
Abstract-The design of analog integrated circuits demands the 

careful optimization of multiple interdependent parameters, 

including transistor sizes, bias currents, and passive 

components, to meet stringent performance targets such as gain, 

bandwidth, phase margin, and power efficiency. To address this 

challenge, this work introduces a computational intelligence 

framework that combines artificial neural networks (ANNs) 

with a hybrid genetic algorithm–particle swarm optimization 

(GA–PSO) strategy. The framework was validated on two 

representative circuits: a two-stage CMOS operational 

amplifier with Miller compensation and a differential LC 

voltage-controlled oscillator (LC-VCO) operating at 2.8 GHz in 

0.18-µm CMOS technology. Extensive HSPICE simulations 

generated datasets that enabled the ANN to capture the complex 

nonlinear relationships between design variables and 

performance metrics. The method successfully predicted 

optimal device dimensions and biasing conditions, achieving a 

160% improvement in figure of merit (FoM) for the amplifier 

and a FoM of 118.1 dBc/Hz for the LC-VCO, comparable to 

state-of-the-art designs. These results demonstrate the 

framework’s versatility and scalability, providing a flexible soft-

computing tool for multi-objective optimization across diverse 

analog circuit topologies. 

 
Index Terms- Analog IC performance, Computational 

intelligence, Optimization algorithms, Circuit simulation, 

HGAPSO 

I.  INTRODUCTION 

nalog circuits play a crucial role in a wide range of 

applications, including wireless communications, 

biosensors, and numerous other fields [1–4]. 
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Traditionally, the design parameters of analog circuits, such 

as transistor dimensions and biasing conditions, have been 

determined manually by designers based on experience and 

domain knowledge. This trial-and-error approach is not only 

time-consuming but also does not necessarily guarantee 

optimal designs. Moreover, due to the inherent trade-offs 

among circuit parameters, improving one performance metric 

can often lead to the degradation of another, making it 

challenging to satisfy stringent specifications. Consequently, 

with the growing demand for low-power, high-performance 

integrated circuits, adopting automated design methodologies 

has become increasingly important.  

    In recent years, artificial neural networks (ANNs) and 

evolutionary algorithms have emerged as powerful tools for 

optimizing analog circuit design [5–6]. Neural networks, 

owing to their parallel architecture, can perform high-speed 

computations that significantly reduce design time, while 

their adaptive nature allows them to be trained on input–

output data and adjust to variations [7]. Simultaneously, 

advanced optimization techniques—including ant colony 

optimization [8–9], grey wolf optimization [10], genetic 

algorithms [11–12], differential evolution [13–14], and 

simulated annealing [15–16]—have been increasingly 

applied to determine optimal design parameters. Despite their 

advantages, these methods often face limitations such as slow 

convergence and a high risk of being trapped in local optima, 

preventing achieving globally optimal solutions. This work 

investigates the capability of a hybrid Genetic Algorithm–

Particle Swarm Optimization (GA–PSO) framework in 

training neural networks to design analog circuits, generate 
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novel designs, and enable user-defined trade-offs among 

multiple design parameters. To demonstrate the 

generalization potential of the proposed framework, 

Validation Examples are provided, encompassing Validation 

Example I: Two-Stage CMOS Operational Amplifier and 

Validation Example II: Differential CMOS LC Voltage 

Controlled Oscillator (LC-VCO), illustrating its applicability 

across diverse analog circuit topologies. The remainder of the 

paper is organized as follows: Section 2 briefly reviews the 

application of neural networks in automated analog circuit 

design. Section 3 introduces the hybrid GA–PSO algorithm, 

while Section 4 details its use in neural network training. 

Section 5 presents validation examples of representative 

analog circuits. Section 6 discusses dataset generation via 

parallel HSPICE simulations, and Section 7 addresses data 

preprocessing for effective ANN training. Section 8 

elaborates on neural network architecture selection and 

training, demonstrating the generation of new circuit designs 

and management of trade-offs among performance metrics. 

Finally, Section 9 provides a comparative analysis of the 

proposed methodology against existing approaches, 

highlighting its efficiency and versatility, followed by 

concluding remarks. 

II.  APPLICATION OF NEURAL NETWORKS IN AUTOMATED 

ANALOG CIRCUIT DESIGN 

     As previously outlined, the design of analog circuits—

particularly operational amplifiers necessitates profound 

expertise to comprehend the intricate and nonlinear 

relationships that exist between design parameters and circuit 

performance metrics, alongside establishing optimal trade-

offs tailored to specific application requirements. As depicted 

in Fig. 1, variations in a single design parameter can exert 

direct or indirect effects on multiple performance 

characteristics, often in conflicting manners. For instance, an 

increase in supply voltage typically reduces input-referred 

noise, yet concurrently escalates the overall power 

consumption of the circuit. 

Traditional intelligent analog design methodologies rely 

heavily on sophisticated physics-based formulations or 

detailed circuit-level simulations to model the complex 

interplay between design variables—such as transistor 

channel width and length—and key performance indicators 

including gain, power consumption, and gain–bandwidth 

product. However, to alleviate the complexity of these 

models, numerous physical and electronic phenomena are 

frequently omitted, which inevitably compromises the 

accuracy and reliability of the resultant designs. 

     In contrast, artificial neural networks (ANNs) offer a 

robust framework capable of addressing multivariate design 

challenges by directly mapping design inputs to performance 

outputs without explicit reliance on complex analytical 

equations. Moreover, once adequately trained, these neural 

models facilitate the generation of diverse circuit designs 

conforming to user-defined specifications. Consequently, the 

highly nonlinear and multidimensional characteristics 

inherent to analog circuit performance can be effectively 

encapsulated by training ANNs on sufficiently extensive and 

high-quality datasets.  

Upon completion of training, the ANN can inversely infer 

optimal design parameters based on desired performance 

targets, thereby streamlining the analog design process [17]. 

 

Fig 1. Complicated and nonlinear relation of analog circuit performance 

parameters 

III.  HYBRID GENETIC–PARTICLE SWARM OPTIMIZATION 

ALGORITHM (HGAPSO) 

     The Hybrid Genetic–Particle Swarm Optimization 

(HGAPSO) algorithm is developed by integrating the Genetic 

Algorithm (GA) with Particle Swarm Optimization (PSO). 

Given that both methods draw inspiration from natural 

phenomena, their foundational principles are first elaborated 

before introducing the hybridization approach. 

A.  Genetic Algorithm (GA) 

    The Genetic Algorithm (GA), originally proposed by John 

Holland in 1975 at the University of Michigan, is grounded 

in the principles of genetics and Darwinian evolution, 

fundamentally relying on the concept of "survival of the 

fittest" or natural selection. Among its prominent applications 

is its use as an optimization technique. GA has been 

extensively utilized in various fields such as pattern 

recognition, feature selection, image processing, and machine 

learning [18–19]. Conceptually, GA is a population-based 

stochastic search and optimization method inspired by natural 

genetic processes, aiming primarily to minimize a given cost 

or objective function. Unlike traditional optimization 

methods that initiate the search from a single solution, GA 

explores the search space starting from an entire population, 

thereby enhancing the probability of locating the global 

optimum. The operation of GA revolves around three core 

genetic operators: 

 

• Selection 

• Crossover 

• Mutation 

 

     The selection operator is responsible for choosing 

individuals from the current population to form a new 

generation. This choice is predominantly influenced by the 

fitness value of each individual, where higher fitness 

correlates with a higher likelihood of selection. The 

probability 𝑃𝑖  of selecting the 𝑖𝑡ℎ individual is computed as 

follows: 

𝑃𝑖 = 
𝐹𝑖 

∑ 𝐹𝑗 
𝑝𝑜𝑝𝑠𝑖𝑧𝑒
𝑗=1

                                                          (1) 

 

 Where 𝐹𝑖 denotes the fitness value of the 𝑖𝑡ℎ individual and 

N is the population size. New generations are produced via 

the crossover and mutation operators, which are applied with 
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probabilities 𝑃𝑐   and 𝑃𝑚, respectively. The iterative process 

continues until termination criteria are satisfied, such as 

reaching a predetermined maximum number of generations 

or achieving convergence indicated by a stable standard 

deviation in the population's fitness values. 

B.  Particle Swarm Optimization (PSO) 

    Particle Swarm Optimization (PSO) was first proposed by 

Kennedy and Eberhart in 1995 [20]. Similar to other 

population-based evolutionary algorithms, PSO initializes 

with a randomly generated population of candidate solutions, 

referred to as "particles." Each particle navigates the search 

space by iteratively updating its position based on its velocity, 

guided both by its individual best-known position (Pbest) and 

the global best position (Gbest) discovered by the swarm. 

Consider a search space of dimension D, where the state of 

each particle is described by its position vector 𝑋𝑖and velocity 

vector  𝑉𝑖. The position and velocity of each particle at 

iteration t+1 are updated according to the following 

equations: 

 
𝑉𝑖

𝑡+1=𝑤𝑉𝑖
𝑡  +𝐶1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖

𝑡) + 𝐶2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖
𝑡)          (2)        

 
𝑋𝑖

𝑡+1 = 𝑋𝑖
𝑡 + 𝑉𝑖

𝑡+1                                                                 (3)    
 

Where 𝑉𝑖
𝑡+1 and 𝑉𝑖

𝑡 represent the updated and current velocity 

vectors of particle i, respectively; 𝑋𝑖
𝑡  and 𝑋𝑖

𝑡+1 denote the 

current and updated positions. The term Pbesti corresponds to 

the best position found individually by particle i, whereas 

Gbest signifies the best position identified by the entire 

swarm. The coefficients 𝐶1 and 𝐶2 are the cognitive and social 

acceleration factors, typically set within the range of 1 to 2. 

The stochastic variables 𝑟1 and 𝑟2 are uniformly sampled from 

the interval [0, 1]. The inertia weight w, usually assigned a 

value between 0.4 and 0.7, modulates the trade-off between 

global exploration and local exploitation. 

C.  Hybrid Genetic–Particle Swarm Optimization Algorithm 

(HGAPSO) 

     As previously discussed, the Particle Swarm Optimization 

(PSO) algorithm offers advantages such as rapid convergence 

and the ability to perform both global and local searches in 

parallel, maintaining an effective balance between 

exploration and exploitation. These characteristics can be 

leveraged to mitigate the issue of premature convergence 

typically observed in Genetic Algorithms (GA), thereby 

improving the quality of the selected parents. Consequently, 

the integration of GA and PSO forms a mutually 

complementary framework [21]. The HGAPSO algorithm 

operates based on this principle [22]. It starts with a randomly 

initialized population, and after evaluating the fitness of all 

individuals, the top 50% with the highest fitness scores—

referred to as elites—are selected. These elite individuals then 

undergo refinement using the PSO mechanism. The PSO-

driven enhancement process improves the quality of the 

elites, producing higher-quality offspring in subsequent 

generations and enhancing the algorithm's exploratory 

capabilities. 

     In the final phase, the optimized elite individuals are 

directly transferred to the next generation, while the rest of 

the population is generated through traditional GA operations 

such as crossover and mutation. The overall workflow of the 

HGAPSO algorithm is depicted in Fig. 2. 

 

 
 
Fig2. The implementation procedure of the HGAPSO algorithm 
 

IV.  NEURAL NETWORK TRAINING VIA THE  HGAPSO 

ALGORITHM 

In neural network training, the primary optimization 

parameters are the weights and biases associated with each 

neuron. If the ith layer of the network contains V input nodes 

and N neurons, the corresponding weight matrix 𝑊𝑖 and bias 

vector 𝐵𝑖  are defined as shown in (4): 

 

𝑊𝑖 =

[
 
 
 
 
 
(𝑤1
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(4)                             
 

    In this study, the optimal values for these parameters are 

obtained using the HGAPSO algorithm. The procedure 

begins by initializing the weights and biases of all neurons 

with random values. The neural network is then executed 

using these initial values, and the resulting error from each 

forward pass is used as the fitness value to evaluate each 

candidate solution. 

Subsequently, the HGAPSO algorithm updates the weights 

and biases based on its evolutionary equations. This iterative 

training process continues until either a predefined error 

threshold is met by one of the individuals or a stopping 

criterion (such as the maximum number of iterations) is 

reached.  Upon completion of the training phase, the final 

optimized weights are used to compute the classification error 

on the training dataset. The same set of weights is then 

applied to evaluate the model's performance on the test 

dataset. 

V.  VALIDATION EXAMPLES OF REPRESENTATIVE ANALOG 

CIRCUITS 

A.  Validation Example I: Two-Stage CMOS Operational 

Amplifier 

     Validation Example I describes a two-stage CMOS 

operational amplifier incorporating a PMOS differential input 

pair along with Miller compensation, as shown in Fig. 3. In 

this design, the positive and negative supply voltages 

(𝑉𝐷𝐷 and 𝑉𝑆𝑆) are set to +3.3 V and –3.3 V, respectively. 

Furthermore, the DC bias voltages applied to the differential 
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input terminals 𝑉𝑖𝑛+and 𝑉𝑖𝑛− are both maintained at 0.8 V, 

ensuring symmetric operation and stable amplifier 

performance. 

 

  
  Fig 3. Miller compensated two-stage operational amplifier 

 

Furthermore, to prevent a mismatch in the differential pairs, 

the channel widths and lengths of transistors 𝑀1 and 𝑀2, as 

well as 𝑀3 and 𝑀4, are set to be identical. Accordingly, a 

sample design parameter vector 𝑉𝑖 is defined as in (5): 

 
𝑉𝑖 = [𝑊1,2,𝑊3,4,𝑊5,𝑊6,𝑊7,𝑊8, 𝐿1,2, 𝐿3,4, 𝐿5, 𝐿6, 𝐿7, 𝐿8, 𝐼𝑅𝐸𝐹 , 𝐶𝐶 , 𝐶𝑙]        (5)                    

 
   Where W and L represent the channel width and length of 

the transistors, respectively. 𝐼𝑅𝐸𝐹  denotes the reference 

current source, 𝐶𝐶  is the compensation capacitor, and  

𝐶𝑙  represents the load capacitor. Four key parameters are 

considered to evaluate the performance of the operational 

amplifier: low-frequency gain, power consumption, phase 

margin, and the gain–bandwidth product.  

B. Validation Example II: Differential CMOS LC-VCO 

     To further evaluate the generalization capability of the 

proposed ANN + GA–PSO framework, a second validation 

example was conducted on a differential CMOS LC voltage-

controlled oscillator (LC-VCO) operating at 2.76 GHz in a 

0.18-µm CMOS technology. The oscillator is based on a 

Colpitts-inspired topology with capacitive feedback from the 

gate to the source, which provides high negative trans 

conductance and ensures reliable start-up even at low bias 

currents. To enhance negative trans conductance and achieve 

stable oscillation, the circuit incorporates cross-coupled 

PMOS transistors along with a differential LC tank. Key 

performance parameters, including negative trans 

conductance, oscillation frequency, and phase noise, were 

carefully analyzed and optimized [23]. The schematic of the 

designed LC-VCO is shown in Fig. 4. 

 
 
Fig 4. The differential LC voltage-controlled oscillator (LC‐VCO) 

 

     In this design, the output frequency is controlled via a 

tuning voltage 𝑉𝑡𝑢𝑛𝑒, which is applied to accumulation-mode 

varactors. The applied tuning voltage modifies the varactors’ 

capacitance, thereby adjusting the oscillator’s frequency. 

These varactors enable precise frequency control, making the 

LC-VCO highly tunable and suitable for high-performance 

analog applications.   Based on this, a sample design 

parameter vector 𝑉𝑖  is defined as shown in (6): 

𝑉𝑖 = [W/L1,2,W/L3,4,W/L5,6, 𝐿𝑇 , 𝐶𝑉 , 𝐶1, 𝐶2]                                    (6) 

VI.  DATA ACQUISITION FROM ANALOG CIRCUIT 

PERFORMANCE 

    One of the major challenges in leveraging artificial neural 

networks for automated analog circuit design lies in obtaining 

a representative and high-quality dataset from the complex 

performance landscape of analog circuits, which is essential 

for effective neural model training. Previous studies have 

employed various strategies for dataset generation, including 

intelligent and adaptive sampling within the design space 

[24–29], extracting data from ongoing optimization algorithm 

executions [30], and selecting feasible initial points followed 

by parameter variation in their vicinity [31]. 

     In this work, a two-step sampling approach is adopted. 

First, a global random search is conducted to identify initial 

points across the entire design space, followed by localized 

sampling around these points through small perturbations to 

enhance sampling density and reduce computational 

overhead. The design space boundaries defined by the 

minimum and maximum allowable values of critical design 

parameters, such as transistor dimensions and reference 

current sources, are set based on technological and design 

constraints, as detailed in Table I. 
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    For the initial global search, 1000 random design points are 

generated per iteration within the specified parameter ranges. 

This process yields a 15×1000 matrix, where each row 

corresponds to a distinct set of 15 design parameters. Each 

candidate design is then simulated using HSPICE on the two-

stage operational amplifier model depicted in Fig. 3. All 

circuit simulations were conducted using HSPICE version 

2021.09, under the typical–typical (TT) process corner, and 

at a nominal temperature of 25 °C. Four key performance 

metrics are extracted for each design point: low-frequency 

gain, power consumption, phase margin, and gain–bandwidth 

product.  Next, acceptable ranges for average performance 

metrics are defined (see Table II), and design points outside 

these thresholds are discarded to focus on regions with 

moderate yet meaningful performance levels, thereby 

accelerating dataset collection. This phase continues until 100 

acceptable initial points are identified. Subsequently, the 

design parameters around each point are iteratively varied by 

up to 30%, and any newly generated acceptable points are 

added to the reference set for further neighborhood 

exploration. This iterative refinement continues until 8000 

valid design points are collected. 

To ensure a balanced representation of the design space, 

we employed a two-step sampling approach, followed by a 

dedicated evaluation of potential dataset bias. While the 

initial sampling focused on points within acceptable 

performance ranges to accelerate data collection, 

supplementary experiments were conducted in which a subset 

of low-performance points was deliberately included. This 

allowed the ANN to capture broader design relationships, and 

the results confirmed that the network’s predictions remain 

stable and robust, demonstrating effective generalization 

across the design space. 

Finally, an outlier removal step is performed, whereby 

any design point exhibiting deviations exceeding three 

standard deviations from the global mean (computed over all 

8,000 samples) in any of the key performance metrics is 

excluded. This filtering reduces dataset variance and 

improves the quality and robustness of neural network 

training. In this study, parallel processing was employed in 

HSPICE to accelerate sampling and reduce the overall design 

process time. The computations were carried out on a 

workstation with 16 GB of RAM and a quad-core Intel 

processor operating at a maximum clock speed of 2.4 GHz, 

which reduced the total sampling time for data collection to 

37 minutes and 43 seconds. 
 

TABLE I 

 Design Parameters and their Acceptable Ranges 

 

TABLE II 

 Performance Parameters and their Acceptable Ranges for 

Training Dataset 
 

      

Similarly, the same procedure was used to acquire data from 

the LC-VCO, generating 1000 random design points per 

iteration within the predefined parameter ranges. This 

produced a 7×1000 matrix, each row representing a unique 

combination of seven key design parameters. Four main 

performance metrics—oscillation frequency, power 

consumption, phase noise, and the figure of merit (FOM), 

detailed in Section 9—were carefully evaluated to facilitate 

meaningful comparisons with recent designs. 

VII.  DATA NORMALIZATION 

     Following the extraction of input and output datasets from 

HSPICE simulations, the subsequent step in the modeling 

pipeline involves data normalization to standardize the 

dataset for effective neural network training. Given the 

considerable disparity in the scales of design variables and 

performance metrics—for example, transistor widths 

measured in micrometers versus DC gain expressed in 

decibels—normalization is imperative to mitigate scale-

induced bias and facilitate the convergence of the training 

algorithm. In this work, a min-max normalization technique 

is applied to rescale all variables within the interval [0, 1], as 

formalized in (7): 

𝑥𝑛𝑜𝑟𝑚 = 
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                     (7) 

Where x denotes the original data value and   𝑥𝑛𝑜𝑟𝑚 

represents the normalized output. 

VIII.  STRUCTURE OF THE ARTIFICIAL NEURAL NETWORK 

AND TRAINING PROCEDURE 

      In the present work, a feed-forward multilayer perceptron 

(MLP) comprising two hidden layers is employed to model 

the performance characteristics of the operational amplifier 

under investigation. The neural network is developed using 

MATLAB’s Neural Network Toolbox. The input layer 

consists of 15 neurons, each corresponding to specific design 

parameters including the transistor width-to-length (W/L) 

ratios, bias current, and values of compensation and load 

capacitors.  The architecture features two hidden layers: the 

first with 10 neurons and the second with 7 neurons, both 

utilizing the sigmoid activation function to introduce 

nonlinearity. The output layer comprises four neurons, each 

representing a key circuit performance metric: low-frequency 

gain, unity-gain bandwidth (GBW), power consumption, and 

phase margin. A linear activation function is adopted in the 

output layer to facilitate accurate prediction of continuous 

output values. Training is conducted using a hybrid 

optimization algorithm that integrates Genetic Algorithm 

Performance Parameter Minimum Maximum 

Low-frequency gain 40   dB 60  dB 

Power consumption 0.1 mW 10 mW 

Phase margin 55 100 

Gain–bandwidth product 

(GBW) 

0.01 MHz 10 MHz 

Maximum Minimum Design 

Param

eter 

Maximu

m (µm) 

Minimu

m 

(µm)   

Design 

Parameter 

200(µm) 0.18 (µm 𝑾𝟕 200 0.18 𝑾𝟏,𝟐 

3(µm) 0.18(µm) 𝑳𝟕 3 0.18 𝑳𝟏,𝟐 

200(µm) 0.18(µm) 𝑾𝟖 200 0.18 𝑾𝟑,𝟒 

13(µm) 0.18(µm) 𝑳𝟖 3 0.18 𝑳𝟑,𝟒 

120(µA) 0.1 (µA) 𝑰𝑹𝑬𝑭 200 0.18 𝑾𝟓 

10 (pF) 0.001(pF) 𝑪𝒍 3 0.18 𝑳𝟓 

10  (pF) 0.001(pF) 𝑪𝑪 200 0.18 𝑾𝟔 

 ----  ----  ---- 3 0.18 𝑳𝟔 
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(GA) and Particle Swarm Optimization (PSO). During the 

initial training phases, GA’s extensive global search 

capabilities guide exploration of the solution space, while in 

the final stages, PSO’s rapid convergence is leveraged to 

refine and optimize the model parameters. To mitigate 

overfitting, the dataset is partitioned into training and testing 

subsets, allocating 80% of the data for training and the 

remaining 20% for validation. The optimization objective is 

to minimize the mean squared error (MSE) between the 

predicted outputs and the corresponding ground truth values. 

IX.  DESIGN RESULTS AND PERFORMANCE ANALYSIS 

     The training was carried out on a workstation equipped 

with 16 GB of RAM and a quad-core Intel processor 

operating at a maximum clock speed of 2.4 GHz, requiring 

approximately two minutes to complete. 

   The training outcomes are depicted in Fig. 5. The final 

mean squared errors (MSE) for the training and validation 

datasets were 0.01012 and 0.01804, respectively. Following 

the completion of the neural network training, the model was 

employed to generate novel circuit designs. From these, the 

fifteen top-performing configurations, each optimized for 

different performance criteria, were selected and summarized 

in Table III. These configurations are classified into three 

principal categories based on their optimization objectives: 

maximization of the DC gain, maximization of the gain-

bandwidth product (FoM), and minimization of power 

consumption. A concise analysis of the salient features for 

each category is provided in the subsequent subsections. 

It should be emphasized that a widely recognized figure of 

merit, commonly employed in recent and reputable studies 

for assessing the performance of operational amplifiers [32-

35], was computed for each configuration in accordance with 

(8). 

 

𝐹𝑂𝑀 = 
𝐺𝐵𝑊 × 𝐶𝐿𝑜𝑎𝑑

𝑝
                                                           (8) 

 

Also, to evaluate the figure of merit (FOM) of the VCO, this 

study adopts the standard formulation widely employed in 

recent oscillator design literature [42-48], as expressed in (9). 

 

𝐹𝑜𝑀 = 𝐿(∇𝜔) + 10𝐿𝑜𝑔 𝑃𝐷𝐶 − 20𝐿𝑜𝑔 (
𝜔0

∇𝜔
)                 (9) 

 

 
 

Fig 5. Train and validation error during training 
 

      In this formulation, L (∇𝜔) represents the single-sideband 

phase noise measured at an offset frequency of ∇𝜔 while 𝜔0 

denotes the oscillation frequency. The term 𝑃𝐷𝐶  corresponds 

to the circuit’s power consumption, expressed in mW. 

Moreover, FTR indicates the frequency tuning range, and 

𝛥𝑉𝑡𝑢𝑛𝑒 specifies the span of the tuning voltage variation. 
 

TABLE III 

 Performance of Sampled Designs from the Trained ANN 

 

Deign Objective Low-

Frequency 

Gain (dB) 

Gain–Bandwidth 

Product (FoM) 

MHz 

Power 

Consumption 

(mW) 

 

Phase Margin (°) 

Objective 1 – Maximum 

DC Gain 

> 85 > 4.0 < 1.0 Range: 55–100 

Design 1 94.225 4.097 0.05048 58.358 

Design 2 92.769 4.036 0.2704 56.351 

Design 3 91.85 7.34 0.04575 60.254 

Design 4 90.953 5.632 0.1123 73.260 

Design 5 89.417 18.01 0.4152 67.523 

Objective 2 – Maximum 

Gain–Bandwidth Product 

(FoM) 

 

> 50 

 

> 12.0 

 

< 1.0 

 

Range: 55–100 

Design 6 52.417 52.15 0.764 56.346 

Design 7 53.635 32.65 0.9845 61.523 

Design 8 55.856 26.78 0.4568 57.369 

Design 9 63.658 19.97 0.7348 72.663 

Design 10 79.512 18.25 0.6856 57.256 

Objective 3 – Minimum 

Power Consumption 

 

> 50 

 

> 0.1 

 

< 0.1 

 

Range: 55–100 

Design 11 56.365 0.1231 0.002359 67.236 

Design 12 65.472 0.1298 0.003847 68.545 

Design 13 58.765 0.4967 0.008153 61.453 

Design 14 69.538 0.9573 0.01014 69.547 

Design 15 52.142 3.745 0.02878 62.987 
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The initial five designs were developed with the primary 

objective of maximizing DC gain while ensuring low 

power consumption and maintaining sufficient stability, 

characterized by a high phase margin. Within this subset, 

Design 1 exhibits the superior overall performance, 

achieving a gain of 94.225 dB, a power dissipation of 

merely 0.05048 mW, and a phase margin of 58.36°. 

Designs 6 through 10 were synthesized to optimize the 

gain–bandwidth product (Av×GBW). Among these, 

Design 6 attained the highest figure of merit (FoM) of 

52.15. The final cluster, encompassing Designs 11 to 15, 

was curated to prioritize power consumption 

minimization. Notably, Design 11 distinguishes itself as 

one of the most energy-efficient architectures, with a 

power consumption of only 0.002359 mW, while 

sustaining acceptable performance metrics such as a gain 

of 56.365 dB and a phase margin of 67.236°. 
 

   The data summarized in Table III substantiate that the 

neural network model, once trained, can generate a broad 

spectrum of optimized designs tailored to distinct 

performance criteria. These designs effectively balance 

high gain, low power usage, and satisfactory stability, 

thereby validating the accuracy and practical applicability 

of the proposed model within the inverse design 

framework of analog circuits. Corresponding design 

parameters derived from the neural network predictions—

covering transistor channel dimensions, reference current 

source, compensation capacitance, and load capacitance 

for maximum low-frequency gain, maximum gain–

bandwidth product, and minimum power consumption are 

detailed in Tables IV, V, and VI, respectively. 

Furthermore, the frequency response of each group of 

these designs is presented in Fig.s 6, 7, and 8, respectively. 

Drawing inspiration from dynamic high fan-in OR gate 

designs, the proposed neural-network-assisted operational 

amplifier demonstrates a notable reduction in power 

consumption while effectively maintaining all critical 

performance metrics [1]. 

 

TABLE IV 

The Corresponding Design Parameters of the ANN Predicted Designs to Reach the Best DC Gain. 

 

TABLE V 

Corresponding Design Parameters of the ANN Predicted Designs to Reach the Best Gain-Bandwidth Product. 

 

 

 

 𝑾𝟏,𝟐 

𝑳𝟏,𝟐 

𝑾𝟑,𝟒 

𝑳𝟑,𝟒 

𝑾𝟓 

𝑳𝟓 

𝑾𝟔 

𝑳𝟔 

𝑾𝟕 

𝑳𝟕 

𝑾𝟖 

𝑳𝟖 

𝑰𝑹𝑬𝑭 

(𝝁𝑨) 

𝑪𝒄 

(pF) 

𝑪𝒍 

(pF) 

Design 1 17.45 

7.536 

24.26 

22.15 

27.63 

0.3236 

11.23 

14.19 

0.9852 

9.2141 

6.745 

13.563 

14.52 0.1813 2.756 

Design 2 28.46 

6.423 

12.56 

5.326 

26.41 

2.231 

2.03 

2.043 

25.32 

25.63 

14.55 

22.65 

53.12 2.023 6.402 

Design 3 18.42 

11.76 

25.36 

19.52 

29.47 

0.2941 

11.54 

10.362 

8.652 

25.32 

29.45 

14.32 

7.521 0.0857 1.756 

Design 4 22.35 

21.54 

26.23 

30.32 

11.74 

0.3145 

19.44 

9.525 

5.771 

29.47 

27.45 

13.88 

21.632 0.1128 2.145 

Design 5 104.56 

5.326 

30.56 

24.68 

22.74 

0.5123 

3.231 

24.15 

18.54 

22.56 

18.441 

8.023 

5.23 0.2223 3.475 

 𝑾𝟏,𝟐 

𝑳𝟏,𝟐 

𝑾𝟑,𝟒 

𝑳𝟑,𝟒 

𝑾𝟓 

𝑳𝟓 

𝑾𝟔 

𝑳𝟔 

𝑾𝟕 

𝑳𝟕 

𝑾𝟖 

𝑳𝟖 

𝑰𝑹𝑬𝑭 

(𝝁𝑨) 

𝑪𝒄 

(pF) 

𝑪𝒍 

(pF) 

Design 6 40.53 

0.5026 

87.65 

0.2317 

9.235 

0.355 

103.15 

3.078 

199.41 

2.151 

5.214 

0.8626 

78.15 0.0241 8.471 

Design 7 22.54 

0.5031 

15.26 

0.3052 

77.25 

0.2236 

7.235 

2.066 

103.4 

3.882 

96.24 

3.141 

34.15 0.7145 9.478 

Design 8 47.96 

0.5523 

37.21 

0.3625 

84.32 

0.2352 

68.02 

2.145 

99.12 

3.750 

8.512 

0.207 

17.21 0.6814 5.236 

Design 9 39.45 

2.231 

32.33 

1.238 

72.78 

0.3236 

13.56 

0.4758 

81.54 

3.142 

48.56 

0.702 

36.5 1.547 4.214 

Design 10 122.45 

2.475 

76.35 

1.215 

199.32 

0.4452 

119.5 

2.452 

96.47 

2.452 

165.21 

1.315 

72.15 2.845 5.745 
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         Fig 6. The gain and phase frequency response plots of the predicted designs to reach the best DC gain 
 

TABLE VI 

 Corresponding Design Parameters of the ANN Predicted Designs to Reach the Best Power Dissipation. 

 𝑾𝟏,𝟐 

𝑳𝟏,𝟐 

𝑾𝟑,𝟒 

𝑳𝟑,𝟒 

𝑾𝟓 

𝑳𝟓 

𝑾𝟔 

𝑳𝟔 

𝑾𝟕 

𝑳𝟕 

𝑾𝟖 

𝑳𝟖 

𝑰𝑹𝑬𝑭 

(𝝁𝑨) 

𝑪𝒄 

(pF) 

𝑪𝒍 

(pF) 

Design 

11 

7.452 

9.025 

17.23 

26.74 

30.35 

0.3625 

28.36 

14.36 

16.78 

21.26 

28.152 

11.25 

0.5165 0.5882 6.178 

Design 

12 

9.989 

16.53 

16.84 

14.25 

15.89 

0.6958 

6.36 

9.153 

8.452 

28.51 

19.563 

10.26 

0.5158 1.758 8.541 

Design 

13 

30.26 

14.362 

11.81 

2.365 

29.52 

0.5685 

4.266 

6.256 

11.53 

26.14 

19.25 

3.845 

1.125 

 

2.536 8.658 

Design 

14 

66.23 

0.9863 

37.23 

0.652 

1.097 

0.4544 

76.521 

2.712 

93.45 

2.142 

3.891 

3.462 

1.741 0.00974 9.698 

Design 

15 

22.45 

27.65 

17.25 

25.33 

7.032 

0.1599 

9.256 

30.48 

4.896 

13.48 

25.14 

29.41 

2.475 

 

0.02941 9.075 
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Fig7. The gain and phase frequency response plots of the predicted designs for reaching the best gain-bandwidth product 

 
TABLE VII 

Optimized LC-VCO Design Parameters Obtained Using the ANN + GA–PSO Framework 
 

Component Parameter / Value 

Transistors 
 

M1−2 W/L = 50 / 0.18 𝜇𝑚 𝜇𝑚⁄  

M3−4 W/L = 22 / 0.18 𝜇𝑚 𝜇𝑚⁄  

M5−6 W/L = 150 / 0.18 𝜇𝑚 𝜇𝑚⁄  

Inductor & Capacitors 
 

𝐿𝑇 3.25 𝑛𝐻 

𝐶𝑣 184 𝑓𝐹 

𝐶1 1.5 𝑝𝐹 

𝐶2 3 𝑝𝐹 
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Fig 8. The gain and phase frequency response plots of the predicted designs to reach the best power dissipation 

 

      As previously mentioned, to further evaluate the 

generalization capability of the proposed ANN + GA–PSO 

framework, a second case study was conducted on a 

differential CMOS LC voltage-controlled oscillator (LC-

VCO) operating at 2.76 GHz in 0.18-µm CMOS 

technology. The design and simulation of the circuit were 

carried out using the same ANN + GA–PSO methodology 

employed in the first case study. 

      In the LC-VCO design, the key circuit parameters 

considered as decision variables included the tank 

capacitors (C1 and C2), transistor dimensions, and 

voltages. To achieve multi-objective performance 

optimization, various combinations of these parameters 

were simulated to obtain the output characteristics of each 

configuration, including oscillation frequency, power 

consumption, phase noise, and negative trans conductance. 

These outputs served as training data for the artificial 

neural network, allowing the algorithm to determine the 

optimal parameter combination that ensures reliable 

startup, low phase noise, and minimal power consumption. 

In other words, each simulation constituted a training 

sample for the neural network, enabling it to learn the 

relationships between circuit parameters and the VCO’s 

final performance, and to propose an optimized 

configuration.  The design parameters of the LC-VCO 

optimized using the ANN + GA–PSO framework are 

summarized in Table VII .  

As 𝑉𝑡𝑢𝑛𝑒 varies from 0 to 1.2 V, the LC-VCO exhibits an 

oscillation frequency range of 2.68–2.85 GHz. Simulation 

results demonstrate that, under a 1.4 V supply, the 

oscillator achieves a frequency of 2.83 GHz, with a power 

consumption of 864 μW and a phase noise of 

approximately −118.1 dBc/Hz at a 1 MHz offset. These 

findings confirm reliable startup, low power consumption, 

and minimal phase noise, highlighting the capability of the 

proposed framework to optimize complex analog circuits 

beyond conventional operational amplifiers. For a more 

detailed evaluation, the dependencies of oscillation 

frequency, power consumption, and phase noise on 

varying control voltages are depicted in Fig. 9. 
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TABLE VIII 

Comparison of Two-Stage Operational Amplifier Design Results with Other Methods 

 

 

TABLE IX 

Performance Summary of the Proposed Voltage-Controlled Oscillator (VCO) and some other VCOs 

 

 

Reference 
Amplifier 

Topology 
Technology 

(µm) 
Design 

Method 

Gain–

Bandwidth 

Product 

(MHz) 

Power 

Consumpti

on (mW) 

Load 

Capacitance 

(pF) 

Figure of 

Merit 
(MHz·pF/mW) 

[36] 

Two-stage 

with Miller 

compensati

on 

0.18 

Evolutionar

y 

Algorithm 

(MCO) 

251 4.2 1 59.761 

[37] 

Two-stage 

with Miller 

compensati

on and 

nulling 

resistor 

0.13 

Swarm 

Intelligence

-based 

Algorithm 

(CRPSO) 

111.2 0.01961 0.05 283.528 

[38] 

Two-stage 

with Miller 

compensati

on 

0.35 
Hybrid 

Algorithm 

(RPSODE) 
5.526 0.8794 10 62.838 

[39] 

Two-stage 

with Miller 

compensati

on 

0.13 

Metaheurist

ic 

Algorithm 

(WOA) 

4.293 0.266 7 112.973 

[40] 

Two-stage 

with Miller 

compensati

on 

0.35 

Evolutionar

y 

Algorithm 

(GA) 

0.1037 0.0202 0.05 0.256 

[40] 

Two-stage 

with Miller 

compensati

on 

0.35 

Swarm 

Intelligence

-based 

Algorithm 

(ACO) 

0.1 0.01975 0.05 0.253 

[41] 

Two-stage 

with Miller 

compensati

on 

0.18 

Metaheurist

ic 

Algorithm 

(GWO) 

8.63 1.6 12 64.725 

This work 

Two-stage 

with Miller 

compensati

on 

0.18 

ANN + 

GA–PSO 

(Proposed 

Method) 

7.34 0.04575 0.0857 735.23 

Reference Tech. 
(nm) 

𝑭𝑶𝑺𝑪 
(GHz) 

𝐕𝐃𝐃(V) 𝑷𝒅𝒊𝒔 
(mW) 

TR 
 (%) 

PN @1 
MHz 

(dBc/Hz) 

FoM 

[42] 180 30 1.8 27.4 10.4 106.8 -179 

[43] 180 4 1.8 1 NA -116.8 -188.9 

[44] 65 24 1.2 12.8 29 -106 -185 

[45] 90 2.6 1 1.875 NA -120.97 -186.54 

[46] 130 2.4 1 0.262 10 -114.7 -188.15 

[47] 180 1.7 1.8 37.2 82.4 -110 158.54 

[48] 90 1.77 1.2 3.96 6.2 -112 -171 

This work 180 2.83 1.4 0.864 6.3 -118.1 -187.5 
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Fig. 9. (a) Output oscillation frequency, (b) power dissipation, and (c) PN 
of the proposed voltage-controlled oscillator (VCO) for different tuning 
voltages (Vtune). PN, phase noise. 

 

     Furthermore, a comparative overview of the designed 

VCO using the ANN + HGAPSO hybrid methodology 

relative to other designs reported in the literature is presented 

in Table IX.  

X.  COMPARISON WITH PREVIOUS STUDIES AND 

CONCLUSION 

    In this study, we introduced a systematic computational 

intelligence framework for the design and multi-objective 

optimization of analog integrated circuits, initially validated 

on a two-stage operational amplifier. The framework 

synergistically combines Artificial Neural Networks (ANNs) 

with a hybrid metaheuristic algorithm integrating Genetic 

Algorithm (GA) and Particle Swarm Optimization (PSO), 

enabling accurate modeling of the complex relationships 

between critical design parameters and circuit performance 

while efficiently navigating the high-dimensional design 

space. The optimization focused on three primary objectives: 

maximizing low-frequency gain, improving the gain–

bandwidth product, and minimizing power consumption. 

Among the optimized solutions, the design targeting the 

gain–bandwidth product (Design 3) achieved a well-

balanced trade-off, delivering a gain–bandwidth product of 

7.34 MHz, power consumption of 0.046 mW, and a load 

capacitance of 0.086 pF. Comparative analysis revealed a 

notable enhancement in the figure of merit (FoM), rising 

from 283 MHz•pF/mW in previous studies to 735 

MHz•pF/mW, representing an approximate 160% 

improvement.  

    To further evaluate the generalizability of the proposed 

approach, the methodology was applied to a differential LC 

voltage-controlled oscillator (LC-VCO) operating at 2.8 

GHz in 0.18-µm CMOS technology. Extensive HSPICE 

simulations generated comprehensive datasets, enabling the 

ANN to capture intricate nonlinear dependencies between 

design variables and performance metrics. The framework 

successfully predicted optimal device dimensions and 

biasing conditions, achieving a FoM of 118.1 dBc/Hz for the 

LC-VCO, comparable to state-of-the-art designs. Overall, 

the results highlight the robustness, efficiency, and 

versatility of the ANN-assisted hybrid GA–PSO 

methodology. This work demonstrates that integrating ANN 

modeling with hybrid metaheuristic optimization provides a 

reliable and generalizable strategy for achieving optimal 

trade-offs in high-performance analog circuits. While the 

framework is inherently versatile, the current validation 

primarily relies on the two-stage op-amp and the additional 

LC-VCO case study. It is also important to acknowledge that 

additional factors, such as chip area, mismatch effects, 

process variations, and temperature dependence, play a 

critical role in analog IC design and can significantly 

influence the final performance. These aspects are 

recommended as key directions for future research to further 

enhance the applicability and comprehensiveness of the 

proposed framework. 
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