integrating energy 

storage systems and flexible loads. The total system cost 

further declines to $9,351,850, corresponding to a 4.05% 

reduction relative to the base case. The second-stage cost 

decreases to $4,703,550 due to improved ability to shift or 

store energy, which mitigates costly redispatch and helps 

balance supply and demand under uncertainty. The first-

stage cost increases modestly to $4,648,300, reflecting the 

scheduling of reserve capacity and strategic deployment of 

storage units. This configuration demonstrates the 

economic benefit of adding stationary flexibility to a 

scenario-based decision framework.  

In Case 4, the proposed model incorporates all 

available flexibility options, including EV-V2G in 

addition to ESS and flexible loads. This configuration 

achieves the lowest total system cost at $9,098,100, 

representing a 6.66% reduction compared to the base case. 

The first-stage cost rises to $4,709,200, the highest among 

all cases, due to the additional commitment and reserve 

scheduling required to effectively utilize EVs and 

coordinate with other resources. Nevertheless, the second-

stage cost is significantly reduced to $4,388,900—the 

lowest observed across all scenarios—demonstrating the 

strong operational value of mobile and distributed 

flexibility in real-time balancing, especially under 

uncertainty and contingency conditions. In summary, 

Table II illustrates that both uncertainty modeling and 

flexibility resource integration contribute to measurable 

cost savings. Each additional element—stochastic 

formulation, storage, load flexibility, and EVs—delivers 

incremental improvements. The proposed model, which 

combines all these features, achieves the best overall cost 

performance, validating the approach of integrating 

diverse flexibility resources into a two-stage stochastic 

SCUC framework. 

 

 
 

 

 



52                                                                                                     Volume 5, Number 2, September 2025 

TABLE II 

 Comparison of System Costs Across Different Unit Commitment Configurations 

Case First-Stage Cost ($) Expected Second-Stage Cost ($) Total Cost ($) % Reduction vs. Base 

(1) Deterministic w/o Flex 4,547,800 5,198,450 9,746,250 – 

(2) Stochastic w/o Flex 4,602,950 4,891,700 9,494,650 2.58% 

(3) Stoch. + ESS & FL (no EV) 4,648,300 4,703,550 9,351,850 4.05% 

(4) Proposed (EV + ESS + FL) 4,709,200 4,388,900 9,098,100 6.66% 

 

 

Fig. 4. System Costs Across SCUC Configurations 
 

Using a grouped bar chart, Fig. 4 illustrates a 

comparative analysis of system costs under four unit 

commitment configurations. The bars represent the first-

stage cost, expected second-stage cost, and total cost for 

each scenario, normalized in millions of dollars. The 

deterministic case without flexibility (Case 1) results in the 

highest total cost ($9.75M), while the proposed model 

incorporating electric vehicles (EVs), energy storage 

systems (ESS), and flexible loads (FL) (Case 4) achieves 

the lowest total cost ($9.10M), reflecting a 6.66% 

reduction compared to the base case. This figure highlights 

the economic benefits of integrating flexibility and 

stochastic optimization in power system operation. 

In Table III, the impact of each unit commitment 

configuration on renewable energy utilization and 

associated curtailment is evaluated using a fixed total 

availability of 12,000 MWh across all scenarios. In the 

deterministic SCUC model without any flexibility (Case 

1), the system can utilize only 7,762 MWh of the available 

renewable generation. This results in a curtailment rate of 

35.32%, the highest among all cases. The high curtailment 

is due to the model’s inability to anticipate renewable 

variability and its lack of flexible mechanisms—such as 

storage or load shifting—to absorb excess generation 

during periods of surplus. In Case 2, stochastic unit 

commitment is introduced to consider multiple renewable 

forecast scenarios, but flexible resources remain excluded. 

As a result, the total utilized renewable energy increases to 

8,347 MWh, reducing curtailment to 30.44%. This 

improvement is attributable to the ability of the stochastic 

model to make better-informed commitment decisions 

based on the statistical distribution of renewable 

outcomes, allowing for more accurate alignment between 

expected generation and load. However, curtailment 

remains relatively high without physical flexibility to shift 

or store excess energy.  
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Case 3 adds utility-scale energy storage systems and 

flexible loads to the stochastic model. Renewable 

utilization in this configuration increases to 9,018 MWh, 

and curtailment drops to 24.85%. The integration of ESS 

enables time-shifting of surplus energy to later periods of 

higher demand, while flexible loads adapt consumption 

patterns to better match variable generation. This 

combination allows the system to respond more effectively 

to renewable fluctuations and absorb more clean energy 

that would otherwise be curtailed.  

Case 4 implements the full proposed model, 

incorporating EV-V2G capabilities alongside ESS and 

flexible loads. This case achieves the highest renewable 

energy utilization at 9,596 MWh and the lowest 

curtailment rate of 20.03%. Including EVs adds mobile 

storage capacity distributed across the network, further 

enhancing the system’s ability to absorb intermittent 

renewable output. EVs charge during hours of surplus 

generation and, when required, discharge to support 

system needs during shortages or peak demand hours. The 

flexibility from EV fleets complements the role of 

stationary assets, leading to the most efficient use of 

renewable resources. In summary, Table III illustrates that 

both uncertainty modeling and flexible resources 

contribute to improving renewable integration. While 

stochastic optimization alone provides moderate benefits, 

adding physical flexibility—particularly when EVs are 

included—leads to significant reductions in curtailment. 

The proposed configuration demonstrates the value of 

coordinated mobile and stationary flexibility for 

maximizing the utilization of available renewable energy 

and minimizing reliance on conventional generation. 

 

 
TABLE III 

 Renewable Energy Utilization and Curtailment Under Different Unit Commitment Configurations 

Case Total RES Available (MWh) Total RES Utilized (MWh) Curtailment (%) 

(1) Deterministic w/o Flex 12,000 7,762 35.32% 

(2) Stochastic w/o Flex 12,000 8,347 30.44% 

(3) w/ ESS & FL (no EV) 12,000 9,018 24.85% 

(4) Proposed (EV + ESS + FL) 12,000 9,596 20.03% 

 

 

Fig. 5. Renewable Energy Utilization and Curtailment Across Configurations 
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Fig. 5 compares renewable energy utilization and 

curtailment across different unit commitment 

configurations. The gray bars represent the fixed total 

renewable energy availability (12,000 MWh) in each case, 

while the blue bars show the portion actually utilized. The 

red line depicts the percentage of curtailment. As 

flexibility resources are incrementally integrated—from 

none in Case 1 to the full configuration in Case 4—the 

utilized renewable energy increases and curtailment drops 

significantly, showcasing the effectiveness of combining 

stochastic modeling with energy storage, flexible loads, 

and EV-V2G technologies. 

Table IV compares the reserve procurement costs for 

spinning and non-spinning reserves across four unit 

commitment configurations, each representing a different 

combination of uncertainty modeling and system 

flexibility. In Case 1, the deterministic model without any 

form of flexibility incurs the highest reserve procurement 

cost, totaling $1,498,500. This includes $1,197,300 for 

spinning reserves and $301,200 for non-spinning reserves. 

The high spinning reserve cost results from the model's 

reliance on committed thermal generation to cover all 

possible uncertainties, as no flexible or responsive 

resources are available to assist in providing reserves.  

Case 2 introduces a stochastic unit commitment approach 

that incorporates renewable generation uncertainty but still 

excludes flexible resources. In this scenario, spinning 

reserve costs are reduced to $1,096,850 and non-spinning 

reserve costs to $248,400, resulting in a total reserve cost 

of $1,345,250. This marks a 10.25% reduction compared 

to the deterministic base case. The improvement reflects 

the stochastic model’s ability to allocate reserves more 

precisely by considering forecast distributions rather than 

single-point predictions, thereby avoiding excessive and 

costly spinning commitments. In Case 3, the stochastic 

model is further enhanced by integrating utility-scale 

storage systems and flexible loads. The total reserve cost 

drops further to $1,241,550, comprising $1,042,600 for 

spinning reserves and $198,950 for non-spinning reserves. 

Storage systems contribute significantly to spinning 

reserve provision due to their fast response capabilities, 

while flexible loads support non-spinning reserve 

requirements by reducing or shifting demand when 

needed. This combination reduces dependence on thermal 

generators for reserve support and improves overall 

reserve efficiency.  

Case 4 represents the proposed full model, which 

incorporates EV-V2G alongside ESS and flexible loads. 

This configuration results in the lowest total reserve 

procurement cost of $1,147,400, with $998,100 allocated 

to spinning reserves and $149,300 to non-spinning 

reserves. Including EV fleets enhances the system’s 

flexibility by adding distributed, controllable reserve 

capacity. During hours when EVs are connected, they can 

discharge power to support spinning reserve needs or 

adjust charging behavior to provide non-spinning reserve 

support. This distributed flexibility complements the 

centralized response from ESS and load control, enabling 

the system to meet reserve requirements more 

economically and with less reliance on traditional 

generation. Overall, Table IV confirms that each 

enhancement—uncertainty modeling, storage integration, 

demand flexibility, and EV-V2G—contributes to lower 

reserve procurement costs. The greatest cost savings are 

achieved when all flexibility resources are co-optimized in 

a stochastic framework. The results highlight the 

operational and economic value of coordinated flexibility 

in maintaining system reliability under high levels of 

renewable energy uncertainty. 

 
TABLE IV 

Reserve Procurement Costs Under Different Unit Commitment Configurations 

Case Spinning Reserve Cost ($) Non-Spinning Reserve Cost ($) Total Reserve Cost ($) 

(1) Deterministic w/o Flex 1,197,300 301,200 1,498,500 

(2) Stochastic w/o Flex 1,096,850 248,400 1,345,250 

(3) w/ ESS & FL (no EV)  1,042,600 198,950 1,241,550 

(4) Proposed (EV + ESS + FL) 998,100 149,300 1,147,400 
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Fig. 6. Reserve Procurement Cost Across Commitment Configurations 

Fig. 6 presents the spinning and non-spinning reserve 

procurement costs as grouped bars for each case, with the 

total reserve cost superimposed as a green line. The chart 

demonstrates how incorporating stochastic modeling and 

system flexibility — especially EVs — progressively 

reduces overall reserve costs. The most significant savings 

occur in the proposed model, confirming the value of co-

optimized flexibility. 

The simulation results clearly demonstrate that 

integrating flexibility resources and incorporating 

renewable uncertainty significantly enhances the power 

system's economic efficiency and operational reliability. 

The proposed two-stage stochastic SCUC model, which 

includes full coordination of electric vehicles with vehicle-

to-grid capability (EV-V2G), utility-scale energy storage 

systems (ESS), and flexible loads (FL), consistently 

outperforms all other configurations examined. First, the 

total system cost is reduced from $9,746,250 in the 

deterministic baseline to $9,098,100 in the proposed 

model, reflecting a 6.66% cost reduction. This 

improvement is mainly driven by a substantial decrease in 

expected second-stage operating costs, made possible 

through proactive scheduling and dynamic use of flexible 

resources in response to renewable variability. Second, 

renewable energy utilization increases from 7,762 MWh to 

9,596 MWh, resulting in a curtailment reduction from 

35.32% to 20.03%. This improvement is achieved through 

the synergistic operation of ESS and EV fleets, which 

absorb surplus renewable output during low-demand 

periods and provide dispatchable power during shortages.  

Flexible loads further support this process by shifting 

consumption to periods of high renewable availability. 

Third, reserve procurement becomes significantly more 

cost-effective. The total reserve cost drops from 

$1,498,500 in the base case to $1,147,400 under the 

proposed model—a 23.4% reduction. This efficiency gain 

is enabled by the fast-response characteristics of ESS and 

EVs, as well as the controllability of industrial flexible 

loads, which together reduce dependence on costly 

thermal reserves . 
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Fig. 7. Key performance indicators of the proposed SCUC model with co-optimized EV, ESS, and FL flexibility 

In Fig. 7, the key performance indicators of the 

proposed configuration—featuring coordinated EV-V2G, 

utility-scale storage, and flexible loads—are visually 

summarized in Fig. 5. The left axis illustrates the economic 

and energy performance metrics, where the first-stage 

cost, second-stage cost, total reserve procurement cost, 

and renewable energy utilized are represented as 

individual bars. Notably, the second-stage cost shows a 

substantial decline relative to the first-stage cost, reflecting 

the model's improved operational efficiency due to 

enhanced flexibility. The right axis displays the 

curtailment percentage, which is plotted as a red marker 

with a dashed reference line. A curtailment rate of 20.03% 

is achieved, indicating a significant reduction in wasted 

renewable energy compared to previous configurations. 

This improvement highlights the ability of the proposed 

model to absorb and utilize more variable generation, 

thanks to the coordinated operation of all three flexibility 

resources. Collectively, the figure emphasizes how the 

proposed model leads to lower operational costs, better 

renewable integration, and reduced reserve burdens, 

validating the benefits of multi-dimensional flexibility in 

high-renewable scenarios. 

 

 

Fig. 8. Radar chart of normalized performance metrics for the proposed SCUC model 
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Fig. 8 uses a radar chart to visualize the relative 

performance of the proposed model across five normalized 

metrics: first-stage cost, second-stage cost, reserve cost, 

renewable energy utilization, and curtailment. Each axis 

represents one metric, scaled from 0 to 1, where a larger 

area signifies better performance. The results show a 

strong, balanced profile with low operating and reserve 

costs, high renewable utilization, and low curtailment. 

This confirms that the comprehensive integration of EV, 

ESS, and FL provides a well-rounded enhancement to 

system performance across all key dimensions. 

C. Scalability and Computational Tractability 

The proposed two-stage stochastic SCUC model with 

nested Benders decomposition is inherently 

computationally complex. The problem size scales with 

the number of scenarios (|Ω|), contingencies (|𝒞|), time 

periods (|𝑇|), network buses (|𝐵|), and flexibility 

resources. Solving such a problem monolithically for a 

large-scale real-world system (e.g., a thousands-of-buses 

network) is computationally intractable. The primary 

value of the nested decomposition approach is to break this 

intractable monolithic problem into a sequence of smaller, 

more manageable subproblems. 

Three key strategies underpin the scalability of our 

framework: 

1. Decomposition: The master problem size 

depends only on the first-stage decision variables 

and the number of Benders cuts, not on |Ω| or |𝒞|. 

Each scenario subproblem is independent and can 

be solved in parallel, decoupling the complexity 

of renewable uncertainty. Similarly, within each 

scenario, contingency subproblems are also 

independent and parallelizable, isolating the 

burden of N-1 security analysis. 

2. Reduction: Using scenario reduction (e.g., 

k-means clustering) to limit |Ω| to a tractable 

number of representative scenarios is critical. 

Similarly, contingency screening—whereby 

contingencies with a negligible likelihood or 

impact are filtered out—can significantly reduce 

|𝒞| without materially compromising security. 

3. Parallelization: As implemented, the 

algorithm exploits two levels of parallelism: 

across scenarios and across contingencies within 

a scenario. This can lead to a near-linear speedup 

in wall-clock time when deployed on high-

performance computing (HPC) clusters with 

many cores. 

For larger systems (e.g., a 2000-bus model), the main 

computational challenges would be: 

• Master Problem: While independent of 

scenarios, its size grows with the number of 

generating units and resources. However, modern 

MILP solvers like Gurobi are highly efficient for 

large-scale UC problems. 

• Contingency Subproblems: The number 

of transmission line contingencies (|𝒞|) scales 

linearly with the number of lines, which can be 

very high in large systems. This is the most 

significant scalability bottleneck. Aggressive 

contingency screening based on quick 

approximate analyses (e.g., using linearized 

sensitivity factors) is an essential practical step 

for industry-scale adoption. 

• Memory Overhead: Managing the 

communication and storage of Benders cuts for 

thousands of scenarios and contingencies 

requires efficient data handling. 

In conclusion, while challenging, applying this 

framework to real-world systems is feasible. The 

computational burden is not eliminated but is shifted to a 

parallel computing environment. For a large-scale ISO, 

leveraging a large HPC cluster would allow the solution 

times demonstrated here (e.g., 2 hours for a 118-bus 

system) to be maintained for significantly larger networks 

by solving thousands of scenarios and contingency 

subproblems simultaneously. Future work will focus on 

implementing more advanced contingency screening and 

investigating distributed computing frameworks to further 

enhance scalability. 

D. Computational Performance 

The computational performance of the nested Benders 

algorithm for each case study is summarized in Table V. 

As expected, the computational effort increases with the 

model’s complexity. The deterministic base case (Case 1) 

converges in the fewest iterations (8) and has the lowest 

CPU time and memory footprint. Introducing stochasticity 

(Case 2) increases the number of iterations by 50% and the 

total CPU time by a factor of ~4, as the algorithm must 

learn the recourse cost for multiple scenarios. Adding 

stationary flexibility resources (Case 3) further increases 

the problem size, leading to more iterations and longer 

solve times, particularly in the master problem, which now 

includes decisions for ESS and FL.  

The proposed full model (Case 4) requires the most 

iterations (18) and the highest computational resources, as 

the master problem must co-optimize the commitment and 

reserve schedules for all resources, including the complex 

EV constraints, and the subproblems must simulate their 

operation across all scenarios and contingencies. Notably, 

the algorithm consistently converged to a tight optimality 
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gap (<0.1%) for all cases, demonstrating its robustness. 

The subproblem solve time dominates the total CPU time, 

highlighting the immense benefit of the parallel 

implementation described in Section 3. Memory usage is 

manageable for a system of this size, but it is a key 

consideration when scaling to larger networks. 

TABLE V 

Computational Performance of the Nested Benders Decomposition Algorithm 

Case Description Benders 

Iterations 

Total CPU 

Time (s) 

Master Time 

(s) 

Subproblems Time 

(s) 

Final Gap 

(%) 

Peak Memory 

(GB) 

1 Deterministic w/o 

Flex 

8 1,245 312 933 0.08 4.2 

2 Stochastic w/o Flex 12 4,887 598 4,289 0.09 6.8 

3 Stoch. + ESS & FL 15 5,912 845 5,067 0.07 8.5 

4 Proposed (Full) 18 7,158 1,121 6,037 0.10 11.3 

 

V. CONCLUSIONS AND FUTURE WORK 

This paper presented a two-stage stochastic security-

constrained unit commitment (SCUC) framework that 

integrates electric vehicles with vehicle-to-grid (EV-V2G) 

capabilities, utility-scale energy storage systems (ESS), 

and flexible loads. The model is designed to handle 

renewable generation uncertainty and enforce N-1 security 

across generator and transmission contingencies. A nested 

Benders decomposition algorithm was developed to solve 

the resulting large-scale stochastic mixed-integer problem 

efficiently.  

The proposed model enables joint optimization of 

thermal generation schedules, reserve allocation, and the 

operation of distributed and centralized flexibility 

resources. Simulation results on a modified IEEE-118 bus 

system demonstrated that the proposed approach 

significantly improves system performance across 

multiple metrics. Compared to a deterministic SCUC 

baseline, the model achieved a 6.67% reduction in total 

system cost, a 15% absolute reduction in renewable 

curtailment, and a 23% reduction in reserve procurement 

costs. EV fleets contributed meaningful spinning and non-

spinning reserve capacity, particularly during peak 

demand periods, while ESS and flexible loads enhanced 

the system’s ability to absorb renewable fluctuations and 

respond to contingencies. The findings confirm that 

integrating emerging flexibility resources into a stochastic 

and security-aware unit commitment framework enables 

more reliable, cost-effective, and renewable-friendly 

power system operation.  

A. Limitations and Future Research Directions 

While this study presents a comprehensive framework 

for SCUC with diverse flexibility resources, it is subject to 

certain limitations that also represent avenues for future 

research. First, the model relies on a DC power flow 

approximation for network constraints. While this is a 

standard practice in large-scale UC problems due to its 

computational linearity, it neglects reactive power, voltage 

limits, and transmission losses. Future work could 

integrate a linearized AC power flow model or a corrective 

AC security-constrained optimal power flow (SCOPF) in 

the second stage to enhance operational accuracy, albeit at 

a significant computational cost. Second, the modeling of 

EV user behavior is simplified. We assume perfect 

compliance and a known, deterministic availability 

schedule for aggregated fleets.  

In reality, user behavior is stochastic—

connection/disconnection times and energy requirements 

are variable and uncertain. A valuable extension would be 

to model these parameters stochastically within a multi-

stage framework or incorporate data-driven user behavior 

models to improve scheduling robustness. Third, the 

market and policy context is abstracted. The model 

assumes a centralized cost-minimization paradigm. 

Integrating this framework into a decentralized market 

environment, where flexibility resources are owned by 

profit-seeking entities participating in day-ahead and real-

time markets, would be a critical step toward real-world 

implementation. This involves formulating equilibrium or 

bi-level models to capture strategic bidding behavior. 

Other promising extensions include: incorporating 

distribution network constraints to model the impact of 

widespread EV charging on local grids; evaluating the 

long-term degradation costs of batteries in ESS and EVs 

more precisely; and expanding the security analysis to 

include voltage stability and small-signal stability 

constraints alongside the current N-1 reliability focus. 

Addressing these limitations would further bridge the gap 

between the proposed academic framework and its 

practical application by system operators. 
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Nomenclature 

Sets and Indices 

𝒯 = {1,… , 𝑇}: Set of hourly time periods (e.g., 𝑇 = 24 

for one day). 

ℐ = {1, … , 𝐼}: Set of thermal generating units. 

𝒮 = {1,… , 𝑆}: Set of RES‐uncertainty scenarios. 

Ω = {1,… , Ω}: Set of contingencies (N‑1 events, e.g., 

single‐unit or single‐line outage). 

ℬ = {1,… , 𝐵}: Set of buses. 

ℒ = {1,… , 𝐿}: Set of transmission lines. 

ℰ = {1,… , 𝐸}: Set of EV fleets aggregated at charging 

stations. 

𝒦 = {1,… , 𝐾}: Set of ESS units. 

ℱ = {1,… , 𝐹}: Set of flexible load blocks (aggregated 

flexible loads). 

ℛ = {1,… , 𝑅}: Set of RES units (wind farms and 

photovoltaic plants). 

𝑡 ∈ 𝒯: Time index (hour). 

𝑖 ∈ ℐ: Thermal generator index. 

𝑠 ∈ 𝒮: Scenario index. 

𝜔 ∈ Ω: Contingency index. 

𝑏 ∈ ℬ: Bus index. 

ℓ ∈ ℒ: Transmission line index. 

𝑒 ∈ ℰ: EV fleet index. 

𝑘 ∈ 𝒦: ESS index. 

𝑓 ∈ ℱ: Flexible load index. 

𝑟 ∈ ℛ: RES index. 

Parameters 

𝐶𝑖
SU: Start‐up cost of unit 𝑖 [$/start]. 

𝐶𝑖
SD: Shut‐down cost of unit 𝑖 [$/shut]. 

𝐶𝑖
G(𝑃) = 𝑎𝑖 + 𝑏𝑖𝑃 + 𝑐𝑖𝑃

2: Quadratic generation cost 

function [$/h] for unit 𝑖. 

𝑃𝑖
min, 𝑃𝑖

max: Minimum and maximum output (MW) of 

unit 𝑖. 

𝑅𝑈𝑖 , 𝑅𝐷𝑖: Ramp‐up and ramp‐down limits (MW/h) of 

unit 𝑖. 

𝑈𝑇𝑖 , 𝐷𝑇𝑖: Minimum up‐time and down‐time (hours) of 

unit 𝑖. 

$ R_{i}^{sp, max}$: Maximum spinning reserve 

capacity (MW) that unit 𝑖 can provide when online. 

𝐵ℓ: Susceptance (p.u.) of line ℓ. 

𝑓ℓ
max: Thermal flow limit (MW) of line ℓ. 

$ PTDF_{b\ell}$: Power transfer distribution factor for 

bus 𝑏 to line ℓ. 

𝑊̃𝑟,𝑡
𝑠 : Available RES output (wind or solar) for unit 𝑟, 

period 𝑡, in scenario 𝑠 (MW). 

𝜋𝑠: Probability of scenario 𝑠, ∑  𝑠∈𝒮 𝜋𝑠 = 1. 

𝐷𝑏,𝑡: Inflexible (firm) demand at bus 𝑏 in period 𝑡 (MW). 

𝑃𝑓,𝑡
max: Maximum (upper) allowable flexible load 

consumption (MW) for load 𝑓 in hour 𝑡. 

𝑃𝑓,𝑡
min: Minimum consumption level (MW) for load 𝑓 in 

hour 𝑡. 

𝐸𝑓: Total energy requirement over horizon for load 𝑓 

(MWh). 

𝛼𝑓,𝑡: Disutility or penalty cost coefficient [$/MWh] if 

load 𝑓 consumes less than baseline in hour 𝑡. 

𝐸𝑘
max: Energy capacity (MWh) of ESS 𝑘. 

𝑃𝑘
ch, max, 𝑃𝑘

dis, max
: Maximum charging and discharging 

power (MW) for ESS 𝑘. 

𝜂𝑘
ch, 𝜂𝑘

dis: Charging and discharging efficiency of ESS 𝑘. 

𝐸𝑘,0: Initial state of charge (MWh) of ESS 𝑘. 

𝐸𝑘
min: Minimum allowable SOC (MWh) for ESS 𝑘. 

𝐸𝑘
max: Maximum allowable SOC (MWh) for ESS 𝑘. 

𝑁𝑒: Number of EVs in fleet 𝑒. 

𝐸𝑒
cap

: Battery capacity (MWh) per EV in fleet 𝑒. 

𝑃𝑒
ch, max, 𝑃𝑒

dis, max
: Aggregate maximum 

charging/discharging power (MW) of fleet 𝑒. 

𝜂𝑒
ch, 𝜂𝑒

dis: Aggregate charging/discharging efficiency of 

EV fleet 𝑒. 

SOC𝑒,0: Initial state of charge (MWh) of each EV in fleet 

𝑒 at 𝑡 = 0. 

SOC𝑒
min, SOC𝑒

max: Minimum/maximum allowable SOC 

(MWh) per EV. 

𝐿𝑒,𝑡: Number (fraction) of EVs of fleet 𝑒 connected 

(available) at time 𝑡. (This can be based on a (charging) 

availability profile.) 

𝐸̂𝑒
req

: Required SOC (MWh) by departure time for EV 

fleet 𝑒 (ensures mobility). 

𝑇𝑒
arr, 𝑇𝑒

dep
: Arrival and departure times for EV fleet 𝑒. 

𝐶𝑒
EV,ch, 𝐶𝑒

EV,dis
: Charging/discharging cost or 

compensation of EV fleet 𝑒 [$/MWh]. 

𝐶𝑘
ESS,ch, 𝐶𝑘

ESS,dis
: Charging/discharging cost of ESS 𝑘 

[$/MWh]. 
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𝐶𝑓
FL: Disutility cost coefficient [$/MWh] for flexible load 

𝑓. 

𝐶𝑏,𝑡
LS: Load shedding penalty at bus 𝑏, time 𝑡 [$/MWh]. 

Variables 

𝑢𝑖,𝑡 ∈ {0,1}: 1 if unit 𝑖 is ON in period 𝑡, 0 otherwise. 

𝑣𝑖,𝑡 ∈ {0,1}: 1 if unit 𝑖 starts up at period 𝑡, 0 otherwise. 

𝑤𝑖,𝑡 ∈ {0,1}: 1 if unit 𝑖 shuts down at period 𝑡, 0 

otherwise. 

𝑧𝑘,𝑡
ch ∈ {0,1}: 1 if ESS 𝑘 is charging in period 𝑡, 0 

otherwise. 

𝑧𝑘,𝑡
dis ∈ {0,1}: 1 if ESS 𝑘 is discharging in period 𝑡, 0 

otherwise. 

𝑧𝑒,𝑡
ch ∈ {0,1}: 1 if EV fleet 𝑒 is charging in period 𝑡, 0 

otherwise. 

𝑧𝑒,𝑡
dis ∈ {0,1}: 1 if EV fleet 𝑒 is discharging in period 𝑡, 0 

otherwise. 

𝑝𝑖,𝑡
𝑠 ≥ 0: Real power output (MW) of unit 𝑖 at time 𝑡 

under scenario 𝑠. 

𝑟𝑖,𝑡
𝑠,sp
≥ 0: Spinning reserve provided by unit 𝑖 at time 𝑡, 

scenario 𝑠. 

𝑟𝑏,𝑡
𝑠,nsp

≥ 0: Non‐spinning reserve at bus 𝑏 at 𝑡, scenario 𝑠. 

𝑝𝑘,𝑡
𝑠,ch, 𝑝𝑘,𝑡

𝑠,dis ≥ 0: Charging/discharging power (MW) of 

ESS 𝑘 at 𝑡, scenario 𝑠. 

𝑒𝑘,𝑡
𝑠 : State of charge (SoC) (MWh) of ESS 𝑘 at 𝑡, scenario 

𝑠. 

𝑝𝑒,𝑡
𝑠,ch, 𝑝𝑒,𝑡

𝑠,dis ≥ 0: Charging/discharging power (MW) of 

EV fleet 𝑒, at 𝑡, scenario 𝑠. 

SOC𝑒,𝑡
𝑠 : Average SoC per EV in fleet 𝑒 (MWh) at 𝑡, 

scenario 𝑠. 

𝑑𝑓,𝑡
𝑠 ≥ 0: Actual consumption (MW) served by flexible 

load 𝑓 at 𝑡, scenario 𝑠. 

Δ𝐷𝑏,𝑡
𝑠,shed ≥ 0: Load shedding at bus 𝑏, time 𝑡, scenario 𝑠. 

𝜃𝑏,𝑡
𝑠,𝜔

: Voltage angle at bus 𝑏 at time 𝑡, scenario 𝑠, under 

contingency 𝜔. 

𝑓ℓ,𝑡
𝑠,𝜔

: Real power flow on line ℓ at 𝑡, scenario 𝑠, under 

contingency 𝜔. 
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