
 

 

Abstract - Frequency response analysis (FRA) has become a 

worldwide accepted technique for detecting winding and core 

deformation in transformers. The main weakness of this 

technique is its reliance on the level of expertise and experience 

of personnel and the lack of standards and automatic codes. It is 

necessary to create reliable FRA interpretation codes for the 

high-frequency transformer model that can implement the 

frequency characteristics of real transformers in a wide 

frequency range. This paper presents an artificial intelligence 

method to estimate these parameters from the FRA diagram of 

the transformer. In the proposed method, a three-step 

optimization algorithm is implemented on the real data of a 33 

kV disc winding to find the intensity and occurrence location of 

faults. At first, the frequency response amplitude signal is 

decomposed into oscillating modes using successive variational 

mode decomposition (SVMD), the output of which is much less 

complicated than the original signal. The frequency response of 

the modeled circuit decomposition is also obtained in the next 

stage and in the optimization process, whose decision variables 

are the RLC values of the detailed (lumped) model of the 

transformer. Based on the ability to hunt sharks in nature, the 

new meta-heuristic algorithm of shark smell optimization (SSO) 

will search for the optimal solution by minimizing the error 

between the actual and modeled winding frequency response. 

This process is implemented gradually, with the addition of each 

oscillatory mode in each stage. The accuracy of the proposed 
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method is evaluated with the data of the tests performed on a 33 

kV high voltage disc winding to estimate the parameters of their 

high frequency electrical equivalent circuit in normal and fault 

conditions. The results show that the proposed method can 

estimate the parameters of the equivalent circuit with high 

accuracy and help to interpret the FRA diagram based on the 

numerical changes of these parameters. 

 
Index Terms - Transformer, Frequency Response Analysis, 

High Frequency Model, Parameters Estimation, Optimization 

Algorithm  

I.  INTRODUCTION 

ransformers are considered the heart of the electrical 

power system and, therefore, should be carefully 

monitored to improve system reliability and service 

continuity. Thus, different diagnostic methods have been 

established to detect faults within transformers [1]. The 

dissolved gas analysis (DGA), partial discharge (PD) 

measurement, thermal analysis (TA), and transformer 

function assessment are the main diagnostic methods 

introduced in literature [2]-[4].
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Among these diagnostic methods, the frequency response 

analysis (FRA) method has recently been developed and is 

known to researchers. Therefore, determining faults' location 

and intensity in the transformer winding has a valuable role 

in improving future designs and their correction [5], [6]. 

Recently, several researchers have tried to develop and 

improve the FRA interpretation process by using new fault 

detection methods [7]-[10]. The statistical indices are based 

on the degree of compatibility or lack of compatibility 

between two sets of fault measurements and the healthy 

condition of the transformer. Such calculations lead to 

accurate, objective, and transparent parameters and can also 

be included in an automatic detection method. The main 

challenge related to the FRA method is the lack of a 

systematic and universally accepted interpretation method for 

test results [11]. A statistical approach can be a helpful tool 

to overcome this problem. Many research efforts have tried 

to use different methods and statistical indices to help the 

process of FRA interpretation [12]. The indices that are 

usually used are: correlation coefficient, spectrum deviation, 

and maximum absolute difference of standard deviation, 

absolute sum of logarithmic error, mean square error, 

absolute difference, error of ratio of sum of squares, weighted 

normal difference, T test, and F test [13]-[15]. However, there 

is no comprehensive comparison study to assess the 

sensitivity of these numerical indices against different faults 

in different frequency bands. Consequently, if it is intended 

to use a numerical index to interpret FRA signatures, it is 

unknown which one is appropriate. 

Previous research in the field of FRA usually has 

simplifications such as the approximation of the high-

frequency equivalent circuit, reducing the number of 

frequency points, etc., which reduces the accuracy of 

calculations and does not show the exact location of the fault 

and its intensity. In this paper, a three-step optimization 

algorithm is implemented on the real data of a 33 kV high 

voltage disc winding to find the intensity and occurrence 

location of faults in transformers. 

This paper is organized in the following manner. The 

parameters optimization methods and the proposed method 

are discussed in Section II. In section III, to verify the validity 

of the proposed method, the main idea of this paper has been 

implemented on a real disk-type high voltage winding 

sample. The obtained numerical results have been examined 

and analyzed to determine the location and intensity of the 

fault in the winding. In section IV, the conclusions and 

benefits of this paper are discussed, and at the end, the 

suggested methods for conducting future research are 

presented. 

II.  PARAMETERS OPTIMIZATION METHODS AND 

THE PROPOSED METHOD 

In this section, the tools and steps of forming the proposed 

algorithm are examined. The main goal is to develop an 

algorithm to detect all types of faults on the windings of 

transformers using the FRA technique. By using the proposed 

method, it is possible to obtain the electrical parameters of the 

lumped model of the transformer, which itself represents the 

physical changes in the windings of the transformer. By 

comparing the parameters obtained in the state when the 

transformer is healthy with the state after damage has 

occurred on the winding of the transformer, it is easy to 

determine the defective part and the intensity of the defect 

with a very accurate approximation, which will reduce the 

amount of costs and the duration of the repair. It greatly 

reduces the defect for the transformer manufacturer and 

operating companies. 

First, the equations and parameters of the lumped model 

of the transformer are explained. Since the FRA signal is 

highly non-linear, this issue will result in the over-complexity 

of the optimization problem and the possibility of its non-

convergence. Therefore, this paper uses the new successive 

variational mode decomposition method to analyze the signal 

into the oscillatory modes used. In practice, oscillatory modes 

obtain much more well-behaved signals. Therefore, it leads 

to the possibility of faster convergence of the optimization 

problem to find the parameters of the lumped model. In the 

next section, the meta-heuristic SSO algorithm is described 

as an algorithm based on the ability of the shark as a top 

predator in nature to find prey, which is inspired by the 

shark's sense of smell and its movement towards the odor 

source. This method has been used to obtain the parameters 

of the lumped model of the transformer by minimizing the 

amount of error. Finally, the proposed algorithm, which is a 

combination of the mentioned selected methods, is described 

in this paper. 

A.  Choosing a suitable transformer winding model 

An equivalent electrical model is necessary to analyze the 

transient and permanent behavior of electrical equipment, 

including transformers. At high frequencies, the behavior of 

the winding is very complex, which is why its modeling is also 

complicated. The lumped model is the best model for checking 

the changes in the physical structure and insulation of the 

winding and calculating the voltage at its different points [16]. 

For modeling, it is assumed that the winding consists of 

several parts. For each section, we include an RLC circuit 

model to model the electrical and physical characteristics of 

that section. In this paper, each section contains a disk. Fig. 1 

shows the lumped electrical model of a disk winding 

equivalent. 

 

 
Fig. 1. Transformer disc winding and the model of each disc 

modeling based on self and mutual inductances. 
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TABEL I 

Definition of Equivalent Circuit Elements 
 

Li Inductance of each winding section 

Ri Ohmic resistance of each winding section 

Mij 
Mutual inductance between the i-th and j-th parts of the 

winding 

Ci Capacitance of each winding section 

Cg 
Capacitance between each section of the winding and the 

ground or the adjacent winding 

Rs Ohmic resistance of the insulation of each winding section 

Rg 
Ohmic resistance of the insulation between each section of 

the winding and the ground or the adjacent winding 

RE Impedance between the end of the winding and the ground 

 

To model the high frequency of the transformer winding, we 

use the circuit equivalent to Fig. 2. The elements shown in this 

figure are defined in Table I. 

By increasing the number of coil sections, the frequency 

validity limit of its model rises. Because all the parameters 

depend on the frequency, the model calculations are done in 

the frequency domain. In this way, the input and output 

currents of each section and the voltages of all sections are 

obtained. 

B.  Calculation of model parameters 

To solve the circuit of the above model, its parameters must 

be calculated with the help of mathematical relations, which 

requires physical information about the winding and 

insulation properties of the transformer. These parameters are 

detailed in references [18]-[20]. After introducing the high-

frequency model of the transformer winding and calculating 

its parameters, we must solve this model as a circuit to obtain 

the current and voltage at different winding points. 

 

 
Fig. 2. Lumped model of transformer winding [17]. 

In this way, we can obtain the transfer function of the 

transformer between any two arbitrary points. The 

mathematical description of the model in the frequency 

domain is usually presented as a matrix of nodal equations 

using Kirchhoff's first and second laws [18]. In this way, the 

voltage of all the nodes and the current of all the circuit 

branches, which are frequency functions, are calculated. The 

transfer function is obtained by having currents and voltages 

at different frequencies. 

 

C.  Successive Variational Mode Decomposition (SVMD) 

technique 

Variable Mode Decomposition (VMD) is a powerful 

technique for simultaneously decomposing a signal into its 

constituent intrinsic modes. However, one of the 

disadvantages of this technique is that it does not accurately 

determine the number of modes in the signal. In this section, 

we use a new method called Successive Variational Mode 

Decomposition [21], which extracts modes sequentially and 

does not need to know the number of modes. It is also more 

stable against the initial values of the central frequencies of the 

modes. The method called variable mode extraction (VME) 

[22] extracts Intrinsic Mode Functions (IMFs) by knowing 

their approximate center frequency. In this paper, the extended 

VME, which is an efficient and fast adaptive method for 

variable signal decomposition, is used. This new 

decomposition method sequentially extracts all IMFs (unlike 

VMD, where the modes are extracted simultaneously). This 

sequential approach leads to a method without the need to 

know the number of modes and with less computational 

complexity compared to VMD.  In the SVMD method, 

decomposition is performed by successively applying VME to 

the signal, and some restrictions are added to the previously 

extracted modes to prevent convergence. This method 

continues until all modes are extracted or the reconstruction 

error (the error between the input signal and the sum of the 

modes) is less than a threshold. 

In other words, suppose L-1 modes have been found, and 

you want to determine the next mode. To this end, an 

optimization problem is solved to find the signal with the 

maximum compressed spectrum (i.e., the Lth mode) that 

minimizes the reconstruction error when added to the sum of 

the extracted modes. 

D.  The innovative shark smell optimization (SSO) algorithm 

In this paper, a new meta-heuristic optimization method 

inspired by the shark hunting ability based on its sense of smell 

is used, which is called SSO optimization. In this method, 

different shark behaviors in the search environment, i.e., 

seawater, are mathematically modeled in the proposed 

optimization approach [23]. 

Like other meta-heuristic optimization methods, SSO has 

several user-defined parameters, including the population size 

NP and the number of steps kmax. These parameters can be set 

separately for each optimization problem. The algorithm can 

be highly exploratory with large steps in the early stages of 

evolution and small steps in the last stages (when the 

algorithm approaches the optimal solution) to benefit from 

high-resolution search around the optimal solution. After 

setting parameters, population, and step counter, SSO is 

initialized. Then the population evolves through forward 

motion and rotational motion operators. Finally, the best 

person is selected as the SSO solution for the optimization 

problem in the last step. The proposed SSO search operators, 

including gradient-based forward motion and rotational 

motion-based local search, are specific to this algorithm and 

are not presented in other meta-heuristic methods. 

E.  Algorithm of the proposed model 

Fig. 3 shows the algorithm flowchart of the proposed method 

to obtain the electrical parameters of the lumped model and 

to find the location and intensity of the fault. 
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Fig. 3. Algorithm of the proposed method. 

 E.1.  Initial estimation of lumped network parameters 

In the proposed algorithm, to perform better in SSO 
optimization (faster convergence rate) and to limit the range 
of RLC value changes of the winding lumped network, first, 
the parameters are estimated using empirical relationships, 
which are described in reference [18]-[20]. These 
relationships mainly depend on the physical characteristics of 
the winding that were measured during the FRA test. 

E.2. Optimizing SSO, Objective Function calculation 

process, and using SVMD 

In the proposed algorithm, SSO optimization is used, which is 

a mathematical model of sharks' movements and behavior in 

the sea and their hunting environment. This mathematical 

model is introduced as an optimization method. Looking at the 

results presented in reference [23], we find that the efficiency 

and effectiveness of this model for solving real optimization 

problems are very favorable compared to other meta-heuristic 

methods. 

Looking at the frequency response obtained from the results 

of the FRA (healthy winding) test, the complexity of the signal 

shows itself with extreme min and max peaks, which are 

especially observed at high frequencies. Therefore, we expect 

the optimization algorithm to reach the desired result with a 

very large population and many repetitions, which is not 

desirable from the practical point of view of the fault detection 

program. The reason for this issue is the hardware limitation, 

while the goal is for the common hardware to be able to detect 

the fault in an acceptable period of time. To deal with this 

issue, the SVMD tool is used, which converts the input signal 

into several IMF oscillation modes with a limited bandwidth. 

This transformation identifies important frequencies (center 

frequencies) with the most frequency content around a limited 

frequency band and filters the rest of the signal. The great 

advantage of this transformation is its insensitivity to noise, 

which shows the superiority of the proposed method. This is 

because the original signal also contains a high amount of 

noise due to the nature of the FRA test and faults of unknown 

origin. Also, using SVMD, another unknown parameter, the 

number of oscillatory modes, is reduced, which also helps 

reduce the proposed algorithm's analysis time. 

Fig. 5 shows the oscillation modes extracted by SVMD from 
the frequency response of the tested winding. 

 
Fig. 4.  Frequency response of healthy winding (obtained by FRA test). 

 

 
Fig. 5. Extracted oscillatory modes. 

 

As it is known, the number of oscillation modes by the SVMD 

algorithm is 3. Considering the stability of this number of 

modes for the tested winding to perform better, the proposed 

algorithm is designed in three steps. It should be noted that if 

it is possible for other test windings, the number of oscillation 

modes extracted by SVMD may increase for any reason. In 

this case, without losing the generality of the proposed 

algorithm, only the number of steps will increase to the 

number of oscillatory modes. 

As can be seen in Fig. 5, IMF signals behave much better than 

the original signal. Therefore, instead of calculating the error 

of the lumped reconstructed model in each step of the 

optimization process with the original FRA signal, its error is 

calculated in the first step with oscillatory mode number 1 

(which contains the most frequency content). As shown in 

section II-D, the sum of IMFs reconstructs the original signal. 

In the second and third stages, we add the second and third 
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oscillatory modes to the first mode, respectively, to achieve 

the best possible solutions in the last stage. 

In the signal analysis process, the extracted center frequencies 

are sorted and form IMFs from low to high frequency. 

Therefore, the algorithm is such that first, the main frequency 

response error is calculated with the first oscillation mode. 

Each oscillation mode represents a group of effective RLC 

parameters, so we expect to get better answers at each stage, 

which are shown in Section III. The important point is that, as 

shown in the flowchart of the proposed algorithm in Fig. 5, the 

optimal response of each stage goes to the next stage as the 

initial population. This process continues until the final (third) 

stage, when the final optimal answer is obtained: the RLC 

values of the described model. It should be noted that the 

included error is the root mean square of the RMSE error. 

For simplicity, the error function of each stage is summarized 

in Table II. 
TABLE II 

Error Functions of Each Step 
 

Error function Step 

RMSE ( FR , IMF(1) ) First 

RMSE ( FR , ( IMF(1)+IMF(2) ) Second 

RMSE ( FR , (IMF(1)+ IMF(2) + IMF(3) ) ) Third 
 

The mentioned steps are performed first for the FRA of the 
healthy winding and then for the winding with axial fault in 
two degrees, weak and severe, and then the values are 
compared. In this way, by analyzing the results, you can find 
out the location of the fault and its intensity. Another item in 
the proposed algorithm is the pre-calculation section of the 
lumped model transfer function before the optimization 
process. One of the most important challenges of using the 
lumped model of the transformer is the huge amount of time 
required to perform the related calculations. To deal with this 
issue in this paper, all calculations are done in matrix form 
using MATLAB software. Based on the state equations of the 
expanded circuit given in section II-B, due to the existence of 
the inverse operator, solving this problem becomes an ill-
posed problem from a mathematical point of view, which is 
the reason why the calculations are time-consuming. 
Therefore, in this paper, to solve this problem, the transfer 
function is calculated as a function of RLC values using the 
Toolbox Symbolic Math Guide, and the optimization 
algorithm is only called in each iteration. The output of the 
model obtained using the mentioned method is the transfer 
function of the lumped model of the transformer, whose 
parameters are RLC values. Therefore, instead of calculating 
the transfer function in each iteration of SSO optimization, 
which will naturally be very time-consuming, only the random 
values generated by SSO are replaced by the SSO algorithm 
in the mentioned function, and then the final value of the target 
function is calculated. Therefore, the volume and calculation 
time are greatly reduced in the optimization process. The only 
cost of this work is the long and heavy calculations of 
equations in the form of parameters, because they are done 
only once, and are in harmony with the project's goals. 

III.  VALIDATION OF THE PROPOSED MODEL AND NUMERICAL 

RESULTS 

A. Conducting the test on the studied winding in the high 

voltage laboratory of Arya Transfo Factory 

Fig.s 6 to 8 show the manufacturing stages, calibration, 

testing, and making faults on the sample tested in this paper. 

The winding made for this research work has a voltage of 33 

kV, contains 64 disks, and each disk contains six turns. The 

dimensions of the used wire are 7.8 x 1.7 mm. 

High-voltage winding with output taps is made every eight 

disks. These taps are installed in different positions to 

measure the frequency response. Also, to make a 

displacement fault in the winding, these taps are cut from 

different points according to the need, and create the 

possibility of changing the distances between the disks and 

the displacement. 

The Omicron FRANEO 800 SFRA device (Fig. 8), the latest 

device manufactured by Omicron, which has a very high 

accuracy, was used to obtain the frequency response. All 

measurements were made with the highest accuracy of the 

device, i.e., ±0.5dB. The tests have been done end-to-end 

with 2000 frequency points. 

 

 
Fig. 6. 33 kV high voltage disc winding made specifically for this project. 

 

 
Fig. 7. Creation of axial displacement fault (axial deformation) on the 

studied winding. 
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Fig. 8. Calibration of the device and setting the desired values to perform 

the FRA test. 
 

 

TABLE III 

Specifications of the Winding Made for the Research work 

of this Paper. 
 

Winding Voltage 33kV 

Model 
Disc Type (High 

Voltage) 

Section 8 

Disk per Section 8 

Turn per Disk 6 

Winding Internal Diameter 43 cm 

Winding Height 110 cm 

Wire Dimension 
1.7 × 7.8 mm (Height 

× Width) 

Insulator Dimension 4 mm (Height) 

 

B. numerical results 

The results obtained from the model estimation algorithm to 

determine the exact parameters of the transformer windings 

lumped model are reviewed in the first part of this section. 

Then the results of the model estimation algorithm are entered 

into the fault finding algorithm to identify the intensity and 

location of the fault. As shown in Table III, the number of 

physical winding sections under study is 8. On the other hand, 

in the proposed algorithm, the number of sections of the 

lumped model should be considered to perform pre-

calculation and form the parametric transfer function of the 

winding. It is clear that with the increase in the number of 

sections in the described model, the accuracy of the model also 

increases, because RLC parameters specific to each section 

are considered, and the resulting model will better model the 

winding behavior. For example, if we assume 16 sections for 

the lumped model, two sets of parameters are considered for 

each physical section in the actual winding. On the other hand, 

the excessive increase in the number of sections of the lumped 

model causes a sharp rise in the number of parameters of the 

optimized problem and makes its convergence practically 

impossible. Therefore, to maintain the model's accuracy and 

the amount of acceptable calculations in the pre-calculation 

stage, eight sections have been considered in the lumped 

model. The average execution time of the algorithm with SSO 

settings of 50 population, 200 iterations of the first stage, 300 

iterations of the second stage, and 500 iterations of the third 

stage is 45 minutes, which was executed on a PC with a Core 

i7 processor and 16GB of RAM. The results of the final fitted 

IMFs of the third stage and the final SFR of the healthy 

winding are shown in Fig.s 9 and 11. As it is known, the 

proposed algorithm has approximated IMFs No. 1 and 2 with 

excellent accuracy. IMF number 3 is an oscillatory mode with 

a value only at frequencies above 200 kHz, and its amplitude 

is much lower than that of oscillatory modes 1 and 2 (only 

10% of the frequency content compared to the sum of IMF1 

and IMF2). The significant difference in some extreme points 

in this fashion can be analyzed from two aspects. On the one 

hand, high-frequency fluctuations are mostly noise in nature, 

and part of it is related to the measurement error of the device. 

On the other hand, the limitation of the number of sections of 

the lumped model and the inherent error in its modeling 

compared to the real model cause such a difference. 

Nevertheless, the numerical results show that the small error 

in IMF3 has little effect on finding the location and intensity 

of the fault, and the results are completely predictable 

according to the fault created. 

In Table IV, Cg, Cs, L, and Mi are parallel and series capacitors 

and self and mutual inductances, respectively, and the 

numbers in the first column show the corresponding section 

number. In these tables, the value of the parameters is obtained 

from column 1 and their type from row 1. For example, the 

value of Cg5 of the parallel capacitor of section 5 equals 

5.23pF. To obtain the value of mutual inductances, both the 

first column and the first row show the corresponding number 

of mutual inductances. For example, the value of M3,5 

tabulated in column M3 and row 5 is equal to 0.71 mH, and 

M1,2 is equal to 1.29 mH. Determining the intensity and 

location of the fault is possible only after producing the 

parameters of the exact model of the windings. At this level, 

the measured winding SFRs are entered into the defect 

detector algorithm as defective FRs by deforming the disk 

space. 

Fig.s 11 and 12 show the effect of increasing the distance 

between the discs of section 1 on the FR modes of the studied 

winding at 3 and 6 mm levels. 

 

 
Fig. 9. The results of the final fitted IMFs of the third stage 
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Fig. 10. Frequency response measured by the FRA test and calculated by 

the optimization algorithm. 

TABLE IV 

Calculated Parameters of Healthy Winding by Model 

Estimator. 
 

M7 M6 M5 M4 M3 M2 M1 L Cs Cg 
Section / 

Parameter 

       2.59 34.27 5.64 1 

      1.29 2.73 35.38 5.48 2 

     1.36 0.67 2.89 31.32 5.98 3 

    1.43 0.67 0.41 2.66 33.56 4.95 4 

   1.32 0.71 0.37 0.29 2.40 33.17 5.23 5 

  1.19 0.67 0.48 0.30 0.21 2.63 32.43 5.81 6 

 1.32 0.59 0.58 0.26 0.23 0.14 2.98 31.74 5.23 7 

1.50 0.66 0.37 0.36 0.20 0.16 0.08 2.63 32.40 5.53 8 

         5.65 GROUND 

 

 
Fig. 11. The effect of increasing the distance between the discs of section 1 
on the oscillatory modes of the FR winding - 3 mm.   
 

 
Fig. 12. The effect of increasing the distance between the disks of section 1 

on the oscillatory modes of FR winding - 6 mm. 

Also, Fig.s 13 and 14 show the effect of the 3 and 6 mm axial 

DSV disk space deformation fault on the frequency response 

range, respectively. 

 
Fig. 13. The effect of increasing the distance between the discs of section 1 

on the FR amplitude of the winding at the 3 mm stage. 
 

 
Fig. 14. The effect of increasing the distance between the discs of section 1 
on the FR amplitude of the winding at the 6 mm stage. 

 

As shown by the arrow in Fig.s 13 and 14, as the distance 

between the disks increases, some resonances are gradually 

moved to the right, and the amplitude of most of them 

increases. In addition, it can be seen that with the increase of 

disk space, the changes in the high frequency range of FR 

increase, and the low frequency range remains more or less 

unaffected. In the next step, the proposed algorithm of the 

fault detector program (comparator between healthy and 

defective windings) receives these two categories of RLC 

network parameters of the lumped model as deformed 

windings for further analysis. In both cases, capacitors are 

identified as dominant groups in the pre-processing stage. 

The results obtained from the 3 mm DSV in the first part of 

the fault detector after the last operation in step 2 are 

presented in Table V. Table VI shows the parameters 

obtained by the fault detector for a 6 mm DSV in the first 

section. As can be seen, the fault detector program identified 

new parameters of all sections with changes compared to the 

results obtained from the healthy winding. Although the 

values of most parameters have slight deviations from their 

values in Table V, some show more changes. For clarification 

and easier presentation, Tables VII and 8 show the percent 

change in each parameter from its initial value to better show 

the effect of shape change on the obtained model. 
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TABLE V 

Calculated Parameters of the Damaged Winding by the 

Fault Detector in a 3 mm DSV Fault. 

M7 M6 M5 M4 M3 M2 M1 L Cs Cg 
Section / 

Parameter 

       2.69 24.08 5.81 1 

      1.34 2.83 32.68 5.74 2 

     1.42 0.67 2.96 30.38 6.03 3 

    1.47 0.71 0.41 2.52 34.01 4.66 4 

   1.29 0.74 0.36 0.31 2.29 31.89 4.98 5 

  1.15 0.63 0.50 0.32 0.22 2.52 32.24 5.71 6 

 1.27 0.57 0.58 0.27 0.23 0.15 3.03 30.53 5.30 7 

1.50 0.64 0.37 0.35 0.18 0.15 0.07 2.75 34.24 5.79 8 

         5.78 GROUND 

 
TABLE VI 

 Calculated Parameters of the Damaged Winding by the 

Fault Detector in the 6 mm DSV Fault. 

M7 M6 M5 M4 M3 M2 M1 L Cs Cg 
Section / 

Parameter 

       2.58 18.91 5.57 1 

      1.29 2.86 28.72 5.21 2 

     1.42 0.67 2.91 29.84 5.98 3 

    1.45 0.72 0.39 2.64 33.03 4.98 4 

   1.33 0.73 0.37 0.28 2.32 32.88 5.38 5 

  1.15 0.66 0.45 0.32 0.20 2.66 32.37 5.74 6 

 1.34 0.58 0.57 0.26 0.24 0.16 2.93 30.29 5.40 7 

1.46 0.66 0.36 0.34 0.20 0.16 0.08 2.69 32.31 5.52 8 

         5.50 GROUND 

 
TABLE VII 

 Percentage Change of Parameters Compared to their 

Healthy Values in a 3 mm DSV Fault. 

M7 M6 M5 M4 M3 M2 M1 L Cs Cg 
Section / 

Parameter 

       3.80 29.71 3.04 1 

      3.89 3.60 7.64 4.89 2 

     4.56 0.92 2.40 2.99 0.72 3 

    2.71 5.57 1.13 5.26 1.37 5.81 4 

   2.63 4.33 0.81 6.72 4.26 3.87 4.79 5 

  3.39 4.92 4.07 4.07 5.68 4.37 0.59 1.68 6 

 3.81 4.12 0.72 2.72 2.91 1.19 1.68 3.84 1.26 7 

0.26 3.24 0.04 2.21 6.98 4.43 12.50 4.43 5.68 4.67 8 

         2.35 GROUND 
 

TABLE VIII 

 Percentage Change of Parameters Compared to their Healthy Values in a 6 

mm DSV Fault. 

M7 M6 M5 M4 M3 M2 M1 L Cs Cg 
Section / 

Parameter 

       0.35 44.81 1.38 1 

      0.01 4.57 18.84 4.84 2 

     4.98 0.42 0.88 4.71 0.12 3 

    1.42 7.12 3.07 0.52 1.57 0.70 4 

   0.29 2.63 0.82 0.91 3.23 0.87 2.91 5 

  2.90 0.95 5.76 6.57 3.58 1.30 0.19 1.19 6 

 1.39 2.79 1.63 0.44 4.37 7.54 1.76 4.57 3.28 7 

2.22 0.11 1.65 5.59 3.69 0.18 4.24 2.20 0.28 0.13 8 

         2.71 GROUND 
 

The series capacitors of the first section of the winding where 

the fault occurred show many changes compared to the 

healthy state. For example, the intensity of deformation 

occurred in the displacement fault increased from 29.71% at 

3 mm to 44.81% at 6 mm DSV. In determining the intensity 

of the fault, it can be seen that the algorithm effectively finds 

the changed parameter and the percentage of its changes. The 

analysis of the obtained results also shows that the axial 

displacement of the disks has a dominant effect on the series 

capacities. 

In fact, by detecting a part of the parameter with the most 

different value, the fault detector locates the fault, which is 

determined as the first part of the measurement in this case. It 

can be seen that the fault detector has effectively determined 

the fault in the windings. The analysis of the obtained results 

shows that the location and intensity of DSV occurring in 

different winding parts are determined with high accuracy. 

IV.  CONCLUSION AND FUTURE WORK 

Due to the high costs of de-assembling transformers and their 

time-consuming nature, the industry needs a fast, powerful, 

and efficient method to detect the internal defects of 

transformers, which can play a valuable role in improving the 

design for the future and modifying them. The current method 

used in the industry to interpret FRA relies on graphical 

analysis, which leads to incorrect interpretation. In this 

method, fault interpretation and analysis depend on the 

expertise of personnel rather than relying on standard and 

automatic codes. 

This paper presents an artificial intelligence method to 

estimate the electrical equivalent circuit parameters from the 

FRA diagram of the transformer. In the proposed method, a 

three-step optimization algorithm is implemented on the real 

data of a 33 kV high voltage disc winding to find the location 

and intensity of the fault. The results show that the proposed 

method can estimate the parameters of the equivalent circuit 

with high accuracy and help to interpret the FRA diagram 

based on the numerical changes of these parameters. The 

main advantage of this approach is that the physical meaning 

of the model parameters facilitates the reliable identification 

of various faults and hence helps to create reliable 

interpretation codes for the transformer FRA diagram. 

The results and benefits of this paper are summarized below: 

• Analysis and optimization with new mathematical methods 

to solve problems. 

• Improving the equivalent circuit of the transformer and 

making it more accurate with a better approximation. 

• Including the number of frequency points that increase the 

model's accuracy. 

• The proposed method can estimate the parameters of the 

transformer high-frequency model from the FRA diagram 

with high accuracy. 

• A significant deviation of a particular parameter from the 

reference data set or the corresponding parameter in other 

steps indicates a fault. 

• The type of fault can be recognized based on the physical 

meaning of the model parameter. The fault level can be 

determined based on the amount of parameter changes from 

the reference data set. 
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• The proposed estimation method can facilitate the 

development of standard and automatic codes to identify and 

determine the fault from the FRA diagram of the transformer. 

• The results of this research are important. This means we 

troubleshoot without disassembling the transformer, saving 

time and money. 

•   The proposed method can be easily implemented in 

industrial frequency response analysis. 

Considering the limitations of this research, it is suggested 

that the following should be considered as future research: 

• Using other mathematical models, such as the transmission 

line model (MTL) instead of the lumped model. 

• Three-winding transformer modeling to increase the 

efficiency of the proposed methods and the possibility of 

validating them with existing transformers in the network. 

• Using optimization analytical methods to find the RLC 

network parameters of the transformer winding. 

• Mathematical studies to increase the efficiency of 

transformer winding models to see the effect of the core at 

low frequencies, which leads to finding faults related to the 

core. 

•   More research is needed to accurately relate the percent 

change in each parameter to the corresponding fault level. 
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