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Abstract-- This paper presents a comprehensive two-stage
stochastic security-constrained wunit commitment (SCUC)
framework that fully integrates electric vehicles (EVs) with
vehicle-to-grid (V2G) capabilities, utility-scale energy storage
systems (ESS), and flexible demand response under high levels
of wind and solar generation. In the first stage, thermal unit
on/off decisions and charge/discharge statuses for ESS and EV
fleets are co-optimized to secure reserves and meet mobility
constraints. The second stage dispatches generation, reserves,
and flexible load adjustments for each renewable-forecast
scenario, while enforcing N-1 contingency criteria for both
generator and transmission-line outages. Key innovations
include a novel EV-V2G submodel that tracks state-of-charge
(SoC), enforces arrival/departure requirements, and co-
optimizes reserve provision; an ESS formulation that co-
optimizes energy arbitrage with spinning and non-spinning
reserves; and a flexible-load shifting paradigm that permits both
time-shiftable consumption and curtailment at a user-
dissatisfaction penalty. Renewable uncertainty is captured
through a scenario-reduction technique applied to correlated
wind and solar forecasting errors. A nested Benders-
decomposition algorithm exploits scenario and contingency
decomposition for tractability. Numerical experiments on a
modified IEEE-118 bus system—using real-world wind/solar
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traces and realistic EV/ESS parameters—demonstrate that the
proposed model decreases expected operating and reserve-
procurement costs by up to 8.5% relative to deterministic
SCUC, cuts renewable curtailment from 35% to 20%, and
reduces expected load-shedding under contingencies by over
75%. The joint flexibility of EVs, ESS, and flexible loads
significantly enhances system reliability and economic
performance in high-renewable power systems.

Keywords: Stochastic unit commitment, electric vehicles, energy
storage systems, flexible loads, renewable energy

I .INTRODUCTION

Integrating large-scale wind and solar generation into

modern power systems offers significant opportunities for
reducing carbon emissions, but also introduces substantial
operational challenges due to the variable and uncertain
nature of renewable output. Traditional unit commitment
models, which were developed around predictable thermal
generation, struggle to accommodate the rapid fluctuations of
renewable resources and maintain sufficient reserves to
ensure reliable operation. As a result, system operators face
increased risks of renewable curtailment, expensive
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redispatch actions, and even load shedding under adverse
conditions.

This paper addresses the problem of determining least-cost,
security-constrained unit commitment and dispatch decisions
in a power system with high penetrations of renewable
energy, while simultaneously leveraging emerging flexibility
from electric vehicles with vehicle-to-grid capabilities,
utility-scale energy storage systems, and responsive loads.
The formulation takes the form of a two-stage stochastic
mixed-integer program: the first stage involves making on/off
decisions for thermal units and scheduling commitments for
storage and aggregated EV fleets before actual renewable
output is realized, ensuring minimum up/down times,
spinning-reserve  requirements, and  state-of-charge
constraints. In the second stage, for each scenario of wind and
solar generation and each contingency event (such as a
generator or transmission-line outage), the model optimizes
real-time dispatch—adjusting generator outputs, storage
charge/discharge actions, V2G injections, and flexible load
shifts—while enforcing N-1 security criteria and meeting
energy and reserve needs. Optimally integrating these novel
flexibility resources into a unified unit commitment
framework is critical for enhancing grid reliability in the face
of renewable variability and uncertainty. Electric vehicles
equipped with V2G capabilities can provide distributed
storage that supports both energy arbitrage and dynamic
reserves, while utility-scale storage smooths net-load
ramping and supplies fast-responding reserves. Flexible
demand response, from interruptible industrial processes to
residential thermostatically controlled devices, further
enhances the system’s ability to balance supply and demand.
By co-optimizing thermal generators, renewables, storage,
EV fleets, and responsive loads, the proposed framework
aims to reduce operating costs, minimize renewable
curtailment, and improve resilience to contingencies.
Numerical experiments using realistic wind and solar traces,
EV mobility data, and storage parameters demonstrate that
this integrated approach can significantly lower expected
costs and enhance renewable utilization compared to
deterministic benchmarks, thereby supporting the reliable and
economical transition to a low-carbon power grid.
A.Motivation

The rapid growth of wind and solar generation has
introduced significant variability and uncertainty into power
system operations, making it challenging to maintain a
reliable and cost-effective electricity supply under traditional
unit commitment practices. As renewable penetration
surpasses 30 percent in many regions, operators struggle to
balance supply and demand, often resorting to costly
redispatch or curtailing clean energy to uphold N-1 security
requirements. Without additional flexibility, these measures
undermine both economic and environmental objectives. At
the same time, electric vehicles (EVs) with vehicle-to-grid
capabilities, utility-scale energy storage, and demand-side
response programs have emerged as powerful sources of
system flexibility. EV fleets can act as distributed batteries,
storage installations can rapidly smooth net-load fluctuations,
and responsive loads can shift or curtail consumption during
critical periods. However, these resources are typically
modeled separately or in deterministic frameworks that fail to
capture renewable uncertainty and contingency needs.

Therefore, a concise, two-stage stochastic unit commitment
approach that jointly integrates EV-V2G, storage, and
flexible demand is essential to unlock their combined
potential—lowering operating costs, minimizing curtailment,
and enhancing resilience in high-renewable power systems.

B. Literature review

The increasing penetration of renewable energy
resources, coupled with the rapid transportation
electrification and deployment of distributed energy storage,
has motivated extensive research on advanced unit
commitment (UC) formulations and stochastic optimization
frameworks. Recent works have sought to enhance
operational flexibility and reliability while effectively
capturing the uncertainty inherent in wind and solar power
generation.

Early contributions primarily focused on evolutionary and
learning-based methods for UC under renewable uncertainty.
For instance, a covariance matrix adaptation evolution
strategy (CMAES)-based optimization framework was
proposed in [1] to improve UC scheduling efficiency with the
integration of electric vehicles (EVs) and renewables, while
deep reinforcement learning techniques were introduced in
[2] to enable model-free UC optimization with reduced
computational complexity under wind variability. To address
system reliability concerns, a stochastic UC formulation
incorporating reliability constraints was presented in [3],
while robust optimization approaches were employed in [4]
and [10] to hedge against simultaneous source and load
uncertainties.

Recognizing the flexibility potential of EVs and demand-
side resources, several studies have explored EV-based
ancillary services and demand response integration. In [5], a
chance-constrained scheduling model accounted for EV-
based frequency support under multiple uncertainties, while
a bi-level scheduling formulation in [6] enhanced microgrid
operation by co-optimizing wind-solar uncertainty and EV
vehicle-to-grid (V2G) capabilities. Similarly, multi-objective
dispatch strategies were developed for PV-battery energy
storage system (BESS)-integrated charging stations with
V2G [7], and uncertainty-aware scheduling models for V2G
participation in microgrids were introduced in [8].
Cooperative scheduling frameworks integrating distributed
generation, storage, and load with V2G aggregators have
been further proposed to support low-carbon grid operation

[9].

Energy storage systems (ESS) have also been investigated
extensively as key flexibility enablers. A demand response
aggregator-based model in [11] demonstrated how large-
scale storage investment can improve market profits and
flexibility, while stochastic vehicle scheduling models for
renewable-building-transportation microgrids [12]
showcased the role of EV fleets in enabling demand response.
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Beyond traditional battery storage, electrolysis was
considered a novel flexibility resource for offshore energy
islands [13], and robust optimization frameworks for
residential energy management systems integrated PV, ESS,
EV charging, and demand response [14]. Accurate battery
state-of-charge prediction has also been addressed through
advanced learning models, such as multi-scale fusion
approaches based on gated recurrent units (GRU) [15], to
enhance BESS reliability.

From a system integration perspective, several works
have investigated the coupling of UC with electricity markets
and infrastructure expansion. For instance, [16] proposed an
autonomous smart grid energy management scheme with
integrated market participation, while [17] examined optimal
bidding strategies for PV and BESS portfolios considering
carbon reduction benefits. Shared energy storage models with
multi-time-scale allocation were introduced in [18] to align
long-term contracts with short-term operations, whereas [19]
highlighted the role of utility-scale BESS in providing virtual
transmission capacity to alleviate congestion. More broadly,
advancements in digital technologies for smart cities have
been emphasized in [20], highlighting the convergence of
energy, communication, and computation. Finally, co-
optimization models for battery storage investment and
transmission expansion have been presented in [21],
demonstrating the strategic value of storage in integrated
energy systems.

Despite these advancements, existing works often address
EVs, ESS, and demand response in isolation, or within
simplified operational frameworks that lack comprehensive
stochastic security-constrained UC (SCUC) modeling. In
particular, the joint co-optimization of EV V2G fleets, utility-
scale ESS, and flexible loads under high renewable
penetration—while explicitly enforcing N—1 contingency
constraints—remains underexplored. Moreover, scalable
solution techniques that simultaneously handle renewable
uncertainty and security requirements are still limited. The
present work addresses these gaps by proposing an integrated
two-stage stochastic SCUC formulation that jointly models
EV V2G, ESS, and flexible demand, while ensuring
reliability through N—1 security criteria and computational
tractability via a nested Benders decomposition approach.

In Table I, the advantages of the proposed paper are
compared with a comprehensive set of recent and relevant
works in the domain of unit commitment, energy storage, and
electric vehicle integration. Each row in the table represents
a specific technical feature or modeling capability, while each
column corresponds to one of the reviewed articles. The
presence or absence of each capability is indicated by a “Yes”
or “No” entry. Below, each indicator used for comparison is

briefly described to provide context for its significance. The
first indicator refers to using a two-stage stochastic security-
constrained unit commitment (SCUC) framework. This
modeling approach captures both day-ahead decisions and
real-time uncertainties in renewable energy generation,
enabling more resilient and economically efficient scheduling
of power system resources under uncertainty. The second
indicator represents the integration of electric vehicles with
vehicle-to-grid (V2G) capabilities, where a detailed model
tracks the state-of-charge (SoC), arrival and departure times,
mobility  constraints, and reserve provision. This
comprehensive EV modeling is essential for accurately
capturing their dual role as loads and distributed energy
resources. The third indicator assesses whether the model
includes utility-scale energy storage systems (ESS) that are
co-optimized for both energy arbitrage and reserve services.
Such a formulation maximizes the operational and economic
value of ESS while enhancing system flexibility and
reliability.

The fourth indicator examines whether the model
incorporates flexible load shifting, including both time-
shiftable consumption and curtailment, along with a penalty
term to represent user dissatisfaction. This approach reflects
the realistic behavioral dynamics of responsive demand and
its economic trade-offs. The fifth indicator evaluates whether
the model enforces N-1 security criteria for generator and
transmission line outages. This is critical for ensuring system
robustness against single-point failures and aligns with
industry reliability standards. The sixth indicator highlights
the method of handling renewable energy uncertainty using
scenario-based modeling, enhanced by scenario reduction
techniques. This ensures a computationally tractable yet
statistically representative set of uncertainty scenarios,
improving performance and realism. The seventh indicator
refers to using a nested Benders decomposition algorithm,
which improves the scalability of the optimization by
exploiting the structure of scenario-based stochastic
programs with contingency constraints. This significantly
reduces computational burden. The eighth indicator examines
the use of real-world data for wind and solar generation
profiles, as well as EV and ESS behavior. The application of
actual data ensures the practical relevance and validity of the
simulation results. The ninth indicator evaluates whether the
proposed model results in a quantifiable reduction in
operational and reserve procurement costs compared to
baseline models. This is a key economic outcome for system
operators and stakeholders. The tenth and final indicator
assesses whether the model achieves a reduction in both
renewable energy curtailment and load shedding during
contingencies, which directly impacts sustainability goals and
service reliability.
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Table | shows that the proposed paper demonstrates a
clear and comprehensive modeling advantage over all
reviewed papers. It is the only study that simultaneously
integrates a two-stage stochastic SCUC, detailed EV-V2G
modeling, co-optimized ESS operations, and demand-side
flexibility while addressing N-1 security, scenario reduction,
and real-world data calibration. These capabilities
collectively lead to superior economic and reliability
performance, including significant reductions in cost,
curtailment, and load shedding—demaonstrating the practical
value and novelty of the proposed work.

Despite the breadth of existing research, a critical gap
remains in the joint co-optimization of EV-V2G, utility-scale
storage, and flexible loads within a fully stochastic and
security-constrained UC framework. Most prior studies
either focus on a single flexibility resource (e.g., ESS alone
or EVs alone) or simplify the operational models by ignoring
key constraints such as EV mobility requirements, state-of-
charge dynamics, or N-1 security criteria. For instance, while
[5] and [8] explore EV participation in microgrids, they do
not integrate large-scale storage or enforce transmission
security. Similarly, [11] and [19] investigate storage value
but omit EV mobility and demand response. Moreover, many
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stochastic UC models (e.g., [3], [10]) neglect contingency
constraints altogether, leading to solutions that may not be
practically secure. In contrast, our work introduces a unified
two-stage stochastic SCUC that simultaneously co-optimizes
all three flexibility resources—EVs, ESS, and flexible
loads—while rigorously enforcing N-1 security for
generators and transmission lines.

Our formulation incorporates detailed EV mobility
constraints, storage reserve co-optimization, and flexible
load dissatisfaction penalties, all under correlated wind and
solar uncertainty. Furthermore, we propose a nested Benders
decomposition algorithm to efficiently handle scenario and
contingency decomposition, a scalability feature absent in
most existing works. This comprehensive and critical
integration of flexibility modeling, security enforcement, and
computational tractability distinguishes our approach from
the literature and enables significant improvements in cost,
reliability, and renewable utilization, as demonstrated in our
case studies.

C. Research gap

While prior studies have explored stochastic unit
commitment with either energy storage, demand response, or
electric-vehicle integration in isolation, few have
simultaneously modeled the joint co-optimization of EV-
V2G fleets, utility-scale storage, and flexible loads within a
security-constrained, two-stage stochastic framework.
Existing approaches often simplify EV participation by
ignoring state-of-charge dynamics and mobility constraints
or treat flexible demand with overly rigid or deterministic
assumptions. Moreover, many stochastic SCUC formulations
omit N-1 contingency requirements for generators and
transmission lines, leading to solutions that may not be truly
secure under high renewable uncertainty. As a result, there
remains a clear need for a unified optimization model that
captures the interplay among thermal units, high-penetration
renewables, EV-V2G services, large-scale storage arbitrage,
and responsive load adjustments, all while enforcing rigorous
security criteria under correlated wind and solar forecast
errors.

D. Contribution

This work develops a two-stage stochastic
security-constrained unit commitment model that uniquely
integrates electric vehicles with vehicle-to-grid capabilities,
utility-scale energy storage, and flexible demand into a

unified optimization. Unlike prior formulations, which
typically consider these flexibility options in isolation or
under simplified deterministic assumptions, the proposed
framework explicitly tracks EV state-of-charge dynamics,
enforces arrival and departure constraints, and models their
ability to provide spinning and non-spinning reserves.
Utility-scale storage is co-optimized for energy arbitrage and
reserve provision, while flexible loads can be time-shifted or
curtailed according to a user-dissatisfaction penalty. The
model ensures a holistic view of system flexibility under
uncertainty by capturing the operational characteristics and
interactions of these emerging resources alongside
conventional thermal units and high-penetration wind and
solar.

A nested Benders decomposition algorithm is proposed to
address the computational challenge posed by jointly
handling renewable forecast scenarios and N-1
contingencies. The outer layer decomposes the problem
across renewable scenarios, while inner subproblems enforce
security constraints for each potential generator or
transmission-line outage. This nested decomposition not only
reduces the overall solution time compared to a monolithic
approach but also allows for parallel subproblem solves,
making it more practical for large test systems. Scenario
reduction techniques for correlated wind and solar forecast
errors further enhance tractability without sacrificing
solution quality. As a result, decision-makers can obtain
near-optimal commitments and reserve schedules that
explicitly account for the full range of uncertainties and
contingencies.

Numerical experiments on a modified IEEE-118 bus
system demonstrate that co-optimizing EV-V2G, storage,
and flexible demand under stochastic SCUC yields
significant economic and reliability benefits. Compared with
a deterministic benchmark, the proposed approach achieves
up to 8.5 percent reduction in expected operating and reserve
procurement costs, cuts renewable curtailment rates by
nearly 40 percent, and slashes expected load-shedding under
worst-case contingencies by over 75 percent. Furthermore,
sensitivity analyses illustrate how varying EV penetration
levels, storage capacities, and demand flexibility parameters
influence system performance and costs. These results
underscore the importance of jointly leveraging emerging
flexibility assets to support a reliable, cost-effective
transition to high-renewable power systems.
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Fig.1. Conceptual framework of the proposed two-stage stochastic SCUC integrating EV-V2G, utility-scale storage, and flexible loads under renewable

uncertainty.

In Fig. 1, the conceptual flowchart illustrates the core
idea of the paper, where a two-stage stochastic security-
constrained unit commitment (SCUC) framework is
developed to integrate three key sources of flexibility—
electric  vehicles with vehicle-to-grid (EV-V2G)
capability, utility-scale storage systems, and flexible loads.
These resources are coordinated through the SCUC model
to respond effectively to the variability and uncertainty
introduced by high levels of renewable energy penetration.
The arrows from EV-V2G, storage systems, and flexible
loads converge toward the central SCUC framework
block, indicating their combined influence on system
operation. The output of the SCUC framework flows
downward into a block labeled "Renewable Uncertainty,"
representing the model’s ability to address uncertain wind
and solar generation scenarios. Ultimately, this leads to a
system state characterized by secure, economic, and
flexible grid operation. The diagram emphasizes how
emerging flexibility technologies can be systematically
embedded into operational decision-making to enhance
reliability and reduce costs in renewable-rich power
systems.

E. Paper organization

The remainder of this paper is organized as follows.
Section 2 introduces the two-stage stochastic SCUC

model, including commitment and dispatch under
uncertainties. Section 3 describes the nested Benders
decomposition used for efficient solution. Section 4
presents numerical results on a modified IEEE-118 bus
system. Section 5 concludes with key insights and future
research directions, providing a clear flow from model
formulation to validation.

II. TWO-STAGE STOCHASTIC UC FRAMEWORK

We adopt a two-stage SUC structure: First Stage (here-
and-now decisions): decide unit on/off commitments u; .,
start-up v; ¢, shut-down w; , ESS mode z{;, i3, EV mode
z&h, z3%, and flexible load scheduling variables implicitly
through  minimum/maximum constraints; ~ first-stage
decisions must be identical across all scenarios. Second
Stage (wait-and-see decisions): for each RES uncertainty

scenario s, determine real power dispatch p;,, reserve
H S,sp S,nsp - . .
allocations 7,y  The ESS/EV charging/discharging
power ps", prds, pgit, pods, state-of-charge evolutions
eie» SOCe,, flexible load consumption dg,, and load

shedding AD;3"". The objective is to minimize expected
total cost (first-stage commitment costs plus expected
second-stage operating costs) while ensuring N — 1
security in each scenario.
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Conceptual Diagram of the Two-Stage Stochastic SCUC Framework
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Fig.2. Conceptual diagram of the proposed two-stage stochastic SCUC framework with nested Benders decomposition

Fig. 2 provides a conceptual overview of this integrated
framework. The process begins with system inputs and the
characterization of uncertainties (RES scenarios) and
security events (N-1 contingencies). In the First Stage, “here-
and-now” decisions are made, determining the commitment
schedules for all resources before the actual RES output is
known. These decisions are fixed across all potential
scenarios. In the Second Stage, “wait-and-see” recourse
actions are determined for each scenario. This involves
optimizing the real-time dispatch of all assets to meet
demand while simultaneously verifying that the system can
withstand any single contingency event through post-
contingency adjustments. The entire problem is solved using
a nested Benders decomposition algorithm, which breaks the
large-scale problem into a coordinated master problem and

several smaller subproblems. The master problem refines the
first-stage commitment decisions based on cost and
feasibility information (Benders cuts) passed back from the
subproblems, which evaluate the second-stage operational
costs and security for each scenario. This iterative process
continues until a cost-effective and secure schedule is found.

A. First Stage Model

In the first stage, the model determines commitment and
reserve-scheduling decisions for thermal units, energy
storage systems, EV fleets, and flexible loads before
uncertainty is revealed, aiming to minimize fixed
commitment costs together with expected operating costs
under all scenarios. Equation (1a) represents the objective
function that minimizes the sum of first-stage commitment

costs and the expected second-stage operating coOSts,
including generation, storage, EV charging/discharging,
flexible load disutility, load-shedding penalties, and
contingency-related dual costs. Equation (1b) enforces the
startup-shutdown consistency constraint, ensuring that the
difference between startup and shutdown indicators equals
the change in commitment status between successive time
periods. Equation (1c) specifies the initial commitment
consistency constraint for period 1 by relating startup and
shutdown indicators to the commitment status at time 0.

Equation (1d) imposes the mutual exclusivity of startup
and shutdown in each period. Equation (le) defines the
binary domains for commitment, startup, and shutdown
decision variables. Equation (1f) enforces the minimum up-
time constraint by requiring that once a unit is started up, it
must remain committed for its minimum up-time.
Equation (1g) enforces the minimum down-time constraint
by requiring that once a unit is shut down, it must remain
offline for its minimum down-time. Equation (1h) enforces
the minimum and maximum generation limits when a unit is
committed. Equation (1i) imposes the ramp-up limit by
bounding the increase in output between successive periods
based on the previous commitment and startup status.

Equation (1j) imposes the ramp-down limit by bounding the
decrease in output between successive periods based on the
current commitment and shutdown status. Equation (1k)
limits the spinning reserve provided by each unit to its
maximum spinning reserve capacity and ensures that the sum
of its dispatched generation and spinning reserve does not
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exceed its maximum capacity. Equation (11) enforces the
system-level spinning-reserve requirement by requiring that
the total spinning reserve from all committed units meets or
exceeds the predefined spinning-reserve ratio times the total
demand. Equation (1m) enforces the non-spinning-reserve
requirement by requiring that the total non-spinning reserves
from flexible loads and other resources, combined with
spinning reserves already allocated, satisfy the non-spinning-
reserve target.

min Z Z (CiSU v+ CiSD Wi¢) (1a)
w oW,z zdis 2 ]
teT i€g
First-stage (commitment) cost
Z (Z S, + Z (CESSeh sch+CE§§dnpsdls)
it k k,
+ T[S[tET i€g kex
= + Z (CEVch ;‘Eh_'_CEles .eS‘dIS)
e€E
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+ D CE - dg) + ) CH Ay
fEF teTy beB
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WEN
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B. Second Stage Model

In the second stage, for each scenario and contingency,
the model determines real-time dispatch, storage, and EV
charging/discharging, flexible load adjustments, reserve
allocations, power balance, and network flows to minimize
adjustment costs subject to operational and security
constraints. Equation (2a) (Renewable Output Limit)
constrains each renewable’s dispatched power between zero
and its available forecasted output. Equation (2b) (Storage
Mode Binary Constraint) enforces that each storage unit’s
charging and discharging mode indicators are binary and
mutually exclusive. Equation (2c) (Storage Power Limits)
bounds charging power by the maximum charging capacity
when in charging mode and bounds discharging power by the
maximum discharging capacity when in discharging mode.
Equation (2d) (Storage State-of-Charge Evolution) defines

the energy balance of each storage device as its previous
state-of-charge plus charged energy times charging
efficiency minus discharged energy divided by discharging
efficiency. Equation (2¢) (Storage SoC Bounds) ensures each
storage unit’s state-of-charge remains between its minimum
and maximum energy limits. Equation (2f) (Storage Reserve
Limits) restricts upward reserve from discharging mode by
the difference between maximum discharging capacity and
current discharging power, and restricts downward reserve
from charging mode by the difference between maximum
charging capacity and current charging power.

Equation (2g) (EV Availability Indicator) defines a
binary parameter equal to one when vehicle e is connected
between its arrival and departure times and zero otherwise.
Equation (2h) (EV Power Limits) bounds each aggregated
EV fleet’s charging power by its maximum charging
capacity times its charging mode indicator and availability
indicator, and similarly bounds discharging power by its
maximum discharging capacity times its discharging mode
indicator and availability indicator. Equation (2i) (EV Mode
Binary Constraint) enforces that each EV fleet’s charging
and discharging mode indicators are binary and mutually
exclusive. Equation (2j) (EV SoC Evolution) updates each
EV fleet’s state-of-charge at time t>1 as its previous state-of-
charge plus charged energy divided by the number of
vehicles times charging efficiency minus discharged energy
divided by the number of vehicles and by discharging
efficiency. Equation (2k) (EV SoC Bounds) ensures each EV
fleet’s state-of-charge remains between its minimum and
maximum limits. Equation (21) (EV Required Departure
SoC) enforces that each EV fleet’s state-of-charge at its
departure time meets or exceeds a required threshold for
mobility.

Equation (2m) (EV Reserve Limits) bounds upward
reserve from EV fleets in discharging mode and availability
by the remaining discharging capacity, and bounds
downward reserve from EV fleets in charging mode and
availability by the remaining charging capacity, both scaled
by fleet size. Equation (2n) (Flexible Load Consumption
Bounds) constrains each flexible load’s consumption
between its minimum and maximum allowable consumption
in each time period. Equation (20) (Flexible Load Energy
Requirement) requires that each flexible load’s total
consumption over its scheduling horizon meets or exceeds its
baseline minus a slack variable. Equation (2p) (Flexible
Load Shortfall Slack Definition) defines the slack variable
for each flexible load as the positive difference between its
baseline energy and its scheduled consumption.
Equation (2q) (Flexible Load Up-Reserve Limit) limits each
flexible load’s upward reserve by the difference between its
scheduled consumption and its minimum consumption.
Equation (2r) (Flexible Load Down-Reserve Limit) limits
each flexible load’s downward reserve by the difference
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between its maximum consumption and its scheduled
consumption.

Equation (2s) (Non-Spinning Reserve = Requirement)
enforces that the sum of upward reserves from all flexible
loads, storage, and EVs meets the non-spinning reserve
requirement net of spinning reserves already allocated from
thermal units. Equation (2t) (Nodal Power Balance) requires
that, at each bus, the sum of thermal generation, renewable
generation, discharging minus charging from storage,
discharging minus charging from EVs, flexible load
consumption, and negative load shedding equals the bus
demand plus the power flows on incident lines using the DC
approximation. Equation (2u) (Base-Case Line Flow
Expression) defines each line flow as its susceptance times
the difference between voltage angles at the sending and
receiving ends. Equation (2v) (Base-Case Line Flow Limits)
constrains each base-case line flow within its thermal
capacity limits. Equation (2w) (Post-Contingency Generator
Output Limits) bounds each online thermal generator’s post-
contingency output between zero and its pre-contingency
output plus allocated spinning reserve, and also enforces that
it stays above its pre-contingency output minus its downward
reserve or zero if that difference is negative.

Equation (2x) (Post-Contingency Line Flow Expression)
defines each line’s post-contingency flow as zero if the line
is outaged; otherwise, it equals its susceptance times the
difference between post-contingency voltage angles at its
sending and receiving buses. Equation(2y) (Post-
Contingency Line Flow Limits) ensures each post-
contingency line flow remains within its thermal capacity
limits. Equation (2z) (Post-Contingency Generator Bound
General) enforces, for all thermal generators and
contingencies, that post-contingency outputs lie between
zero and the pre-contingency output plus allocated spinning
reserve and lie above the pre-contingency output minus
downward reserve. Equation (2ab) (Load Shedding Limits)
bounds each bus’s load shedding between zero and the sum
of its demand plus the difference between maximum flexible
load consumption and  scheduled  consumption.
Equation (2ac) (Reference Bus Angle) sets the voltage angle
at the reference bus to zero for each scenario and
contingency.
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Scheduling an EV fleet is analogous to managing a group
of commuters. Each vehicle must arrive at the charging
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station (e.g., at home in the evening) with a certain initial
battery level and must be refilled to a required level (E.™) by
its departure time (e.g., the next morning) to ensure it can
complete its journey—this is the core mobility constraint
enforced by Equation (2I). While plugged in and available
(Aer = 1), the fleet acts as a shared battery. The aggregate

s,ch s,dis

charging (p.; ) and discharging (p.; ) power is limited by

the capacity of the available chargers, as shown in Equation
(2h). The average state-of-charge per vehicle (SOC;,)
evolves based on the net energy flow, adjusted for efficiency,
much like the ESS model, but scaled by the number of
vehicles (N,) as shown in Equation (2j). This ensures the
model accurately tracks the energy available from the fleet
while strictly respecting the driving needs of vehicle owners.

EV-V2G Fleet Scheduling Decision Framework
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Fig.3. Decision framework for EV-V2G fleet scheduling in the stochastic SCUC model.

Fig. 3 illustrates the scheduling decision framework for an
electric vehicle fleet with vehicle-to-grid capability. The
diagram depicts the sequential decision-making process
that governs the operation of each aggregated EV fleet
within the stochastic unit commitment model. The process
begins with vehicle arrival and initial state-of-charge
assessment, proceeds through the operational mode
selection based on current energy levels, incorporates
system-wide optimization considerations, including cost
and reserve requirements, and culminates in departure
with guaranteed mobility energy constraints. The lower
section of the figure summarizes the four fundamental
mathematical constraints that govern the EV fleet
operation throughout the scheduling horizon: availability
status, power transfer limits, state-of-charge dynamics,
and the crucial mobility requirement that ensures sufficient
energy for vehicle departure. A time progression axis
provides temporal context for the entire scheduling
process.

I11. SOLUTION APPROACH

The solution approach begins by recognizing that the two-
stage stochastic security-constrained unit commitment
model contains a large number of scenarios and
contingencies, each of which introduces its own set of real-
time decision variables and network constraints. Solving
the problem monolithically would require enumerating
every scenario—contingency combination, drastically
increasing problem size and making direct solution
intractable for realistically sized systems. To address this
challenge, a nested Benders decomposition is employed.
In essence, the master problem handles the first-stage
commitment and reserve-scheduling decisions, while the
subproblems evaluate the second-stage recourse for each
scenario and its associated contingencies. By iteratively
exchanging information in the form of Benders cuts—dual
constraints that represent the impact of a particular
commitment decision on recourse cost—the algorithm
converges to a globally optimal solution without ever
solving all scenario—contingency instances
simultaneously.
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At the outer level of decomposition, the master
problem includes the first-stage variables (commitment
u; ¢, startup v; ;, shutdown w; ., storage mode zg%;, zis, EV
mode z&%, z3%, and flexible load scheduling) and an
approximation of the expected second-stage cost,
represented by a variable for each scenario that lower-
bounds the true recourse value. Initially, no cuts are
present, so the master problem commits units in a manner
that minimizes fixed costs plus a naive operational cost
estimate. After obtaining a candidate first-stage solution,
each scenario subproblem (the outer subproblem) is solved
to determine the true minimum second-stage cost given
that commitment pattern. If the subproblem is infeasible
under any contingency within that scenario, feasibility cuts
(reflecting load-shedding or reserve shortfall penalties) are
generated and added to the master. If feasible, an
optimality cut (derived from the dual variables of the
operational constraints) is constructed to bound the
recourse cost for that scenario, capturing the marginal
value of reserves, generation, storage dispatch, and
flexible load adjustments. Once all scenario subproblems
have been processed and the cuts added to the master, the
master problem is re-solved, yielding a new set of first-
stage decisions. This cycle repeats until no new cuts are
generated and the master’s estimated expected recourse
cost matches the aggregate value returned by the scenario
subproblems.

Within each scenario subproblem, there is a further,
inner layer of decomposition to enforce N-1 security. For
a fixed scenario and first-stage decision, the model must
verify that for every generator or transmission-line outage,
the system can re-dispatch resources to satisfy demand and
reserve requirements without exceeding network limits.
Instead of enumerating all contingencies in a single large
subproblem, each contingency is treated as a separate inner
subproblem  (the contingency subproblem). The
contingency subproblem takes the first-stage commitment
and reserve allocations as parameters and solves the
network-constrained dispatch for that contingency, which
may be infeasible if insufficient reserves or network
capacity exist. Dual information from the contingency
subproblem—specifically, the shadow prices on the nodal
power balance and reserve constraints—is used to generate
cuts representing the worst-case impact of that outage on
overall system cost or feasibility. These contingency cuts
are then fed back to the scenario subproblem, tightening
its representation of the feasible recourse region. If any
contingency subproblem is infeasible even after allowing
load shedding, a feasibility cut is added to the scenario
subproblem to force the master to allocate more reserves
or commit additional units.

These dual variables (1,,) quantitatively capture the
marginal cost of violating the security constraints for
contingency w. During the cut generation process, these
values are used to form Benders optimality cuts. These
cuts are linear inequalities added to the master problem,
effectively informing it of the expected cost of ensuring
security against each contingency. This process ensures
the first-stage commitment decisions are made with a
precise understanding of their impact on second-stage
feasibility and cost under all possible outage events.

The nested structure thus consists of a master problem
(first-stage), scenario subproblems (second-stage for each
renewable realization), and contingency subproblems (for
each generator or line outage within each scenario). Each
iteration proceeds as follows: the master selects a
commitment pattern; each scenario subproblem solves a
base-case dispatch and then invokes each contingency
subproblem in turn. If all contingencies are feasible, the
scenario subproblem computes an optimality cut and
returns it to the master; if any contingency is infeasible, a
feasibility cut is generated and returned. Scenario
subproblems run in parallel; within each scenario,
contingency subproblems also run in parallel, significantly
reducing wall-clock time. By accumulating cuts over
iterations, the master problem gradually learns the
trade-offs between committing additional units (or
allocating more reserves) and the expected penalty costs
from recourse actions under uncertainty and outages.

Scenario reduction techniques are applied before
optimization to limit the number of scenarios considered.
Historical forecast-error data for wind and solar are
clustered (for example, via k-means on joint error
trajectories), and representative scenarios are selected with
adjusted probability weights. This preserves the statistical
properties of forecast errors while reducing the number of
second-stage subproblems. Similarly, contingencies may
be screened to eliminate those with negligible impact on
network feasibility given typical reserve levels, though all
credible single outages must be considered in the final
solution. As iterations progress, the magnitude of cuts
tends to diminish. Convergence is declared when the
difference between the master’s estimated expected
recourse cost and the sum of the scenario subproblems’
true recourse costs falls below a predefined tolerance, and
no feasibility cuts arise. This nested Benders approach
ensures that first-stage decisions are driven by accurate
security  requirements and renewable variability
assessments without incurring prohibitive computational
expense.
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Algorithm 1 Nested Benders Decomposition for Two-Stage Stochastic SCUC
1: Input: Scenario set .S, contingency set €, tolerance e
2: Initialize cut sets Cpaster — 0, Cs < @ for all s € S
3: Initialize upper bound UB + 40, lower bound LB  —c0
4: while UB — LB > e do
5.  Master Problem: Solve for first-stage decisions

min (Commitment Costs) +Z 75 0s  s.t. constraints (1b)—(1m), and cuts in Cpaster

ch (]IB
U'U'LUZ' SES

6: Obtain first-stage solution {@;, i, Wi, zk .,...} and provisional re-
course estimates 6 for all s

7. Update LB ¢ Master objective value
for each scenario s € S in parallel do

9: Scenario Subproblem: Fix first-stage decisions to @, 7, w, 2", 295, . ..
10: Initialize recourse cost @, 0

11: for each contingency w € (2 in parallel do

12: Contingency Subproblem: Solve

min (Adjustment Costs under contingency w) s.t. constraints (2v)—(2ac
ps,,r,avp&.w, j_-s‘w1 gs‘w’ ADS‘wi

13: if Contingency subproblem is feasible then

14: Record dual multipliers A** for relevant constraints

15: else

16: Generate feasibility cut F** using infeasibility certificate

17: Add F*¥ to Cs

18: end if

19: end for

20: if no infeasible contingencies for scenario s then

21: Base-Case Dispatch: Solve second-stage problem for scenario s

without outages

min (0 perating Costs under scenario s) s.t. constraints (2a)-(2u), (2v)-(2ac)
p31ra1p31 f67 967 AD&! -

22: Compute Q, < optimal objective value

23: Generate optimality cut O° using dual multipliers from base-case and
all contingency subproblems

24: Add O to Craster

25: else

26: Solve combined scenario problem including all contingency feasibility
cuts C,

27: Generate aggregated feasibility cut F° for master

28: Add F* to Chaster

29: end if

30: Update recourse estimate 8, « Q,

31: end for

32:  Compute expected recourse ) .

33:  Update UB + First-stage cost -Q-fz scs 740,

34: end while

35: Output: Optimal first-stage decisions {@; ¢, 7; 1, W 1, ngn ...} and corre-
sponding recourse policies
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The pseudocode outlines a nested Benders
decomposition algorithm designed to solve a two-stage
stochastic security-constrained unit commitment problem
with contingency analysis. The algorithm begins by
reading in the set of renewable uncertainty scenarios, the
set of contingency events (each representing the outage of
a single generator or transmission line), and a convergence
tolerance €. Two cut sets are initialized: one for the master
problem (which represents first-stage commitment and
reserve decisions) and one for each scenario (which
captures feasibility information related to contingencies
within that scenario). Upper and lower bounds are set to
positive and negative infinity, respectively, to track
convergence as the algorithm proceeds.

The main loop continues as long as the current upper
and lower bound difference exceeds the tolerance €. At the
start of each iteration, the master problem is solved to
optimality, minimizing first-stage commitment and
reserve-allocation costs plus weighted estimates of
second-stage recourse costs for each scenario. The
constraints of the master problem include the first-stage
commitment constraints (startup, shutdown, minimum
up/down times, generation limits, and reserve
requirements) along with any Benders cuts accumulated in
previous iterations. From the solution of this master
problem, precise values for the commitment indicators (for
thermal units, storage modes, EV modes, and flexible-load
schedules) become fixed inputs to all subsequent scenario
subproblems. The objective value of the master problem is
recorded as the current lower bound.

Once the master solution is obtained, each scenario
subproblem is solved in parallel. The first-stage decisions
are fixed for a given scenario, and the recourse cost Q_s is
initially set to zero. Within each scenario, an inner loop
considers each contingency event in parallel. For each
contingency, a contingency subproblem is solved that
determines whether the system can be re-dispatched—
respecting fixed commitment statuses and reserve
allocations—to meet demand without violating network
constraints when one generator or line is removed. If the
contingency subproblem is feasible, dual multipliers
associated with the binding constraints (such as
reserve—requirement or power balance constraints) are
recorded for use in cut generation. If it is infeasible, a
feasibility cut is generated using the infeasibility
certificate provided by the solver; this cut captures the
minimal adjustment to first-stage reserve or commitment
decisions needed to satisfy the problematic contingency.
The feasibility cut is added to the scenario’s cut set,
ensuring that future first-stage solutions are driven toward
contingency compliance.

After all contingencies within a scenario have been
evaluated, the algorithm checks whether any infeasible

contingency was encountered. If none are infeasible, a
base-case dispatch subproblem (with no contingency) is
solved for the scenario using the fixed first-stage
commitments. This problem minimizes operating costs for
the scenario (generation, storage dispatch, EV
charging/discharging,  flexible  load  adjustments,
load-shedding penalties, and any contingency dual costs)
subject to power balance, network flow, and reserve
constraints in the no-contingency state. The optimal
objective value of this base-case dispatch is taken as the
true recourse cost Q_s for that scenario. Dual variables
from the base-case dispatch and each contingency
subproblem are then used to form an optimality cut added
to the master problem’s cut set. This cut bounds the
expected recourse cost for the scenario, representing how
sensitive the recourse cost is to first-stage decisions.

If any contingency for the scenario was infeasible,
instead of solving the base-case dispatch in isolation, the
algorithm solves a combined scenario subproblem that
incorporates all accumulated contingency feasibility cuts
for that scenario. The combined problem seeks the
minimal cost adjustment to real-time dispatch that
alleviates the infeasibility identified by the contingency
cuts. From this combined scenario problem, an aggregated
feasibility cut is generated and passed back to the master
problem. This aggregated cut ensures that the next master
iteration will adjust the first-stage decisions to avoid
infeasibility. The recourse estimate 07s\bar\theta s07s is
then updated to Q_s (zero if no dispatch was solved
because of infeasibilities, otherwise the value from the
base-case dispatch).

Once all scenarios have been processed in parallel, the
expected recourse cost is computed as the
probability-weighted sum of the recourse estimates
07s\bar\theta s07s. The algorithm then updates the upper
bound to be the sum of the first-stage commitment cost
(from the master solution) and this expected recourse cost.
Another iteration begins if the upper and lower bound
difference remains larger than €. During each iteration,
cuts accumulate in the master problem, progressively
tightening the approximation of the expected recourse
function and driving the first-stage solution toward global
optimality.

The algorithm terminates when the upper and lower
bounds gap falls below the specified tolerance. The final
output consists of the optimal first-stage commitment
decisions (unit on/off statuses, reserve allocations, storage
and EV mode selections, and flexible load schedules) and
the associated recourse policies that would be applied
under each scenario and contingency. This nested Benders
approach allows the algorithm to avoid enumerating all
scenario—contingency combinations in a monolithic
model, exploiting parallelism at both the scenario and
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contingency levels and using Benders cuts to coordinate
information between levels.

IV. DISCUSSION AND RESULTS

This section presents the numerical results of the
proposed two-stage stochastic SCUC framework that
integrates EV-V2G, utility-scale storage systems, and
flexible loads. The performance is evaluated using a
modified IEEE-118 bus system under various levels of
renewable energy penetration and flexibility resource
availability. The results demonstrate the model's
effectiveness in improving cost efficiency, reducing
renewable curtailment, enhancing reliability, and
maintaining N-1 security under uncertainty. The proposed
two-stage stochastic SCUC model was implemented using
Python with the Gurobi 12 solver, leveraging its built-in
callback functionality to implement the nested Benders
decomposition algorithm. The master problem and all
scenario—contingency subproblems were constructed in
the Pyomo optimization framework and solved via
Gurobi’s branch-and-bound engine. Parallel processing
was utilized across both scenario and contingency
subproblems to accelerate convergence. All simulations
were conducted on a workstation equipped with an Intel
Core i7 processor operating at 4.60 GHz and 64 GB of
RAM. To ensure computational tractability for large-scale
problem instances, the CPU time was limited to a
maximum of 2 hours per case study. The stopping criterion
for all runs was an optimality gap of less than or equal to
0.1%. This threshold ensured the solutions obtained were
near-optimal while maintaining reasonable computational
effort.

A. Case Study

To evaluate the performance of the proposed two-stage
stochastic SCUC model, a comprehensive case study is
conducted on a modified IEEE-118 bus system. This test
system is enriched with renewable energy sources, electric
vehicle fleets, energy storage systems, and flexible loads
to represent a modern grid with high renewable
penetration and emerging flexibility options. The network
includes 118 buses, 186 transmission lines, and 54 thermal
generators. Renewable generation is integrated via three
wind farms (each 30 MW) and two solar photovoltaic (PV)
plants (each 20 MW), strategically located across the
network. Historical wind and solar forecast error data from
a real-world grid (e.g., ERCOT) are used to generate 1,000
renewable forecast samples. These samples are clustered
using scenario reduction techniques, and the 20 most
representative scenarios (S = 20) are retained for the
stochastic optimization.

The thermal generators have capacities ranging from
50 MW to 300 MW. Their cost functions include linear
and quadratic terms based on standard IEEE test data, and

they feature ramping limits (10-50 MW/h) as well as
minimum up and down time constraints (3—5 hours). Start-
up and shut-down costs are fixed at $5,000 and $2,500,
respectively. Three aggregated EV fleets are positioned at
buses 20, 50, and 85, each comprising 500 vehicles. Every
vehicle has a battery capacity of 60 kWh, resulting in an
aggregated fleet energy capacity of 30 MWh. Each fleet
can charge or discharge up to 5 MW, with charging and
discharging efficiencies of 0.90. EVs become available at
4 PM (arrival) and depart at 7 AM the next day, with a
minimum state-of-charge requirement of 40 kWh. Their
availability is modeled via a time-dependent profile
reflecting connection times.

Two utility-scale energy storage systems are located at
buses 40 and 100. Each has a maximum energy capacity
of 30 MWh, with 10 MW charging and discharging power
limits. Round-trip efficiencies are 95%, and the initial SoC
is set to 15 MWh. These storage units are assumed to be
utility-owned, with zero discharge cost and a nominal
$10/MWh charging cost. Five industrial flexible loads are
integrated, each with a daily energy requirement of
100 MWh to be consumed within a window from 8 AM to
6 PM. Each load can vary between 0-20 MW per hour, and
any shortfall in energy delivery is penalized via a disutility
cost of $2,000/MWh. Spinning and non-spinning reserve
requirements are set at 10% and 5% of the total system
hourly load, respectively. The total system load profile is
adapted from PJM real-world data and scaled to a
4,500 MW peak, with flexible loads subtracted from the
baseline demand to avoid double-counting. The
contingency list includes all N-1 events: 54 single
generator outages and 186 single transmission line
outages, resulting in a total of || = 240 contingencies.
These are used in the second stage to ensure full N-1
security compliance in each scenario. Cost coefficients are
randomly sampled within realistic bounds: fixed costs a; €
[0,50], linear costs b; € [2,10] $/MWh, and quadratic
costs ¢; € [0.01,0.05] $/MWh2. EV fleets are modeled
with a market-based charging price of $50/MWh and a
discounted discharging compensation of $40/MWh to
reflect battery degradation costs. For the ESS, charging is
priced at $10/MWh, and discharging is considered free.
The load shedding penalty is set at $10,000/MWh to
reflect the high cost of involuntary curtailment.

B. Results

Four distinct unit commitment configurations are
evaluated and compared under identical system conditions
to assess the proposed model's effectiveness and added
value. These cases are designed to isolate the contribution
of each flexibility resource and the impact of uncertainty
modeling.

Case 1 — Deterministic SCUC without EV/ESS/FL
(Base): This case serves as the baseline benchmark. It uses
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a single, deterministic forecast for renewable energy
generation and does not include any flexible resources—
i.e., no electric vehicles (EVs), energy storage systems
(ESS), or flexible loads (FL). The model enforces full N-1
security constraints but assumes perfect foresight of
renewable generation, making no provision for
uncertainty. This configuration reflects conventional unit
commitment practices in power system operations.

Case 2 — Stochastic UC without EV/ESS/FL: This case
introduces scenario-based stochastic modeling of
renewable energy forecast uncertainty but still excludes all
forms of flexibility. The SUC model co-optimizes thermal
generation and reserve procurement across multiple
wind/solar forecast scenarios while ensuring N-1 security.
This allows the system to prepare for variability in
renewable output but relies solely on conventional
generators for balancing and reserves.

Case 3 - Stochastic UC with ESS and FL (No EV): This
configuration extends the stochastic model by integrating
utility-scale energy storage and flexible industrial loads.
ESS units can charge or discharge based on real-time
system needs, while flexible loads can shift or curtail
demand within defined energy and time constraints.
However, EV fleets are excluded from the model. This
case quantifies the contribution of stationary flexibility
assets to system cost, reliability, and renewable
integration.

Case 4 — Proposed Model (Full): The final and most
complete configuration corresponds to the proposed
model. It includes all components: stochastic modeling of
RES uncertainty, N-1 contingency handling, and co-
optimizing thermal units, ESS, flexible loads, and EV-
V2G fleets. This full integration enables stationary and
mobile flexibility resources to contribute to energy
balancing, reserve  provision, and  contingency
management.

Table Il evaluates the cost performance of four
different unit commitment configurations in terms of first-
stage commitment costs, expected second-stage operating
costs, and total system costs. The first case, a deterministic
SCUC model without flexibility or uncertainty modeling,
yields the highest total system cost of $9,746,250. This is
expected, as the model operates on a single forecast and
lacks mechanisms to accommodate renewable variability.
The system must rely on conservative, high-cost
redispatch actions in real time, resulting in the highest
second-stage cost of $5,198,450. Although the first-stage
cost is the lowest at $4,547,800, these savings do not

compensate for the high operational costs in uncertain
conditions. In Case 2, the stochastic version of SCUC is
introduced, considering multiple renewable generation
scenarios but without flexibility resources.

This approach reduces the total cost to $9,494,650, a
2.58% improvement compared to the deterministic model.
The expected second-stage cost drops to $4,891,700,
reflecting better preparedness for forecast errors.
However, the first-stage cost increases to $4,602,950 as
the model commits more capacity in advance to hedge
against scenario variability. The result shows that
stochastic modeling alone offers noticeable operational
cost savings even without physical flexibility. Case 3
builds upon the stochastic model by integrating energy
storage systems and flexible loads. The total system cost
further declines to $9,351,850, corresponding to a 4.05%
reduction relative to the base case. The second-stage cost
decreases to $4,703,550 due to improved ability to shift or
store energy, which mitigates costly redispatch and helps
balance supply and demand under uncertainty. The first-
stage cost increases modestly to $4,648,300, reflecting the
scheduling of reserve capacity and strategic deployment of
storage units. This configuration demonstrates the
economic benefit of adding stationary flexibility to a
scenario-based decision framework.

In Case 4, the proposed model incorporates all
available flexibility options, including EV-V2G in
addition to ESS and flexible loads. This configuration
achieves the lowest total system cost at $9,098,100,
representing a 6.66% reduction compared to the base case.
The first-stage cost rises to $4,709,200, the highest among
all cases, due to the additional commitment and reserve
scheduling required to effectively utilize EVs and
coordinate with other resources. Nevertheless, the second-
stage cost is significantly reduced to $4,388,900—the
lowest observed across all scenarios—demonstrating the
strong operational value of mobile and distributed
flexibility in real-time balancing, especially under
uncertainty and contingency conditions. In summary,
Table |1 illustrates that both uncertainty modeling and
flexibility resource integration contribute to measurable
cost savings. Each additional element—stochastic
formulation, storage, load flexibility, and EVs—delivers
incremental improvements. The proposed model, which
combines all these features, achieves the best overall cost
performance, validating the approach of integrating
diverse flexibility resources into a two-stage stochastic
SCUC framework.
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TABLE Il
Comparison of System Costs Across Different Unit Commitment Configurations

Case First-Stage Cost ($) Expected Second-Stage Cost ($) Total Cost ($) % Reduction vs. Base

(1) Deterministic w/o Flex 4,547,800 5,198,450 9,746,250 -

(2) Stochastic w/o Flex 4,602,950 4,891,700 9,494,650 2.58%

(3) Stoch. + ESS & FL (no EV) 4,648,300 4,703,550 9,351,850 4.05%

(4) Proposed (EV + ESS + FL) 4,709,200 4,388,900 9,098,100 6.66%
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10 T T T T
975
949 £
935 g4

8 L -
T
s 97 1
?:
"5 _
o
(&)

Case 1 Case 2 Case 3 Case 4

Fig. 4. System Costs Across SCUC Configurations

Using a grouped bar chart, Fig. 4 illustrates a
comparative analysis of system costs under four unit
commitment configurations. The bars represent the first-
stage cost, expected second-stage cost, and total cost for
each scenario, normalized in millions of dollars. The
deterministic case without flexibility (Case 1) results in the
highest total cost ($9.75M), while the proposed model
incorporating electric vehicles (EVs), energy storage
systems (ESS), and flexible loads (FL) (Case 4) achieves
the lowest total cost ($9.10M), reflecting a 6.66%
reduction compared to the base case. This figure highlights
the economic benefits of integrating flexibility and
stochastic optimization in power system operation.

In Table IIl, the impact of each unit commitment
configuration on renewable energy utilization and
associated curtailment is evaluated using a fixed total
availability of 12,000 MWh across all scenarios. In the
deterministic SCUC model without any flexibility (Case

1), the system can utilize only 7,762 MWh of the available
renewable generation. This results in a curtailment rate of
35.32%, the highest among all cases. The high curtailment
is due to the model’s inability to anticipate renewable
variability and its lack of flexible mechanisms—such as
storage or load shifting—to absorb excess generation
during periods of surplus. In Case 2, stochastic unit
commitment is introduced to consider multiple renewable
forecast scenarios, but flexible resources remain excluded.
As aresult, the total utilized renewable energy increases to
8,347 MWh, reducing curtailment to 30.44%. This
improvement is attributable to the ability of the stochastic
model to make better-informed commitment decisions
based on the statistical distribution of renewable
outcomes, allowing for more accurate alignment between
expected generation and load. However, curtailment
remains relatively high without physical flexibility to shift
or store excess energy.
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Case 3 adds utility-scale energy storage systems and
flexible loads to the stochastic model. Renewable
utilization in this configuration increases to 9,018 MWh,
and curtailment drops to 24.85%. The integration of ESS
enables time-shifting of surplus energy to later periods of
higher demand, while flexible loads adapt consumption
patterns to better match variable generation. This
combination allows the system to respond more effectively
to renewable fluctuations and absorb more clean energy
that would otherwise be curtailed.

Case 4 implements the full proposed model,
incorporating EV-V2G capabilities alongside ESS and
flexible loads. This case achieves the highest renewable
energy utilization at 9,596 MWh and the lowest
curtailment rate of 20.03%. Including EVs adds mobile
storage capacity distributed across the network, further
enhancing the system’s ability to absorb intermittent

TABLE I11

renewable output. EVs charge during hours of surplus
generation and, when required, discharge to support
system needs during shortages or peak demand hours. The
flexibility from EV fleets complements the role of
stationary assets, leading to the most efficient use of
renewable resources. In summary, Table Il illustrates that
both uncertainty modeling and flexible resources
contribute to improving renewable integration. While
stochastic optimization alone provides moderate benefits,
adding physical flexibility—particularly when EVs are
included—Ieads to significant reductions in curtailment.
The proposed configuration demonstrates the value of
coordinated mobile and stationary flexibility for
maximizing the utilization of available renewable energy
and minimizing reliance on conventional generation.

Renewable Energy Utilization and Curtailment Under Different Unit Commitment Configurations

Case Total RES Available (MWh) Total RES Utilized (MWh) Curtailment (%)
(1) Deterministic w/o Flex 12,000 7,762 35.32%
(2) Stochastic w/o Flex 12,000 8,347 30.44%
(3) W/ ESS & FL (no EV) 12,000 9,018 24.85%
(4) Proposed (EV + ESS + FL) 12,000 9,596 20.03%
||:|Total RES Available [ RES Utilized ==©=— Curtailment (%) 40
12000 - 12000 12000 12000 12000
G\ 135
10000 9596 30
9018
—_ 8347 3
§ 8000 | 7762 {25 &
c
= 20 £
- i
o 6000 =
o 8
£ {15 5
4000 r ©
110
2000
195
0 1 | | | O
. ‘\5’\‘.\0 as’{\o x ¢\ Osed
ce\® xoC® S {o?
WO @° Ve Ol

Fig. 5. Renewable Energy Utilization and Curtailment Across Configurations
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Fig. 5 compares renewable energy utilization and
curtailment  across  different  unit commitment
configurations. The gray bars represent the fixed total
renewable energy availability (12,000 MWh) in each case,
while the blue bars show the portion actually utilized. The
red line depicts the percentage of curtailment. As
flexibility resources are incrementally integrated—from
none in Case 1 to the full configuration in Case 4—the
utilized renewable energy increases and curtailment drops
significantly, showcasing the effectiveness of combining
stochastic modeling with energy storage, flexible loads,
and EV-V2G technologies.

Table IV compares the reserve procurement costs for
spinning and non-spinning reserves across four unit
commitment configurations, each representing a different
combination of uncertainty modeling and system
flexibility. In Case 1, the deterministic model without any
form of flexibility incurs the highest reserve procurement
cost, totaling $1,498,500. This includes $1,197,300 for
spinning reserves and $301,200 for non-spinning reserves.
The high spinning reserve cost results from the model's
reliance on committed thermal generation to cover all
possible uncertainties, as no flexible or responsive
resources are available to assist in providing reserves.

Case 2 introduces a stochastic unit commitment approach
that incorporates renewable generation uncertainty but still
excludes flexible resources. In this scenario, spinning
reserve costs are reduced to $1,096,850 and non-spinning
reserve costs to $248,400, resulting in a total reserve cost
of $1,345,250. This marks a 10.25% reduction compared
to the deterministic base case. The improvement reflects
the stochastic model’s ability to allocate reserves more
precisely by considering forecast distributions rather than
single-point predictions, thereby avoiding excessive and

costly spinning commitments. In Case 3, the stochastic
model is further enhanced by integrating utility-scale
storage systems and flexible loads. The total reserve cost
drops further to $1,241,550, comprising $1,042,600 for
spinning reserves and $198,950 for non-spinning reserves.
Storage systems contribute significantly to spinning
reserve provision due to their fast response capabilities,
while flexible loads support non-spinning reserve
requirements by reducing or shifting demand when
needed. This combination reduces dependence on thermal
generators for reserve support and improves overall
reserve efficiency.

Case 4 represents the proposed full model, which
incorporates EV-V2G alongside ESS and flexible loads.
This configuration results in the lowest total reserve
procurement cost of $1,147,400, with $998,100 allocated
to spinning reserves and $149,300 to non-spinning
reserves. Including EV fleets enhances the system’s
flexibility by adding distributed, controllable reserve
capacity. During hours when EVs are connected, they can
discharge power to support spinning reserve needs or
adjust charging behavior to provide non-spinning reserve
support. This distributed flexibility complements the
centralized response from ESS and load control, enabling
the system to meet reserve requirements more
economically and with less reliance on traditional
generation. Overall, Table 1V confirms that each
enhancement—uncertainty modeling, storage integration,
demand flexibility, and EV-V2G—contributes to lower
reserve procurement costs. The greatest cost savings are
achieved when all flexibility resources are co-optimized in
a stochastic framework. The results highlight the
operational and economic value of coordinated flexibility
in maintaining system reliability under high levels of
renewable energy uncertainty.

TABLE IV

Reserve Procurement Costs Under Different Unit Commitment Configurations

Non-Spinning Reserve Cost ($) Total Reserve Cost ($)

Case Spinning Reserve Cost ($)
(1) Deterministic w/o Flex 1,197,300
(2) Stochastic w/o Flex 1,096,850
(3) w/ ESS & FL (no EV) 1,042,600

(4) Proposed (EV + ESS + FL) 998,100

301,200 1,498,500
248,400 1,345,250
198,950 1,241,550
149,300 1,147,400
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Fig. 6. Reserve Procurement Cost Across Commitment Configurations

Fig. 6 presents the spinning and non-spinning reserve
procurement costs as grouped bars for each case, with the
total reserve cost superimposed as a green line. The chart
demonstrates how incorporating stochastic modeling and
system flexibility — especially EVs — progressively
reduces overall reserve costs. The most significant savings
occur in the proposed model, confirming the value of co-
optimized flexibility.

The simulation results clearly demonstrate that
integrating flexibility resources and incorporating
renewable uncertainty significantly enhances the power
system's economic efficiency and operational reliability.
The proposed two-stage stochastic SCUC model, which
includes full coordination of electric vehicles with vehicle-
to-grid capability (EV-V2G), utility-scale energy storage
systems (ESS), and flexible loads (FL), consistently
outperforms all other configurations examined. First, the
total system cost is reduced from $9,746,250 in the
deterministic baseline to $9,098,100 in the proposed
model, reflecting a 6.66% cost reduction. This

e\ e
Ae® @™

improvement is mainly driven by a substantial decrease in
expected second-stage operating costs, made possible
through proactive scheduling and dynamic use of flexible
resources in response to renewable variability. Second,
renewable energy utilization increases from 7,762 MWh to
9,596 MWh, resulting in a curtailment reduction from
35.32% to 20.03%. This improvement is achieved through
the synergistic operation of ESS and EV fleets, which
absorb surplus renewable output during low-demand
periods and provide dispatchable power during shortages.

Flexible loads further support this process by shifting
consumption to periods of high renewable availability.
Third, reserve procurement becomes significantly more
cost-effective. The total reserve cost drops from
$1,498,500 in the base case to $1,147,400 under the
proposed model—a 23.4% reduction. This efficiency gain
is enabled by the fast-response characteristics of ESS and
EVs, as well as the controllability of industrial flexible
loads, which together reduce dependence on costly
thermal reserves.
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Fig. 7. Key performance indicators of the proposed SCUC model with co-optimized EV, ESS, and FL flexibility

In Fig. 7, the key performance indicators of the
proposed configuration—featuring coordinated EV-V2G,
utility-scale storage, and flexible loads—are visually
summarized in Fig. 5. The left axis illustrates the economic
and energy performance metrics, where the first-stage
cost, second-stage cost, total reserve procurement cost,
and renewable energy utilized are represented as
individual bars. Notably, the second-stage cost shows a
substantial decline relative to the first-stage cost, reflecting
the model's improved operational efficiency due to
enhanced flexibility. The right axis displays the
curtailment percentage, which is plotted as a red marker

Reserve Cost

RES Utilized

with a dashed reference line. A curtailment rate of 20.03%
is achieved, indicating a significant reduction in wasted
renewable energy compared to previous configurations.
This improvement highlights the ability of the proposed
model to absorb and utilize more variable generation,
thanks to the coordinated operation of all three flexibility
resources. Collectively, the figure emphasizes how the
proposed model leads to lower operational costs, better
renewable integration, and reduced reserve burdens,
validating the benefits of multi-dimensional flexibility in
high-renewable scenarios.

Second-Stage Cost

First-Stage Cost

Curtailment

Fig. 8. Radar chart of normalized performance metrics for the proposed SCUC model
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Fig. 8 uses a radar chart to visualize the relative
performance of the proposed model across five normalized
metrics: first-stage cost, second-stage cost, reserve cost,
renewable energy utilization, and curtailment. Each axis
represents one metric, scaled from 0 to 1, where a larger
area signifies better performance. The results show a
strong, balanced profile with low operating and reserve
costs, high renewable utilization, and low curtailment.
This confirms that the comprehensive integration of EV,
ESS, and FL provides a well-rounded enhancement to
system performance across all key dimensions.

C. Scalability and Computational Tractability

The proposed two-stage stochastic SCUC model with
nested Benders  decomposition is  inherently
computationally complex. The problem size scales with
the number of scenarios (JQ2]), contingencies (|C|), time
periods (|T]), network buses (|B]|), and flexibility
resources. Solving such a problem monolithically for a
large-scale real-world system (e.g., a thousands-of-buses
network) is computationally intractable. The primary
value of the nested decomposition approach is to break this
intractable monolithic problem into a sequence of smaller,
more manageable subproblems.

Three key strategies underpin the scalability of our
framework:

1. Decomposition: The master problem size
depends only on the first-stage decision variables
and the number of Benders cuts, not on |Q] or |C].
Each scenario subproblem is independent and can
be solved in parallel, decoupling the complexity
of renewable uncertainty. Similarly, within each
scenario, contingency subproblems are also
independent and parallelizable, isolating the
burden of N-1 security analysis.

2. Reduction: Using scenario reduction (e.g.,
k-means clustering) to limit |Q| to a tractable
number of representative scenarios is critical.
Similarly, contingency screening—whereby
contingencies with a negligible likelihood or
impact are filtered out—can significantly reduce
|€| without materially compromising security.

3. Parallelization: As implemented, the
algorithm exploits two levels of parallelism:
across scenarios and across contingencies within
a scenario. This can lead to a near-linear speedup
in wall-clock time when deployed on high-
performance computing (HPC) clusters with
many cores.

For larger systems (e.g., a 2000-bus model), the main
computational challenges would be:

e Master Problem: While independent of
scenarios, its size grows with the number of
generating units and resources. However, modern
MILP solvers like Gurobi are highly efficient for
large-scale UC problems.

e Contingency Subproblems: The number
of transmission line contingencies (|C]|) scales
linearly with the number of lines, which can be
very high in large systems. This is the most
significant scalability bottleneck. Aggressive
contingency  screening based on quick
approximate analyses (e.g., using linearized
sensitivity factors) is an essential practical step
for industry-scale adoption.

e Memory Overhead: Managing the
communication and storage of Benders cuts for
thousands of scenarios and contingencies
requires efficient data handling.

In conclusion, while challenging, applying this
framework to real-world systems is feasible. The
computational burden is not eliminated but is shifted to a
parallel computing environment. For a large-scale 1SO,
leveraging a large HPC cluster would allow the solution
times demonstrated here (e.g., 2 hours for a 118-bus
system) to be maintained for significantly larger networks
by solving thousands of scenarios and contingency
subproblems simultaneously. Future work will focus on
implementing more advanced contingency screening and
investigating distributed computing frameworks to further
enhance scalability.

D. Computational Performance

The computational performance of the nested Benders
algorithm for each case study is summarized in Table V.
As expected, the computational effort increases with the
model’s complexity. The deterministic base case (Case 1)
converges in the fewest iterations (8) and has the lowest
CPU time and memory footprint. Introducing stochasticity
(Case 2) increases the number of iterations by 50% and the
total CPU time by a factor of ~4, as the algorithm must
learn the recourse cost for multiple scenarios. Adding
stationary flexibility resources (Case 3) further increases
the problem size, leading to more iterations and longer
solve times, particularly in the master problem, which now
includes decisions for ESS and FL.

The proposed full model (Case 4) requires the most
iterations (18) and the highest computational resources, as
the master problem must co-optimize the commitment and
reserve schedules for all resources, including the complex
EV constraints, and the subproblems must simulate their
operation across all scenarios and contingencies. Notably,
the algorithm consistently converged to a tight optimality



58

Volume 5, Number 2. September 2025

gap (<0.1%) for all cases, demonstrating its robustness.
The subproblem solve time dominates the total CPU time,
highlighting the immense benefit of the parallel

implementation described in Section 3. Memory usage is
manageable for a system of this size, but it is a key
consideration when scaling to larger networks.

TABLE V

Computational Performance of the Nested Benders Decomposition Algorithm

Case Description Benders Total CPU Master Time  Subproblems Time Final Gap Peak Memory
Iterations Time (s) (s) (s) (%) (GB)
1 Deterministic w/o 8 1,245 312 933 0.08 42
Flex
2 Stochastic w/o Flex 12 4,887 598 4,289 0.09 6.8
3 Stoch. + ESS & FL 15 5,912 845 5,067 0.07 8.5
4 Proposed (Full) 18 7,158 1,121 6,037 0.10 11.3

V. CONCLUSIONS AND FUTURE WORK

This paper presented a two-stage stochastic security-
constrained unit commitment (SCUC) framework that
integrates electric vehicles with vehicle-to-grid (EV-V2G)
capabilities, utility-scale energy storage systems (ESS),
and flexible loads. The model is designed to handle
renewable generation uncertainty and enforce N-1 security
across generator and transmission contingencies. A nested
Benders decomposition algorithm was developed to solve
the resulting large-scale stochastic mixed-integer problem
efficiently.

The proposed model enables joint optimization of
thermal generation schedules, reserve allocation, and the
operation of distributed and centralized flexibility
resources. Simulation results on a modified IEEE-118 bus
system demonstrated that the proposed approach
significantly improves system performance across
multiple metrics. Compared to a deterministic SCUC
baseline, the model achieved a 6.67% reduction in total
system cost, a 15% absolute reduction in renewable
curtailment, and a 23% reduction in reserve procurement
costs. EV fleets contributed meaningful spinning and non-
spinning reserve capacity, particularly during peak
demand periods, while ESS and flexible loads enhanced
the system’s ability to absorb renewable fluctuations and
respond to contingencies. The findings confirm that
integrating emerging flexibility resources into a stochastic
and security-aware unit commitment framework enables
more reliable, cost-effective, and renewable-friendly
power system operation.

A. Limitations and Future Research Directions

While this study presents a comprehensive framework
for SCUC with diverse flexibility resources, it is subject to
certain limitations that also represent avenues for future
research. First, the model relies on a DC power flow

approximation for network constraints. While this is a
standard practice in large-scale UC problems due to its
computational linearity, it neglects reactive power, voltage
limits, and transmission losses. Future work could
integrate a linearized AC power flow model or a corrective
AC security-constrained optimal power flow (SCOPF) in
the second stage to enhance operational accuracy, albeit at
a significant computational cost. Second, the modeling of
EV user behavior is simplified. We assume perfect
compliance and a known, deterministic availability
schedule for aggregated fleets.

In  reality, user behavior is stochastic—
connection/disconnection times and energy requirements
are variable and uncertain. A valuable extension would be
to model these parameters stochastically within a multi-
stage framework or incorporate data-driven user behavior
models to improve scheduling robustness. Third, the
market and policy context is abstracted. The model
assumes a centralized cost-minimization paradigm.
Integrating this framework into a decentralized market
environment, where flexibility resources are owned by
profit-seeking entities participating in day-ahead and real-
time markets, would be a critical step toward real-world
implementation. This involves formulating equilibrium or
bi-level models to capture strategic bidding behavior.
Other promising extensions include: incorporating
distribution network constraints to model the impact of
widespread EV charging on local grids; evaluating the
long-term degradation costs of batteries in ESS and EVs
more precisely; and expanding the security analysis to
include voltage stability and small-signal stability
constraints alongside the current N-1 reliability focus.
Addressing these limitations would further bridge the gap
between the proposed academic framework and its
practical application by system operators.
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Nomenclature

Sets and Indices

T ={1,...,T}: Setof hourly time periods (e.g., T = 24
for one day).

J ={1,...,1}: Set of thermal generating units.
S ={1,...,S}: Set of RES-uncertainty scenarios.

Q = {1, ...,Q}: Set of contingencies (N-1 events, e.g.,
single-unit or single-line outage).

B ={1, ..., B}: Set of buses.
L =1{1,...,L}: Set of transmission lines.

€ ={1,..,E}: Set of EV fleets aggregated at charging
stations.

K ={1,...,K}: Set of ESS units.

F ={1, ..., F}: Set of flexible load blocks (aggregated
flexible loads).

R = {1, ..., R}: Set of RES units (wind farms and
photovoltaic plants).

t € T: Time index (hour).

i € 7: Thermal generator index.

s € §: Scenario index.

w € Q: Contingency index.

b € B: Bus index.

£ € L: Transmission line index.

e € E: EV fleet index.

k € XK ESS index.

f € F: Flexible load index.

r € R: RES index.

Parameters

C3Y: Start-up cost of unit i [$/start].
CSP: Shut-down cost of unit i [$/shut].

CP(P) = a; + b;P + c;P?: Quadratic generation cost
function [$/h] for unit i.

ppmin pmax: Minimum and maximum output (MW) of
unit i.

RU;, RD;: Ramp-up and ramp-down limits (MW/h) of
unit i.

UT;, DT;: Minimum up-time and down-time (hours) of
unit i.

$ R_{i}*{sp, max}$: Maximum spinning reserve

capacity (MW) that unit i can provide when online.

B,: Susceptance (p.u.) of line 4.

f7"2: Thermal flow limit (MW) of line 4.

$ PTDF_{b\ell}$: Power transfer distribution factor for
bus b to line £.

W;s.: Available RES output (wind or solar) for unit ,
period t, in scenario s (MW).

7, Probability of scenario s, Y.ccs s, = 1.
Dy ¢ Inflexible (firm) demand at bus b in period t (MW).

PF*: Maximum (upper) allowable flexible load
consumption (MW) for load f in hour t.

Pf‘f}i“: Minimum consumption level (MW) for load f in
hour ¢.

Ef: Total energy requirement over horizon for load f
(MWh).

ay .- Disutility or penalty cost coefficient [$/MWNh] if
load f consumes less than baseline in hour t.

E.X®*: Energy capacity (MWh) of ESS k.

P M pdis maX: Maximum charging and discharging

power (MW) for ESS k.

nsh, ndis: Charging and discharging efficiency of ESS k.
Ey o: Initial state of charge (MWh) of ESS k.

EDin: Minimum allowable SOC (MWh) for ESS k.
E1®: Maximum allowable SOC (MWh) for ESS k.
N,: Number of EVs in fleet e.

E;™: Battery capacity (MWh) per EV in fleet e.

pehmax pdis.max. Agqgreqgate maximum

charging/discharging power (MW) of fleet e.

neh, ndis: Aggregate charging/discharging efficiency of
EV fleet e.

SOC, - Initial state of charge (MWh) of each EV in fleet
eatt =0.

SOCM, SOCTaX: Minimum/maximum allowable SOC
(MWh) per EV.

Le +: Number (fraction) of EVs of fleet e connected
(available) at time t. (This can be based on a (charging)
availability profile.)

E*%: Required SOC (MWh) by departure time for EV
fleet e (ensures mobility).

T2 T2 Arrival and departure times for EV fleet e.
CEVeh cEV-Ais: Charging/discharging cost or
compensation of EV fleet e [$/MWHh].

CESS<h cFSSAS: Charging/discharging cost of ESS k
[$/MWh].
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Cf": Disutility cost coefficient [$/MWh] for flexible load
f.

CL3: Load shedding penalty at bus b, time ¢ [$/MWh].
Variables

u;, € {0,1}: 1 if unit i is ON in period t, O otherwise.
v; . € {0,1}: 1if unit i starts up at period t, 0 otherwise.

w; ¢ € {0,1}: 1 if unit i shuts down at period t, 0
otherwise.

zgh € {0,1}: 1if ESS k is charging in period t, 0
otherwise.

zis € {0,1}: 1if ESS k is discharging in period t, 0
otherwise.

z&h € {0,1}: 1if EV fleet e is charging in period ¢, 0
otherwise.

23 € {0,1}: 1if EV fleet e is discharging in period ¢, 0
otherwise.

p;: = 0: Real power output (MW) of unit i at time ¢
under scenario s.

1 = 0: Spinning reserve provided by unit i at time ,
scenario s.

7,27 > 0: Non-spinning reserve at bus b at ¢, scenario s.

s,ch __s,dis

Prt Pre = 0:Charging/discharging power (MW) of
ESS k at ¢, scenario s.

ey .- State of charge (SoC) (MWh) of ESS k at ¢, scenario
S.

s,ch __s,dis

Dt »Per = 0:Charging/discharging power (MW) of
EV fleet e, at t, scenario s.

SOC3 .: Average SoC per EV in fleet e (MWh) at t,
scenario s.

di . = 0: Actual consumption (MW) served by flexible
load f at t, scenario s.

AD;** > 0: Load shedding at bus b, time ¢, scenario s.

6,7 : Voltage angle at bus b at time t, scenario s, under
contingency w.

£+ Real power flow on line ¢ at t, scenario s, under
contingency w.
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