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Abstract - Frequency response analysis (FRA) has become a
worldwide accepted technique for detecting winding and core
deformation in transformers. The main weakness of this
technique is its reliance on the level of expertise and experience
of personnel and the lack of standards and automatic codes. It is
necessary to create reliable FRA interpretation codes for the
high-frequency transformer model that can implement the
frequency characteristics of real transformers in a wide
frequency range. This paper presents an artificial intelligence
method to estimate these parameters from the FRA diagram of
the transformer. In the proposed method, a three-step
optimization algorithm is implemented on the real data of a 33
kV disc winding to find the intensity and occurrence location of
faults. At first, the frequency response amplitude signal is
decomposed into oscillating modes using successive variational
mode decomposition (SVMD), the output of which is much less
complicated than the original signal. The frequency response of
the modeled circuit decomposition is also obtained in the next
stage and in the optimization process, whose decision variables
are the RLC values of the detailed (lumped) model of the
transformer. Based on the ability to hunt sharks in nature, the
new meta-heuristic algorithm of shark smell optimization (SSO)
will search for the optimal solution by minimizing the error
between the actual and modeled winding frequency response.
This process is implemented gradually, with the addition of each
oscillatory mode in each stage. The accuracy of the proposed
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method is evaluated with the data of the tests performed on a 33
kV high voltage disc winding to estimate the parameters of their
high frequency electrical equivalent circuit in normal and fault
conditions. The results show that the proposed method can
estimate the parameters of the equivalent circuit with high
accuracy and help to interpret the FRA diagram based on the
numerical changes of these parameters.

Index Terms - Transformer, Frequency Response Analysis,
High Frequency Model, Parameters Estimation, Optimization
Algorithm

I. INTRODUCTION

Transformers are considered the heart of the electrical
power system and, therefore, should be carefully

monitored to improve system reliability and service
continuity. Thus, different diagnostic methods have been
established to detect faults within transformers [1]. The
dissolved gas analysis (DGA), partial discharge (PD)
measurement, thermal analysis (TA), and transformer
function assessment are the main diagnostic methods
introduced in literature [2]-[4].
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Among these diagnostic methods, the frequency response
analysis (FRA) method has recently been developed and is
known to researchers. Therefore, determining faults' location
and intensity in the transformer winding has a valuable role
in improving future designs and their correction [5], [6].
Recently, several researchers have tried to develop and
improve the FRA interpretation process by using new fault
detection methods [7]-[10]. The statistical indices are based
on the degree of compatibility or lack of compatibility
between two sets of fault measurements and the healthy
condition of the transformer. Such calculations lead to
accurate, objective, and transparent parameters and can also
be included in an automatic detection method. The main
challenge related to the FRA method is the lack of a
systematic and universally accepted interpretation method for
test results [11]. A statistical approach can be a helpful tool
to overcome this problem. Many research efforts have tried
to use different methods and statistical indices to help the
process of FRA interpretation [12]. The indices that are
usually used are: correlation coefficient, spectrum deviation,
and maximum absolute difference of standard deviation,
absolute sum of logarithmic error, mean square error,
absolute difference, error of ratio of sum of squares, weighted
normal difference, T test, and F test [13]-[15]. However, there
is no comprehensive comparison study to assess the
sensitivity of these numerical indices against different faults
in different frequency bands. Consequently, if it is intended
to use a numerical index to interpret FRA signatures, it is
unknown which one is appropriate.

Previous research in the field of FRA usually has
simplifications such as the approximation of the high-
frequency equivalent circuit, reducing the number of
frequency points, etc., which reduces the accuracy of
calculations and does not show the exact location of the fault
and its intensity. In this paper, a three-step optimization
algorithm is implemented on the real data of a 33 kV high
voltage disc winding to find the intensity and occurrence
location of faults in transformers.

This paper is organized in the following manner. The
parameters optimization methods and the proposed method
are discussed in Section I1. In section 11, to verify the validity
of the proposed method, the main idea of this paper has been
implemented on a real disk-type high voltage winding
sample. The obtained numerical results have been examined
and analyzed to determine the location and intensity of the
fault in the winding. In section IV, the conclusions and
benefits of this paper are discussed, and at the end, the
suggested methods for conducting future research are
presented.

Il. PARAMETERS OPTIMIZATION METHODS AND
THE PROPOSED METHOD

In this section, the tools and steps of forming the proposed
algorithm are examined. The main goal is to develop an
algorithm to detect all types of faults on the windings of
transformers using the FRA technique. By using the proposed
method, it is possible to obtain the electrical parameters of the
lumped model of the transformer, which itself represents the
physical changes in the windings of the transformer. By
comparing the parameters obtained in the state when the
transformer is healthy with the state after damage has
occurred on the winding of the transformer, it is easy to
determine the defective part and the intensity of the defect

with a very accurate approximation, which will reduce the
amount of costs and the duration of the repair. It greatly
reduces the defect for the transformer manufacturer and
operating companies.

First, the equations and parameters of the lumped model
of the transformer are explained. Since the FRA signal is
highly non-linear, this issue will result in the over-complexity
of the optimization problem and the possibility of its non-
convergence. Therefore, this paper uses the new successive
variational mode decompaosition method to analyze the signal
into the oscillatory modes used. In practice, oscillatory modes
obtain much more well-behaved signals. Therefore, it leads
to the possibility of faster convergence of the optimization
problem to find the parameters of the lumped model. In the
next section, the meta-heuristic SSO algorithm is described
as an algorithm based on the ability of the shark as a top
predator in nature to find prey, which is inspired by the
shark's sense of smell and its movement towards the odor
source. This method has been used to obtain the parameters
of the lumped model of the transformer by minimizing the
amount of error. Finally, the proposed algorithm, which is a
combination of the mentioned selected methods, is described
in this paper.

A. Choosing a suitable transformer winding model

An equivalent electrical model is necessary to analyze the
transient and permanent behavior of electrical equipment,
including transformers. At high frequencies, the behavior of
the winding is very complex, which is why its modeling is also
complicated. The lumped model is the best model for checking
the changes in the physical structure and insulation of the
winding and calculating the voltage at its different points [16].
For modeling, it is assumed that the winding consists of
several parts. For each section, we include an RLC circuit
model to model the electrical and physical characteristics of
that section. In this paper, each section contains a disk. Fig. 1
shows the lumped electrical model of a disk winding
equivalent.

Fig. 1. Transformer disc winding and the model of each disc
modeling based on self and mutual inductances.
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TABEL |

Definition of Equivalent Circuit Elements

Li Inductance of each winding section

Ri Ohmic resistance of each winding section

M. Mutual inductance between the i-th and j-th parts of the
I winding

Ci Capacitance of each winding section

c Capacitance between each section of the winding and the
9 ground or the adjacent winding

Rs Ohmic resistance of the insulation of each winding section

R Ohmic resistance of the insulation between each section of
9 the winding and the ground or the adjacent winding

Re Impedance between the end of the winding and the ground

To model the high frequency of the transformer winding, we
use the circuit equivalent to Fig. 2. The elements shown in this
figure are defined in Table I.

By increasing the number of coil sections, the frequency
validity limit of its model rises. Because all the parameters
depend on the frequency, the model calculations are done in
the frequency domain. In this way, the input and output
currents of each section and the voltages of all sections are
obtained.

B. Calculation of model parameters

To solve the circuit of the above model, its parameters must
be calculated with the help of mathematical relations, which
requires physical information about the winding and
insulation properties of the transformer. These parameters are
detailed in references [18]-[20]. After introducing the high-
frequency model of the transformer winding and calculating
its parameters, we must solve this model as a circuit to obtain
the current and voltage at different winding points.
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Fig. 2. Lumped model of transformer winding [17].

In this way, we can obtain the transfer function of the
transformer between any two arbitrary points. The
mathematical description of the model in the frequency
domain is usually presented as a matrix of nodal equations
using Kirchhoff's first and second laws [18]. In this way, the
voltage of all the nodes and the current of all the circuit
branches, which are frequency functions, are calculated. The
transfer function is obtained by having currents and voltages
at different frequencies.

C. Successive Variational Mode Decomposition (SVMD)
technique

Variable Mode Decomposition (VMD) is a powerful
technique for simultaneously decomposing a signal into its
constituent intrinsic modes. However, one of the

disadvantages of this technique is that it does not accurately
determine the number of modes in the signal. In this section,
we use a new method called Successive Variational Mode
Decomposition [21], which extracts modes sequentially and
does not need to know the number of modes. It is also more
stable against the initial values of the central frequencies of the
modes. The method called variable mode extraction (VME)
[22] extracts Intrinsic Mode Functions (IMFs) by knowing
their approximate center frequency. In this paper, the extended
VME, which is an efficient and fast adaptive method for
variable signal decomposition, is wused. This new
decomposition method sequentially extracts all IMFs (unlike
VMD, where the modes are extracted simultaneously). This
sequential approach leads to a method without the need to
know the number of modes and with less computational
complexity compared to VMD. In the SVMD method,
decomposition is performed by successively applying VME to
the signal, and some restrictions are added to the previously
extracted modes to prevent convergence. This method
continues until all modes are extracted or the reconstruction
error (the error between the input signal and the sum of the
modes) is less than a threshold.

In other words, suppose L-1 modes have been found, and
you want to determine the next mode. To this end, an
optimization problem is solved to find the signal with the
maximum compressed spectrum (i.e., the Lth mode) that
minimizes the reconstruction error when added to the sum of
the extracted modes.

D. The innovative shark smell optimization (SSO) algorithm

In this paper, a new meta-heuristic optimization method
inspired by the shark hunting ability based on its sense of smell
is used, which is called SSO optimization. In this method,
different shark behaviors in the search environment, i.e.,
seawater, are mathematically modeled in the proposed
optimization approach [23].

Like other meta-heuristic optimization methods, SSO has
several user-defined parameters, including the population size
NP and the number of steps kmax. These parameters can be set
separately for each optimization problem. The algorithm can
be highly exploratory with large steps in the early stages of
evolution and small steps in the last stages (when the
algorithm approaches the optimal solution) to benefit from
high-resolution search around the optimal solution. After
setting parameters, population, and step counter, SSO is
initialized. Then the population evolves through forward
motion and rotational motion operators. Finally, the best
person is selected as the SSO solution for the optimization
problem in the last step. The proposed SSO search operators,
including gradient-based forward motion and rotational
motion-based local search, are specific to this algorithm and
are not presented in other meta-heuristic methods.

E. Algorithm of the proposed model

Fig. 3 shows the algorithm flowchart of the proposed method
to obtain the electrical parameters of the lumped model and
to find the location and intensity of the fault.
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Fig. 3. Algorithm of the proposed method.

E.1. Initial estimation of lumped network parameters

In the proposed algorithm, to perform better in SSO
optimization (faster convergence rate) and to limit the range
of RLC value changes of the winding lumped network, first,
the parameters are estimated using empirical relationships,
which are described in reference [18]-[20]. These
relationships mainly depend on the physical characteristics of
the winding that were measured during the FRA test.

E.2. Optimizing SSO, Objective Function calculation
process, and using SVMD

In the proposed algorithm, SSO optimization is used, which is
a mathematical model of sharks' movements and behavior in
the sea and their hunting environment. This mathematical
model is introduced as an optimization method. Looking at the
results presented in reference [23], we find that the efficiency
and effectiveness of this model for solving real optimization
problems are very favorable compared to other meta-heuristic
methods.

Looking at the frequency response obtained from the results
of the FRA (healthy winding) test, the complexity of the signal
shows itself with extreme min and max peaks, which are
especially observed at high frequencies. Therefore, we expect
the optimization algorithm to reach the desired result with a
very large population and many repetitions, which is not
desirable from the practical point of view of the fault detection
program. The reason for this issue is the hardware limitation,
while the goal is for the common hardware to be able to detect
the fault in an acceptable period of time. To deal with this
issue, the SVMD tool is used, which converts the input signal
into several IMF oscillation modes with a limited bandwidth.

This transformation identifies important frequencies (center
frequencies) with the most frequency content around a limited
frequency band and filters the rest of the signal. The great
advantage of this transformation is its insensitivity to noise,
which shows the superiority of the proposed method. This is
because the original signal also contains a high amount of
noise due to the nature of the FRA test and faults of unknown
origin. Also, using SVMD, another unknown parameter, the
number of oscillatory modes, is reduced, which also helps
reduce the proposed algorithm's analysis time.

Fig. 5 shows the oscillation modes extracted by SVMD from
the frequency response of the tested winding.
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Fig. 4. Frequency response of healthy winding (obtained by FRA test).
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Fig. 5. Extracted oscillatory modes.

As it is known, the number of oscillation modes by the SVMD
algorithm is 3. Considering the stability of this number of
modes for the tested winding to perform better, the proposed
algorithm is designed in three steps. It should be noted that if
it is possible for other test windings, the number of oscillation
modes extracted by SVMD may increase for any reason. In
this case, without losing the generality of the proposed
algorithm, only the number of steps will increase to the
number of oscillatory modes.

As can be seen in Fig. 5, IMF signals behave much better than
the original signal. Therefore, instead of calculating the error
of the lumped reconstructed model in each step of the
optimization process with the original FRA signal, its error is
calculated in the first step with oscillatory mode number 1
(which contains the most frequency content). As shown in
section 11-D, the sum of IMFs reconstructs the original signal.
In the second and third stages, we add the second and third
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oscillatory modes to the first mode, respectively, to achieve
the best possible solutions in the last stage.

In the signal analysis process, the extracted center frequencies
are sorted and form IMFs from low to high frequency.
Therefore, the algorithm is such that first, the main frequency
response error is calculated with the first oscillation mode.
Each oscillation mode represents a group of effective RLC
parameters, so we expect to get better answers at each stage,
which are shown in Section I1l. The important point is that, as
shown in the flowchart of the proposed algorithm in Fig. 5, the
optimal response of each stage goes to the next stage as the
initial population. This process continues until the final (third)
stage, when the final optimal answer is obtained: the RLC
values of the described model. It should be noted that the
included error is the root mean square of the RMSE error.
For simplicity, the error function of each stage is summarized

in Table Il.
TABLE Il

Error Functions of Each Step

Step Error function

First RMSE (FR, IMF(1))
Second RMSE (FR, (IMF(L)+IMF(2) )
Third RMSE (FR, (IMF(L)+ IMF(2) + IMF(3) ))

The mentioned steps are performed first for the FRA of the
healthy winding and then for the winding with axial fault in
two degrees, weak and severe, and then the values are
compared. In this way, by analyzing the results, you can find
out the location of the fault and its intensity. Another item in
the proposed algorithm is the pre-calculation section of the
lumped model transfer function before the optimization
process. One of the most important challenges of using the
lumped model of the transformer is the huge amount of time
required to perform the related calculations. To deal with this
issue in this paper, all calculations are done in matrix form
using MATLAB software. Based on the state equations of the
expanded circuit given in section 11-B, due to the existence of
the inverse operator, solving this problem becomes an ill-
posed problem from a mathematical point of view, which is
the reason why the calculations are time-consuming.
Therefore, in this paper, to solve this problem, the transfer
function is calculated as a function of RLC values using the
Toolbox Symbolic Math Guide, and the optimization
algorithm is only called in each iteration. The output of the
model obtained using the mentioned method is the transfer
function of the lumped model of the transformer, whose
parameters are RLC values. Therefore, instead of calculating
the transfer function in each iteration of SSO optimization,
which will naturally be very time-consuming, only the random
values generated by SSO are replaced by the SSO algorithm
in the mentioned function, and then the final value of the target
function is calculated. Therefore, the volume and calculation
time are greatly reduced in the optimization process. The only
cost of this work is the long and heavy calculations of
equations in the form of parameters, because they are done
only once, and are in harmony with the project's goals.

I1l. VALIDATION OF THE PROPOSED MODEL AND NUMERICAL
RESULTS

A. Conducting the test on the studied winding in the high
voltage laboratory of Arya Transfo Factory

Fig.s 6 to 8 show the manufacturing stages, calibration,
testing, and making faults on the sample tested in this paper.
The winding made for this research work has a voltage of 33

kV, contains 64 disks, and each disk contains six turns. The
dimensions of the used wire are 7.8 x 1.7 mm.

High-voltage winding with output taps is made every eight
disks. These taps are installed in different positions to
measure the frequency response. Also, to make a
displacement fault in the winding, these taps are cut from
different points according to the need, and create the
possibility of changing the distances between the disks and
the displacement.

The Omicron FRANEO 800 SFRA device (Fig. 8), the latest
device manufactured by Omicron, which has a very high
accuracy, was used to obtain the frequency response. All
measurements were made with the highest accuracy of the
device, i.e., £0.5dB. The tests have been done end-to-end
with 2000 frequency points.

& -
Fig. 7. Creation of axial displacement fault (axial deformation) on the
studied winding.
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Fig. 8. Calibration of the device and setting the desired values to perform
the FRA test.

TABLE Ill
Specifications of the Winding Made for the Research work
of this Paper.

Winding Voltage 33kV
Disc Type (High
Model Voltage)
Section 8
Disk per Section 8
Turn per Disk 6
Winding Internal Diameter 43 cm
Winding Height 110cm
. . . 1.7 x 7.8 mm (Height
Wire Dimension x Width)
Insulator Dimension 4 mm (Height)

B. numerical results

The results obtained from the model estimation algorithm to
determine the exact parameters of the transformer windings
lumped model are reviewed in the first part of this section.
Then the results of the model estimation algorithm are entered
into the fault finding algorithm to identify the intensity and
location of the fault. As shown in Table IlI, the number of
physical winding sections under study is 8. On the other hand,
in the proposed algorithm, the number of sections of the
lumped model should be considered to perform pre-
calculation and form the parametric transfer function of the
winding. It is clear that with the increase in the humber of
sections in the described model, the accuracy of the model also
increases, because RLC parameters specific to each section
are considered, and the resulting model will better model the
winding behavior. For example, if we assume 16 sections for
the lumped model, two sets of parameters are considered for
each physical section in the actual winding. On the other hand,
the excessive increase in the number of sections of the lumped
model causes a sharp rise in the number of parameters of the
optimized problem and makes its convergence practically
impossible. Therefore, to maintain the model's accuracy and
the amount of acceptable calculations in the pre-calculation
stage, eight sections have been considered in the lumped
model. The average execution time of the algorithm with SSO

settings of 50 population, 200 iterations of the first stage, 300
iterations of the second stage, and 500 iterations of the third
stage is 45 minutes, which was executed on a PC with a Core
i7 processor and 16GB of RAM. The results of the final fitted
IMFs of the third stage and the final SFR of the healthy
winding are shown in Fig.s 9 and 11. As it is known, the
proposed algorithm has approximated IMFs No. 1 and 2 with
excellent accuracy. IMF number 3 is an oscillatory mode with
a value only at frequencies above 200 kHz, and its amplitude
is much lower than that of oscillatory modes 1 and 2 (only
10% of the frequency content compared to the sum of IMF1
and IMF2). The significant difference in some extreme points
in this fashion can be analyzed from two aspects. On the one
hand, high-frequency fluctuations are mostly noise in nature,
and part of it is related to the measurement error of the device.
On the other hand, the limitation of the number of sections of
the lumped model and the inherent error in its modeling
compared to the real model cause such a difference.
Nevertheless, the numerical results show that the small error
in IMF3 has little effect on finding the location and intensity
of the fault, and the results are completely predictable
according to the fault created.

In Table 1V, Cg, C, L, and M are parallel and series capacitors
and self and mutual inductances, respectively, and the
numbers in the first column show the corresponding section
number. In these tables, the value of the parameters is obtained
from column 1 and their type from row 1. For example, the
value of Cg of the parallel capacitor of section 5 equals
5.23pF. To obtain the value of mutual inductances, both the
first column and the first row show the corresponding number
of mutual inductances. For example, the value of Mss
tabulated in column Ms and row 5 is equal to 0.71 mH, and
Mi2 is equal to 1.29 mH. Determining the intensity and
location of the fault is possible only after producing the
parameters of the exact model of the windings. At this level,
the measured winding SFRs are entered into the defect
detector algorithm as defective FRs by deforming the disk
space.

Fig.s 11 and 12 show the effect of increasing the distance
between the discs of section 1 on the FR modes of the studied
winding at 3 and 6 mm levels.
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Fig. 9. The results of the final fitted IMFs of the third stage
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Fig. 10. Frequency response measured by the FRA test and calculated by
the optimization algorithm.

TABLE IV
Calculated Parameters of Healthy Winding by Model
Estimator.
Psaerg“n?;ér Col| Co| L |Mp|Mo|Ms|Mi|Ms|Ms|M
1 5.6434.27[2.59
2 5.48(35.38|2.73[1.29
3 5.9831.32[2.89]0.67[1.36
4 4.95(33.56[2.66 [0.41[0.67[1.43
5 5.23(33.17(2.40[0.29[0.37[0.71[1.32
6 5.81[32.43[2.63[0.21{0.30]0.48]0.67 [1.19
7 5.23(31.74(2.98(0.14[0.23[0.260.580.59]1.32
8 5.53|32.40[2.63/0.08{0.16[0.20]0.36 [0.37]0.66 [ 1.50
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Fig. 11. The effect of increasing the distance between the discs of section 1
on the oscillatory modes of the FR winding - 3 mm.
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Also, Fig.s 13 and 14 show the effect of the 3 and 6 mm axial
DSV disk space deformation fault on the frequency response
range, respectively.
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Fig. 13. The effect of increasing the distance between the discs of section 1
on the FR amplitude of the winding at the 3 mm stage.
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Fig. 14. The effect of increasing the distance between the discs of section 1

on the FR amplitude of the winding at the 6 mm stage.
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As shown by the arrow in Fig.s 13 and 14, as the distance
between the disks increases, some resonances are gradually
moved to the right, and the amplitude of most of them
increases. In addition, it can be seen that with the increase of
disk space, the changes in the high frequency range of FR
increase, and the low frequency range remains more or less
unaffected. In the next step, the proposed algorithm of the
fault detector program (comparator between healthy and
defective windings) receives these two categories of RLC
network parameters of the lumped model as deformed
windings for further analysis. In both cases, capacitors are
identified as dominant groups in the pre-processing stage.
The results obtained from the 3 mm DSV in the first part of
the fault detector after the last operation in step 2 are
presented in Table V. Table VI shows the parameters
obtained by the fault detector for a 6 mm DSV in the first
section. As can be seen, the fault detector program identified
new parameters of all sections with changes compared to the
results obtained from the healthy winding. Although the
values of most parameters have slight deviations from their
values in Table V, some show more changes. For clarification
and easier presentation, Tables VII and 8 show the percent
change in each parameter from its initial value to better show
the effect of shape change on the obtained model.
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TABLE V

Calculated Parameters of the Damaged Winding by the
Fault Detector in a 3 mm DSV Fault.

Psaer(e:itlrr?erle/r Col o | L [ M| M| M| M| Ms|Ms| M

1 5.81(24.08|2.69

2 5.74]32.68|2.83|1.34

3 6.03]30.38|2.96|0.67 | 1.42

4 4.66]34.01(252]041]0.71 147

5 4.98]31.89]2.29]0.31]0.36|0.74 | 1.29

6 5.71(32.2412.52]0.22]0.32|0.50|0.63 | 1.15

7 5.30]3053]3.03]0.15]0.23]0.27 058|057 127

8 5.79]34.24]2.75]0.07]0.15]0.18 |0.350.37 | 0.64 | 150
GROUND |5.78

TABLE VI

Calculated Parameters of the Damaged Winding by the
Fault Detector in the 6 mm DSV Fault.

F,S;g“nﬁ’e’le’r Col e | L[ M| M| M| M| Ms|Ms| M

1 557|18.91|258

2 5.21(28.72]2.86|1.29

3 5.08(29.84|2.91|0.67|1.42

4 4.98(33.03]2.64]0.39]0.72 |1.45

5 5.38(32.88]2.32/0.28]0.37|0.73 | 1.33

6 5.74]32.37|2.66|0.200.32]0.45]0.66 | 1.15

7 5.40(30.29]2.93]0.16]0.24 |0.26|0.57 |0.58 | 1.34

8 552(32.31]2.69/0.08]0.160.200.34]0.36 | 0.66 | 146
GROUND _|5.50

TABLE VII

Percentage Change of Parameters Compared to their
Healthy Values in a 3 mm DSV Fault.

Psaergtr'ﬁe’le’r Colco | L[ M| M| M| M| Ms|Ms| M
1 3.04(29.71]3.80
2 4.89| 7.64 |3.60(3.89
3 0.72] 2.99 [2.40]0.9214.56
4 5.81|1.37 [5.26]1.13|5.57(2.71
5 4.79| 3.87 |4.26(6.72|0.81|4.33[2.63
6 1.68] 0.59 [4.37]5.6814.074.0714.92]3.39
7 1.26]3.84 [1.68]1.19(2.91(2.72]|0.72(4.12|3.81
8 4.67| 5.68 |4.43]12.50/4.4316.98(2.21|0.04 [3.24{0.26
GROUND ]2.35
TABLE VIII
Percentage Change of Parameters Compared to their Healthy Values in a 6
mm DSV Fault.
PS;:“n?e:e/r Colco | L[ M| M| Ms|M|Ms|Ms| M,
1 1.38144.81|0.35
2 4.84118.84[4.57)|0.01
3 0.12| 4.71 |0.88|0.424.98
4 0.70| 1.57 |0.52]3.077.12|1.42
5 2.91] 0.87 [3.23|0.91[0.82(2.63|0.29
6 1.19/ 0.19 [1.30(3.58|6.57 |5.76 [0.95[2.90
7 3.28| 4.57 [1.76]7.54(4.37]0.44|1.63[2.79]1.39
8 0.13] 0.28 |2.2014.24|0.183.69[5.59(1.65(0.11 (2.22
GROUND [2.71

The series capacitors of the first section of the winding where
the fault occurred show many changes compared to the
healthy state. For example, the intensity of deformation
occurred in the displacement fault increased from 29.71% at
3 mm to 44.81% at 6 mm DSV. In determining the intensity
of the fault, it can be seen that the algorithm effectively finds

the changed parameter and the percentage of its changes. The
analysis of the obtained results also shows that the axial
displacement of the disks has a dominant effect on the series
capacities.

In fact, by detecting a part of the parameter with the most
different value, the fault detector locates the fault, which is
determined as the first part of the measurement in this case. It
can be seen that the fault detector has effectively determined
the fault in the windings. The analysis of the obtained results
shows that the location and intensity of DSV occurring in
different winding parts are determined with high accuracy.

IVV. CONCLUSION AND FUTURE WORK

Due to the high costs of de-assembling transformers and their
time-consuming nature, the industry needs a fast, powerful,
and efficient method to detect the internal defects of
transformers, which can play a valuable role in improving the
design for the future and modifying them. The current method
used in the industry to interpret FRA relies on graphical
analysis, which leads to incorrect interpretation. In this
method, fault interpretation and analysis depend on the
expertise of personnel rather than relying on standard and
automatic codes.

This paper presents an artificial intelligence method to
estimate the electrical equivalent circuit parameters from the
FRA diagram of the transformer. In the proposed method, a
three-step optimization algorithm is implemented on the real
data of a 33 kV high voltage disc winding to find the location
and intensity of the fault. The results show that the proposed
method can estimate the parameters of the equivalent circuit
with high accuracy and help to interpret the FRA diagram
based on the numerical changes of these parameters. The
main advantage of this approach is that the physical meaning
of the model parameters facilitates the reliable identification
of wvarious faults and hence helps to create reliable
interpretation codes for the transformer FRA diagram.

The results and benefits of this paper are summarized below:

* Analysis and optimization with new mathematical methods
to solve problems.

» Improving the equivalent circuit of the transformer and
making it more accurate with a better approximation.

« Including the number of frequency points that increase the
model's accuracy.

» The proposed method can estimate the parameters of the
transformer high-frequency model from the FRA diagram
with high accuracy.

* A significant deviation of a particular parameter from the
reference data set or the corresponding parameter in other
steps indicates a fault.

* The type of fault can be recognized based on the physical
meaning of the model parameter. The fault level can be
determined based on the amount of parameter changes from
the reference data set.
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* The proposed estimation method can facilitate the
development of standard and automatic codes to identify and
determine the fault from the FRA diagram of the transformer.

* The results of this research are important. This means we
troubleshoot without disassembling the transformer, saving
time and money.

* The proposed method can be easily implemented in
industrial frequency response analysis.

Considering the limitations of this research, it is suggested
that the following should be considered as future research:

« Using other mathematical models, such as the transmission
line model (MTL) instead of the lumped model.

» Three-winding transformer modeling to increase the
efficiency of the proposed methods and the possibility of
validating them with existing transformers in the network.

» Using optimization analytical methods to find the RLC
network parameters of the transformer winding.

» Mathematical studies to increase the efficiency of
transformer winding models to see the effect of the core at
low frequencies, which leads to finding faults related to the
core.

* More research is needed to accurately relate the percent
change in each parameter to the corresponding fault level.
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