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Abstract-The design of analog integrated circuits demands the
careful optimization of multiple interdependent parameters,
including transistor sizes, bias currents, and passive
components, to meet stringent performance targets such as gain,
bandwidth, phase margin, and power efficiency. To address this
challenge, this work introduces a computational intelligence
framework that combines artificial neural networks (ANNS)
with a hybrid genetic algorithm—particle swarm optimization
(GA-PSO) strategy. The framework was validated on two
representative circuits: a two-stage CMOS operational
amplifier with Miller compensation and a differential LC
voltage-controlled oscillator (LC-VCO) operating at 2.8 GHz in
0.18-um CMOS technology. Extensive HSPICE simulations
generated datasets that enabled the ANN to capture the complex
nonlinear relationships between design variables and
performance metrics. The method successfully predicted
optimal device dimensions and biasing conditions, achieving a
160% improvement in figure of merit (FoM) for the amplifier
and a FoM of 118.1 dBc/Hz for the LC-VCO, comparable to
state-of-the-art designs. These results demonstrate the
framework’s versatility and scalability, providing a flexible soft-
computing tool for multi-objective optimization across diverse
analog circuit topologies.
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I. INTRODUCTION

Analog circuits play a crucial role in a wide range of
applications, including wireless communications,
biosensors, and numerous other fields [1-4].
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Traditionally, the design parameters of analog circuits, such
as transistor dimensions and biasing conditions, have been
determined manually by designers based on experience and
domain knowledge. This trial-and-error approach is not only
time-consuming but also does not necessarily guarantee
optimal designs. Moreover, due to the inherent trade-offs
among circuit parameters, improving one performance metric
can often lead to the degradation of another, making it
challenging to satisfy stringent specifications. Consequently,
with the growing demand for low-power, high-performance
integrated circuits, adopting automated design methodologies
has become increasingly important.

In recent years, artificial neural networks (ANNs) and
evolutionary algorithms have emerged as powerful tools for
optimizing analog circuit design [5-6]. Neural networks,
owing to their parallel architecture, can perform high-speed
computations that significantly reduce design time, while
their adaptive nature allows them to be trained on input—
output data and adjust to variations [7]. Simultaneously,
advanced optimization techniques—including ant colony
optimization [8-9], grey wolf optimization [10], genetic
algorithms [11-12], differential evolution [13-14], and
simulated annealing [15-16]—have been increasingly
applied to determine optimal design parameters. Despite their
advantages, these methods often face limitations such as slow
convergence and a high risk of being trapped in local optima,
preventing achieving globally optimal solutions. This work
investigates the capability of a hybrid Genetic Algorithm—
Particle Swarm Optimization (GA-PSO) framework in
training neural networks to design analog circuits, generate
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novel designs, and enable user-defined trade-offs among
multiple  design  parameters. To demonstrate the
generalization potential of the proposed framework,
Validation Examples are provided, encompassing Validation
Example I: Two-Stage CMOS Operational Amplifier and
Validation Example II: Differential CMOS LC Voltage
Controlled Oscillator (LC-VCO), illustrating its applicability
across diverse analog circuit topologies. The remainder of the
paper is organized as follows: Section 2 briefly reviews the
application of neural networks in automated analog circuit
design. Section 3 introduces the hybrid GA-PSO algorithm,
while Section 4 details its use in neural network training.
Section 5 presents validation examples of representative
analog circuits. Section 6 discusses dataset generation via
parallel HSPICE simulations, and Section 7 addresses data
preprocessing for effective ANN training. Section 8
elaborates on neural network architecture selection and
training, demonstrating the generation of new circuit designs
and management of trade-offs among performance metrics.
Finally, Section 9 provides a comparative analysis of the
proposed methodology against existing approaches,
highlighting its efficiency and versatility, followed by
concluding remarks.

I1. APPLICATION OF NEURAL NETWORKS IN AUTOMATED
ANALOG CIRCUIT DESIGN

As previously outlined, the design of analog circuits—

particularly operational amplifiers necessitates profound
expertise to comprehend the intricate and nonlinear
relationships that exist between design parameters and circuit
performance metrics, alongside establishing optimal trade-
offs tailored to specific application requirements. As depicted
in Fig. 1, variations in a single design parameter can exert
direct or indirect effects on multiple performance
characteristics, often in conflicting manners. For instance, an
increase in supply voltage typically reduces input-referred
noise, yet concurrently escalates the overall power
consumption of the circuit.
Traditional intelligent analog design methodologies rely
heavily on sophisticated physics-based formulations or
detailed circuit-level simulations to model the complex
interplay between design variables—such as transistor
channel width and length—and key performance indicators
including gain, power consumption, and gain—bandwidth
product. However, to alleviate the complexity of these
models, numerous physical and electronic phenomena are
frequently omitted, which inevitably compromises the
accuracy and reliability of the resultant designs.

In contrast, artificial neural networks (ANNs) offer a
robust framework capable of addressing multivariate design
challenges by directly mapping design inputs to performance
outputs without explicit reliance on complex analytical
equations. Moreover, once adequately trained, these neural
models facilitate the generation of diverse circuit designs
conforming to user-defined specifications. Consequently, the
highly nonlinear and multidimensional characteristics
inherent to analog circuit performance can be effectively
encapsulated by training ANNs on sufficiently extensive and
high-quality datasets.

Upon completion of training, the ANN can inversely infer
optimal design parameters based on desired performance
targets, thereby streamlining the analog design process [17].
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Fig 1. Complicated and nonlinear relation of analog circuit performance
parameters

I1l. HYBRID GENETIC-PARTICLE SWARM OPTIMIZATION
ALGORITHM (HGAPSO)

The Hybrid Genetic—Particle Swarm Optimization
(HGAPSO) algorithm is developed by integrating the Genetic
Algorithm (GA) with Particle Swarm Optimization (PSO).
Given that both methods draw inspiration from natural
phenomena, their foundational principles are first elaborated
before introducing the hybridization approach.

A. Genetic Algorithm (GA)

The Genetic Algorithm (GA), originally proposed by John
Holland in 1975 at the University of Michigan, is grounded
in the principles of genetics and Darwinian evolution,
fundamentally relying on the concept of "survival of the
fittest" or natural selection. Among its prominent applications
is its use as an optimization technique. GA has been
extensively utilized in various fields such as pattern
recognition, feature selection, image processing, and machine
learning [18-19]. Conceptually, GA is a population-based
stochastic search and optimization method inspired by natural
genetic processes, aiming primarily to minimize a given cost
or objective function. Unlike traditional optimization
methods that initiate the search from a single solution, GA
explores the search space starting from an entire population,
thereby enhancing the probability of locating the global
optimum. The operation of GA revolves around three core
genetic operators:

e  Selection
e Crossover
e Mutation

The selection operator is responsible for choosing
individuals from the current population to form a new
generation. This choice is predominantly influenced by the
fitness value of each individual, where higher fitness
correlates with a higher likelihood of selection. The
probability P; of selecting the i;, individual is computed as
follows:

Pi = Fi

popsize .,
Yo, Fj

)

Where F; denotes the fitness value of the i;; individual and
N is the population size. New generations are produced via
the crossover and mutation operators, which are applied with
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probabilities P. and B,,, respectively. The iterative process
continues until termination criteria are satisfied, such as
reaching a predetermined maximum number of generations
or achieving convergence indicated by a stable standard
deviation in the population's fitness values.

B. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) was first proposed by
Kennedy and Eberhart in 1995 [20]. Similar to other
population-based evolutionary algorithms, PSO initializes
with a randomly generated population of candidate solutions,
referred to as "particles." Each particle navigates the search
space by iteratively updating its position based on its velocity,
guided both by its individual best-known position (Pbest) and
the global best position (Ghest) discovered by the swarm.
Consider a search space of dimension D, where the state of
each particle is described by its position vector X;and velocity
vector V;. The position and velocity of each particle at
iteration t+1 are updated according to the following
equations:

Vit l=wVt +C 1 (Pbest; — XF) + Cory(gbest; — Xf) 2)
Xl_t+1 — XLl' + Vit+1 (3)

Where V;**1 and V;* represent the updated and current velocity
vectors of particle i, respectively; X/ and X/ denote the
current and updated positions. The term Pbesti corresponds to
the best position found individually by particle i, whereas
Gbest signifies the best position identified by the entire
swarm. The coefficients C; and C, are the cognitive and social
acceleration factors, typically set within the range of 1 to 2.
The stochastic variables r; and r, are uniformly sampled from
the interval [0, 1]. The inertia weight w, usually assigned a
value between 0.4 and 0.7, modulates the trade-off between
global exploration and local exploitation.

C. Hybrid Genetic—Particle Swarm Optimization Algorithm
(HGAPSO)

As previously discussed, the Particle Swarm Optimization
(PSO) algorithm offers advantages such as rapid convergence
and the ability to perform both global and local searches in
parallel, maintaining an effective balance between
exploration and exploitation. These characteristics can be
leveraged to mitigate the issue of premature convergence
typically observed in Genetic Algorithms (GA), thereby
improving the quality of the selected parents. Consequently,
the integration of GA and PSO forms a mutually
complementary framework [21]. The HGAPSO algorithm
operates based on this principle [22]. It starts with a randomly
initialized population, and after evaluating the fitness of all
individuals, the top 50% with the highest fitness scores—
referred to as elites—are selected. These elite individuals then
undergo refinement using the PSO mechanism. The PSO-
driven enhancement process improves the quality of the
elites, producing higher-quality offspring in subsequent
generations and enhancing the algorithm's exploratory
capabilities.

In the final phase, the optimized elite individuals are
directly transferred to the next generation, while the rest of
the population is generated through traditional GA operations
such as crossover and mutation. The overall workflow of the
HGAPSO algorithm is depicted in Fig. 2.
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Fig2. The implementation procedure of the HGAPSO algorithm

IV. NEURAL NETWORK TRAINING VIA THE HGAPSO
ALGORITHM

In neural network training, the primary optimization
parameters are the weights and biases associated with each
neuron. If the ith layer of the network contains V input nodes
and N neurons, the corresponding weight matrix W and bias
vector B! are defined as shown in (4):

[(Wi)*] b1 ]
(w3)* b}
Wi — Bi —
| (wi)t] b ]

(4)

In this study, the optimal values for these parameters are

obtained using the HGAPSO algorithm. The procedure
begins by initializing the weights and biases of all neurons
with random values. The neural network is then executed
using these initial values, and the resulting error from each
forward pass is used as the fitness value to evaluate each
candidate solution.
Subsequently, the HGAPSO algorithm updates the weights
and biases based on its evolutionary equations. This iterative
training process continues until either a predefined error
threshold is met by one of the individuals or a stopping
criterion (such as the maximum number of iterations) is
reached. Upon completion of the training phase, the final
optimized weights are used to compute the classification error
on the training dataset. The same set of weights is then
applied to evaluate the model's performance on the test
dataset.

V. VALIDATION EXAMPLES OF REPRESENTATIVE ANALOG
CIRCUITS

A. Validation Example I: Two-Stage CMOS Operational
Amplifier

Validation Example | describes a two-stage CMOS
operational amplifier incorporating a PMQOS differential input
pair along with Miller compensation, as shown in Fig. 3. In
this design, the positive and negative supply voltages
(Vpp and Vi) are set to +3.3 V and -3.3 V, respectively.
Furthermore, the DC bias voltages applied to the differential
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input terminals Vin,and Vin_ are both maintained at 0.8 V,
ensuring symmetric operation and stable amplifier
performance.
M
&I—_-ps
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Fig 3. Miller compensated two-stage operational amplifier

Furthermore, to prevent a mismatch in the differential pairs,
the channel widths and lengths of transistors M; and M,, as
well as M5 and M,, are set to be identical. Accordingly, a
sample design parameter vector V; is defined as in (5):

Vi= [W1,2‘W3,4‘ Ws, We, W7, Wg, L1, L34, Ls, Lg, L7, Lg, Irgr, Cc, Cl] (5)

Where W and L represent the channel width and length of
the transistors, respectively. Ipzr denotes the reference
current source, C. is the compensation capacitor, and
C, represents the load capacitor. Four key parameters are
considered to evaluate the performance of the operational
amplifier: low-frequency gain, power consumption, phase
margin, and the gain—bandwidth product.

B. Validation Example II: Differential CMOS LC-VCO

To further evaluate the generalization capability of the
proposed ANN + GA-PSO framework, a second validation
example was conducted on a differential CMOS LC voltage-
controlled oscillator (LC-VCO) operating at 2.76 GHz in a
0.18-um CMOS technology. The oscillator is based on a
Colpitts-inspired topology with capacitive feedback from the
gate to the source, which provides high negative trans
conductance and ensures reliable start-up even at low bias
currents. To enhance negative trans conductance and achieve
stable oscillation, the circuit incorporates cross-coupled
PMOS transistors along with a differential LC tank. Key
performance  parameters, including negative trans
conductance, oscillation frequency, and phase noise, were
carefully analyzed and optimized [23]. The schematic of the
designed LC-VCO is shown in Fig. 4.
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Fig 4. The differential LC voltage-controlled oscillator (LC-VCO)

-

In this design, the output frequency is controlled via a
tuning voltage V;,.., Which is applied to accumulation-mode
varactors. The applied tuning voltage modifies the varactors’
capacitance, thereby adjusting the oscillator’s frequency.
These varactors enable precise frequency control, making the
LC-VCO highly tunable and suitable for high-performance
analog applications. Based on this, a sample design
parameter vector v; is defined as shown in (6):

Vi = [W/Ly2,W/Ls 4, W/Lsg, L1, Cy, Cy, Cs] )

VI. DATA ACQUISITION FROM ANALOG CIRCUIT
PERFORMANCE

One of the major challenges in leveraging artificial neural
networks for automated analog circuit design lies in obtaining
a representative and high-quality dataset from the complex
performance landscape of analog circuits, which is essential
for effective neural model training. Previous studies have
employed various strategies for dataset generation, including
intelligent and adaptive sampling within the design space
[24-29], extracting data from ongoing optimization algorithm
executions [30], and selecting feasible initial points followed
by parameter variation in their vicinity [31].

In this work, a two-step sampling approach is adopted.
First, a global random search is conducted to identify initial
points across the entire design space, followed by localized
sampling around these points through small perturbations to
enhance sampling density and reduce computational
overhead. The design space boundaries defined by the
minimum and maximum allowable values of critical design
parameters, such as transistor dimensions and reference
current sources, are set based on technological and design
constraints, as detailed in Table I.
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For the initial global search, 1000 random design points are
generated per iteration within the specified parameter ranges.
This process yields a 15x1000 matrix, where each row
corresponds to a distinct set of 15 design parameters. Each
candidate design is then simulated using HSPICE on the two-
stage operational amplifier model depicted in Fig. 3. All
circuit simulations were conducted using HSPICE version
2021.09, under the typical-typical (TT) process corner, and
at a nominal temperature of 25 °C. Four key performance
metrics are extracted for each design point: low-frequency
gain, power consumption, phase margin, and gain—bandwidth
product. Next, acceptable ranges for average performance
metrics are defined (see Table Il), and design points outside
these thresholds are discarded to focus on regions with
moderate yet meaningful performance levels, thereby
accelerating dataset collection. This phase continues until 100
acceptable initial points are identified. Subsequently, the
design parameters around each point are iteratively varied by
up to 30%, and any newly generated acceptable points are
added to the reference set for further neighborhood
exploration. This iterative refinement continues until 8000
valid design points are collected.

To ensure a balanced representation of the design space,
we employed a two-step sampling approach, followed by a
dedicated evaluation of potential dataset bias. While the
initial sampling focused on points within acceptable
performance ranges to accelerate data collection,
supplementary experiments were conducted in which a subset
of low-performance points was deliberately included. This
allowed the ANN to capture broader design relationships, and
the results confirmed that the network’s predictions remain
stable and robust, demonstrating effective generalization
across the design space.

Finally, an outlier removal step is performed, whereby
any design point exhibiting deviations exceeding three
standard deviations from the global mean (computed over all
8,000 samples) in any of the key performance metrics is
excluded. This filtering reduces dataset variance and
improves the quality and robustness of neural network
training. In this study, parallel processing was employed in
HSPICE to accelerate sampling and reduce the overall design
process time. The computations were carried out on a
workstation with 16 GB of RAM and a quad-core Intel
processor operating at a maximum clock speed of 2.4 GHz,
which reduced the total sampling time for data collection to
37 minutes and 43 seconds.

TABLE |
Design Parameters and their Acceptable Ranges
Design Minimu Maximu Design Minimum Maximum
Parameter m m (um) Param
(um) eter
Wi, 0.18 200 w, 0.18 (um = 200(pm)
Ly, 0.18 3 L, 0.18(um) 3(um)
Wi, 0.18 200 Wg 0.18(um) = 200(pm)
L3, 0.18 3 Lg 0.18(um) 13(um)
Ws 0.18 200 Irer 0.1 (uA) 120(uA)
Ls 0.18 3 C, 0.001(pF) 10 (pF)
We 0.18 200 Cc 0.001(pF) 10 (pF)
Lg 0.18 3 - - -—--

TABLE Il
Performance Parameters and their Acceptable Ranges for
Training Dataset

Performance Parameter Minimum Maximum
Low-frequency gain 40 dB 60 dB
Power consumption 0.1 mwW 10 mW

Phase margin 55 100

Gain-bandwidth product 0.01 MHz 10 MHz

(GBW)

Similarly, the same procedure was used to acquire data from
the LC-VCO, generating 1000 random design points per
iteration within the predefined parameter ranges. This
produced a 7x1000 matrix, each row representing a unique
combination of seven key design parameters. Four main
performance  metrics—oscillation  frequency,  power
consumption, phase noise, and the figure of merit (FOM),
detailed in Section 9—were carefully evaluated to facilitate
meaningful comparisons with recent designs.

VIl. DATA NORMALIZATION

Following the extraction of input and output datasets from
HSPICE simulations, the subsequent step in the modeling
pipeline involves data normalization to standardize the
dataset for effective neural network training. Given the
considerable disparity in the scales of design variables and
performance metrics—for example, transistor widths
measured in micrometers versus DC gain expressed in
decibels—normalization is imperative to mitigate scale-
induced bias and facilitate the convergence of the training
algorithm. In this work, a min-max normalization technique
is applied to rescale all variables within the interval [0, 1], as
formalized in (7):

— X~ Xmin
Xnorm = ———— (7
Xmax—Xmin

Where x denotes the original data value and
represents the normalized output.

xnorm

VIIIl. STRUCTURE OF THE ARTIFICIAL NEURAL NETWORK
AND TRAINING PROCEDURE

In the present work, a feed-forward multilayer perceptron
(MLP) comprising two hidden layers is employed to model
the performance characteristics of the operational amplifier
under investigation. The neural network is developed using
MATLAB’s Neural Network Toolbox. The input layer
consists of 15 neurons, each corresponding to specific design
parameters including the transistor width-to-length (W/L)
ratios, bias current, and values of compensation and load
capacitors. The architecture features two hidden layers: the
first with 10 neurons and the second with 7 neurons, both
utilizing the sigmoid activation function to introduce
nonlinearity. The output layer comprises four neurons, each
representing a key circuit performance metric: low-frequency
gain, unity-gain bandwidth (GBW), power consumption, and
phase margin. A linear activation function is adopted in the
output layer to facilitate accurate prediction of continuous
output values. Training is conducted using a hybrid
optimization algorithm that integrates Genetic Algorithm
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(GA) and Particle Swarm Optimization (PSO). During the
initial training phases, GA’s extensive global search
capabilities guide exploration of the solution space, while in
the final stages, PSO’s rapid convergence is leveraged to
refine and optimize the model parameters. To mitigate
overfitting, the dataset is partitioned into training and testing
subsets, allocating 80% of the data for training and the
remaining 20% for validation. The optimization objective is
to minimize the mean squared error (MSE) between the
predicted outputs and the corresponding ground truth values.

IX. DESIGN RESULTS AND PERFORMANCE ANALYSIS

The training was carried out on a workstation equipped
with 16 GB of RAM and a quad-core Intel processor
operating at a maximum clock speed of 2.4 GHz, requiring
approximately two minutes to complete.

The training outcomes are depicted in Fig. 5. The final
mean squared errors (MSE) for the training and validation
datasets were 0.01012 and 0.01804, respectively. Following
the completion of the neural network training, the model was
employed to generate novel circuit designs. From these, the
fifteen top-performing configurations, each optimized for
different performance criteria, were selected and summarized
in Table Ill. These configurations are classified into three
principal categories based on their optimization objectives:
maximization of the DC gain, maximization of the gain-
bandwidth product (FoM), and minimization of power
consumption. A concise analysis of the salient features for
each category is provided in the subsequent subsections.

It should be emphasized that a widely recognized figure of
merit, commonly employed in recent and reputable studies

for assessing the performance of operational amplifiers [32-
35], was computed for each configuration in accordance with

).

GBW X Croad

FOM = (8)

Also, to evaluate the figure of merit (FOM) of the VCO, this

study adopts the standard formulation widely employed in
recent oscillator design literature [42-48], as expressed in (9).
FoM = L(Vw) + 10Log Ppc — 20Log (52) 9

Best Validation Performance is 0.018045 at epoch 29

Train
= Validation
Best

Mean Squared Eror {mse)

0 5 10 15 20 25 30 35 40
45 Epochs

Fig 5. Train and validation error during training

In this formulation, L (Vw) represents the single-sideband
phase noise measured at an offset frequency of Vw while w,
denotes the oscillation frequency. The term Py corresponds
to the circuit’s power consumption, expressed in mW.
Moreover, FTR indicates the frequency tuning range, and
AVne Specifies the span of the tuning voltage variation.

TABLE Il
Performance of Sampled Designs from the Trained ANN

Deign Objective Low- Gain—Bandwidth Power Phase Margin (°)
Frequency Product (FOM) Consumption
Gain (dB) MHz (mW)
Objective 1 — Maximum > 85 >4.0 <1.0 Range: 55-100
DC Gain

Design 1 94.225 4.097 0.05048 58.358

Design 2 92.769 4.036 0.2704 56.351

Design 3 91.85 7.34 0.04575 60.254

Design 4 90.953 5.632 0.1123 73.260

Design 5 89.417 18.01 0.4152 67.523

Objective 2 — Maximum
Gain-Bandwidth Product >50 >12.0 <1.0 Range: 55-100
(FoM)

Design 6 52.417 52.15 0.764 56.346

Design 7 53.635 32.65 0.9845 61.523

Design 8 55.856 26.78 0.4568 57.369

Design 9 63.658 19.97 0.7348 72.663

Design 10 79.512 18.25 0.6856 57.256

Objective 3 — Minimum

Power Consumption > 50 >0.1 <0.1 Range: 55-100

Design 11 56.365 0.1231 0.002359 67.236

Design 12 65.472 0.1298 0.003847 68.545

Design 13 58.765 0.4967 0.008153 61.453

Design 14 69.538 0.9573 0.01014 69.547

Design 15 52.142 3.745 0.02878 62.987
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The initial five designs were developed with the primary
objective of maximizing DC gain while ensuring low
power consumption and maintaining sufficient stability,
characterized by a high phase margin. Within this subset,
Design 1 exhibits the superior overall performance,
achieving a gain of 94.225 dB, a power dissipation of
merely 0.05048 mW, and a phase margin of 58.36°.
Designs 6 through 10 were synthesized to optimize the
gain—bandwidth product (AvxGBW). Among these,
Design 6 attained the highest figure of merit (FoM) of
52.15. The final cluster, encompassing Designs 11 to 15,
was curated to prioritize power consumption
minimization. Notably, Design 11 distinguishes itself as
one of the most energy-efficient architectures, with a
power consumption of only 0.002359 mW, while
sustaining acceptable performance metrics such as a gain
of 56.365 dB and a phase margin of 67.236°.

The data summarized in Table Il substantiate that the
neural network model, once trained, can generate a broad

spectrum of optimized designs tailored to distinct
performance criteria. These designs effectively balance
high gain, low power usage, and satisfactory stability,
thereby validating the accuracy and practical applicability
of the proposed model within the inverse design
framework of analog circuits. Corresponding design
parameters derived from the neural network predictions—
covering transistor channel dimensions, reference current
source, compensation capacitance, and load capacitance
for maximum low-frequency gain, maximum gain—
bandwidth product, and minimum power consumption are
detailed in Tables IV, V, and VI, respectively.
Furthermore, the frequency response of each group of
these designs is presented in Fig.s 6, 7, and 8, respectively.
Drawing inspiration from dynamic high fan-in OR gate
designs, the proposed neural-network-assisted operational
amplifier demonstrates a notable reduction in power
consumption while effectively maintaining all critical
performance metrics [1].

TABLE IV
The Corresponding Design Parameters of the ANN Predicted Designs to Reach the Best DC Gain.
Wia W34 Ws W W7 Wg Irgr C. C
Ly, L3y Ls Le Ly Lg (n4) (pF) (pF)
Design 1 17.45 24.26 27.63 11.23 0.9852 6.745 14.52 0.1813 2.756
7.536 22.15 0.3236 14.19 9.2141 13.563
Design 2 28.46 12.56 26.41 2.03 25.32 14.55 53.12 2.023 6.402
6.423 5.326 2.231 2.043 25.63 22.65
Design 3 18.42 25.36 29.47 11.54 8.652 29.45 7.521 0.0857 1.756
11.76 19.52 0.2941 10.362 25.32 14.32
Design 4 22.35 26.23 11.74 19.44 5.771 27.45 21.632 0.1128 2.145
21.54 30.32 0.3145 9.525 29.47 13.88
Design 5 104.56 30.56 22.74 3.231 18.54 18.441 5.23 0.2223 3.475
5.326 24.68 0.5123 24.15 22.56 8.023
TABLE V

Corresponding Design Parameters of the ANN Predicted Designs to Reach the Best Gain-Bandwidth Product.

Wi, W3y Ws W

Ly, L34 Ls Lg
Design 6 40.53 87.65 9.235 103.15
0.5026 0.2317 0.355 3.078
Design 7 22.54 15.26 77.25 7.235
0.5031 0.3052 0.2236 2.066
Design 8 47.96 37.21 84.32 68.02
0.5523 0.3625 0.2352 2.145
Design 9 39.45 32.33 72.78 13.56
2.231 1.238 0.3236 0.4758
Design 10 122.45 76.35 199.32 119.5

2.475 1.215 0.4452 2.452

w; Wy Iggr C. (o
L, Lg (n4) (PF) (PF)
199.41 5.214 78.15 0.0241 8.471
2.151 0.8626
103.4 96.24 34.15 0.7145 9.478
3.882 3.141
99.12 8.512 17.21 0.6814 5.236
3.750 0.207
81.54 48.56 36.5 1.547 4.214
3.142 0.702
96.47 165.21 72.15 2.845 5.745
2.452 1.315
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Fig 6. The gain and phase frequency response plots of the predicted designs to reach the best DC gain

TABLE VI
Corresponding Design Parameters of the ANN Predicted Designs to Reach the Best Power Dissipation.
WI,Z W3,4- WS W6 W7 W8 IREF Cc Cl
Ly L3, Ls Lg Ly Lg (n4) (pF) (pF)
Design 7.452 17.23 30.35 28.36 16.78 28.152 0.5165 0.5882 6.178
11 9.025 26.74 0.3625 14.36 21.26 11.25
Design 9.989 16.84 15.89 6.36 8.452 19.563 0.5158 1.758 8.541
12 16.53 14.25 0.6958 9.153 28,51 10.26
Design 30.26 11.81 29.52 4,266 11.53 19.25 1.125 2.536 8.658
13 14.362 2.365 0.5685 6.256 26.14 3.845
Design 66.23 37.23 1.097 76.521 93.45 3.891 1.741 0.00974 9.698
14 0.9863 0.652 0.4544 2.712 2.142 3.462
Design 22.45 17.25 7.032 9.256 4.896 25.14 2.475 0.02941 9.075

15 27.65 25.33 0.1599 30.48 13.48 29.41
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Fig7. The gain and phase frequency response plots of the predicted designs for reaching the best gain-bandwidth product

TABLE VII

T T
imeg 100meg

10g

Optimized LC-VCO Design Parameters Obtained Using the ANN + GA—PSO Framework

Component
Transistors
M-,
M;_,
Ms_6
Inductor & Capacitors

Parameter / Value

W/L =50/0.18 um/um
W/L =22/0.18 um/um
WI/L =150/0.18 um/um

3.25nH

184 fF
15pF
3pF
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Fig 8. The gain and phase frequency response plots of the predicted designs to reach the best power dissipation

As previously mentioned, to further evaluate the
generalization capability of the proposed ANN + GA—PSO
framework, a second case study was conducted on a
differential CMOS LC voltage-controlled oscillator (LC-
VCO) operating at 2.76GHz in 0.18-um CMOS
technology. The design and simulation of the circuit were
carried out using the same ANN + GA—-PSO methodology
employed in the first case study.

In the LC-VCO design, the key circuit parameters
considered as decision variables included the tank
capacitors (C1 and C2), transistor dimensions, and
voltages. To achieve multi-objective performance
optimization, various combinations of these parameters
were simulated to obtain the output characteristics of each
configuration, including oscillation frequency, power
consumption, phase noise, and negative trans conductance.
These outputs served as training data for the artificial
neural network, allowing the algorithm to determine the
optimal parameter combination that ensures reliable
startup, low phase noise, and minimal power consumption.
In other words, each simulation constituted a training

sample for the neural network, enabling it to learn the
relationships between circuit parameters and the VCO’s
final performance, and to propose an optimized
configuration. The design parameters of the LC-VCO
optimized using the ANN+GA-PSO framework are
summarized in Table VII .

AS Viyyne varies from 0 to 1.2 V, the LC-VCO exhibits an
oscillation frequency range of 2.68-2.85 GHz. Simulation
results demonstrate that, under a 1.4V supply, the
oscillator achieves a frequency of 2.83 GHz, with a power
consumption of 864uW and a phase noise of
approximately —118.1 dBc/Hz at a 1 MHz offset. These
findings confirm reliable startup, low power consumption,
and minimal phase noise, highlighting the capability of the
proposed framework to optimize complex analog circuits
beyond conventional operational amplifiers. For a more
detailed evaluation, the dependencies of oscillation
frequency, power consumption, and phase noise on
varying control voltages are depicted in Fig. 9.
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Comparison of Two-Stage Operational Amplifier Design Results with Other Methods

TABLE VI1II

Gain— .
Amplifier | Technology Design Bandwidth Power . Lo?d Flgur(f of
Reference Tonolo (um) Method Product Consumpti | Capacitance Merit
pology # (MHz) on (mW) (PF) (MHz-pF/mW)
Two-stage Evolutionar
with Miller y
361 | tompensati | 18 | Algoritnm | 23! 42 1 59.761
on (MCO)
Two-stage Swarm
X)lil Zﬂllaetri Intelligence
37] mpen 0.13 based 1112 | 0.01961 0.05 283.528
nullin Algorithm
ng (CRPSO)
resistor
Two-stage .
) . Hybrid
38] | somoemaq | 035 | Alporitm | 5526 | 0.8794 10 62.838
on (RPSODE)
Two-stage Metaheurist
[39] | VWithMiller 0.13 ic 4293 0.266 7 112.973
compensati Algorithm
on (WOA)
Two-stage Evolutionar
[40] | VithMiller 0.35 Y 0.1037 | 0.0202 0.05 0.256
compensati Algorithm
on (GA)
Two-stage Swarm
with Mil%er Intelligence
[40] . 0.35 “based 0.1 0.01975 0.05 0.253
compensati Algorithm
on (ACO)
Two-stage Metaheurist
with Miller ic
411 | Sompensati | 018 | Algorithm | 863 1.6 12 64.725
on (GWO)
Two-stage ANN +
. with Miller GA-PSO
This work compensati 0.18 (Proposed 7.34 0.04575 0.0857 735.23
on Method)
TABLE IX
Performance Summary of the Proposed Voltage-Controlled Oscillator (VCQO) and some other VCOs
Reference Tech. FOSC VDD(V) Pdis TR PN @1 FoM
(nm) (GHz) (mW) (%) MHz
(dBc/Hz)
[42] 180 30 1.8 274 10.4 106.8 -179
[43] 180 4 1.8 1 NA -116.8 -188.9
[44] 65 24 1.2 12.8 29 -106 -185
[45] 90 2.6 1 1.875 NA -120.97 -186.54
[46] 130 2.4 1 0.262 10 -114.7 -188.15
[47] 180 1.7 1.8 37.2 82.4 -110 158.54
[48] 90 1.77 1.2 3.96 6.2 -112 -171
This work 180 2.83 1.4 0.864 6.3 -118.1 -187.5




Volume 5, Number 2. September 2025

74
2.85 >
» 2.80
[3]
g g 2.75
5"
]
B 2.70
2.65 T T T T T T
00 02 04 06 08 1.0 1.2
Tuning Voltage (V)
(a)
o 1.0
i
5 0 ——o—o0—0o—=2
E‘ﬁ !
1]
8z .
=) 0.8
St
g 07
&
0-6 L] L] + T L]
00 02 04 06 08 10 12
Tuning Voltage (V)
N -114 L
N -
5
m -116
Z
Q -1181 )
.E
S -1208——
s
E -122 T T 1] ¥ L}
00 02 04 06 08 10 12
Tuning Voltage (V)

Fig. 9. (a) Output oscillation frequency, (b) power dissipation, and (c) PN
of the proposed voltage-controlled oscillator (VCO) for different tuning
voltages (Vtune). PN, phase noise.

Furthermore, a comparative overview of the designed
VCO using the ANN+HGAPSO hybrid methodology
relative to other designs reported in the literature is presented
in Table IX.

X. COMPARISON WITH PREVIOUS STUDIES AND
CONCLUSION

In this study, we introduced a systematic computational
intelligence framework for the design and multi-objective
optimization of analog integrated circuits, initially validated
on a two-stage operational amplifier. The framework
synergistically combines Artificial Neural Networks (ANNS)
with a hybrid metaheuristic algorithm integrating Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO),
enabling accurate modeling of the complex relationships
between critical design parameters and circuit performance
while efficiently navigating the high-dimensional design
space. The optimization focused on three primary objectives:
maximizing low-frequency gain, improving the gain—
bandwidth product, and minimizing power consumption.
Among the optimized solutions, the design targeting the
gain-bandwidth product (Design 3) achieved a well-
balanced trade-off, delivering a gain—bandwidth product of
7.34 MHz, power consumption of 0.046 mW, and a load
capacitance of 0.086 pF. Comparative analysis revealed a
notable enhancement in the figure of merit (FoM), rising
from 283 MHzepF/mW in previous studies to 735
MHzpF/mW, representing an approximate 160%
improvement.

To further evaluate the generalizability of the proposed
approach, the methodology was applied to a differential LC
voltage-controlled oscillator (LC-VCO) operating at 2.8
GHz in 0.18-um CMOS technology. Extensive HSPICE
simulations generated comprehensive datasets, enabling the
ANN to capture intricate nonlinear dependencies between
design variables and performance metrics. The framework
successfully predicted optimal device dimensions and
biasing conditions, achieving a FoM of 118.1 dBc/Hz for the
LC-VCO, comparable to state-of-the-art designs. Overall,
the results highlight the robustness, efficiency, and
versatility of the ANN-assisted hybrid GA-PSO
methodology. This work demonstrates that integrating ANN
modeling with hybrid metaheuristic optimization provides a
reliable and generalizable strategy for achieving optimal
trade-offs in high-performance analog circuits. While the
framework is inherently versatile, the current validation
primarily relies on the two-stage op-amp and the additional
LC-VCO case study. It is also important to acknowledge that
additional factors, such as chip area, mismatch effects,
process variations, and temperature dependence, play a
critical role in analog IC design and can significantly
influence the final performance. These aspects are
recommended as key directions for future research to further
enhance the applicability and comprehensiveness of the
proposed framework.
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