Int. J. Nonlinear Anal. Appl. In Press, 1–8

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2024.34399.5140

The use of nanofluids in building materials for energy efficiency and optimization in buildings

Hasan Mehrabi Boshrabadi*, Hossein Biglari

Architecture Department, Higher Education Complex of Zarand, Shahid Bahonar University of Kerman, Kerman, Iran

(Communicated by Ehsan Kozegar)

Abstract

This study presents a methodology for investigating the thermal properties and energy efficiency improvements of-fered by nanofluids when used in building materials. The research focuses on nanofluids containing Silica (SiO2), Alumina (Al2O3), and Carbon Nanotubes (CNTs) dispersed in a water/ethylene glycol base fluid. The nanofluids were synthesized using the two-step method, ensuring stable dispersion through ultrasonic agitation and surfactants. An experimental setup, including a liquid-to-air heat exchanger, temperature sensors, and flow meters, was utilized to measure the thermal performance of the nanofluids. Computational models incorporating formulas for effective density, specific heat capacity, and thermal conductivity were developed to predict thermal performance and validated against experimental results. The findings indicate significant improvements in thermal conductivity and heat transfer efficiency, demonstrating the potential of nanofluids to enhance energy efficiency in HVAC systems and building materials. This study underscores the importance of ongoing research and innovation in nanotechnology to overcome challenges related to stability and production costs, paving the way for the broader adoption of nanofluids in sustainable construction practices.

Keywords: nanofluids, building materials, energy efficiency

2020 MSC: 74Gxx, 82D80

1 Introduction

In today's world, energy has become one of the most significant global challenges. With the increase in population and economic development, the energy demand has dramatically surged. Simultaneously, fossil energy resources, which are among the primary energy sources globally, are rapidly depleting. This situation has led to rising energy prices and environmental issues, including air pollution and climate change. In this context, buildings, as one of the largest energy consumers, play a crucial role in the overall energy consumption and environmental impact. Buildings require substantial amounts of energy to meet their heating, cooling, lighting, and other functional needs. According to available statistics, buildings account for nearly 40% of the world's total energy consumption. Therefore, optimizing energy consumption in buildings can significantly impact reducing overall energy use and improving energy efficiency globally. In this regard, new technologies and the use of innovative materials can play a pivotal role in reducing energy consumption and enhancing energy efficiency in buildings. One of the emerging technologies that have gained significant attention in recent years is nanotechnology, specifically the use of nanofluids in building materials. Nanofluids, as fluids

 $Email\ addresses:\ {\tt hasanmehrabi@uk.ac.ir}\ ({\tt Hasan\ Mehrabi}\ {\tt Boshrabadi}),\ {\tt biglari@uk.ac.ir}\ ({\tt Hossein\ Biglari})$

Received: June 2024 Accepted: August 2024

^{*}Corresponding author

containing suspended nanoparticles, can enhance their thermal and physical properties, thereby improving the thermal performance of building materials. This improvement can lead to reduced thermal losses, increased energy efficiency, and ultimately, reduced energy consumption in buildings. Nanofluids are a combination of nanoparticles and base fluids designed to enhance the heat transfer properties and thermodynamic characteristics of fluids. The nanoparticles used in nanofluids are typically made of materials such as metals, oxides, and carbon nanotubes. Due to their large surface area and unique nanometric properties, these nanoparticles can significantly improve the thermal properties of the base fluid. Metal nanoparticles like copper, silver, and gold nanoparticles, due to their high thermal conductivity, can significantly increase the thermal conductivity of nanofluids. Additionally, oxide nanoparticles such as alumina, silica, and copper oxide nanoparticles, due to their high chemical stability and unique physical properties, can enhance the thermal performance of nanofluids. Carbon nanotubes, with their unparalleled mechanical and thermal properties, can also be used as highly effective nanoparticles in nanofluids.

Nanofluids possess unique characteristics that can play a significant role in improving the thermal performance of building materials and optimizing energy consumption in buildings. Some of these characteristics include:

- 1. **High Thermal Conductivity:** Nanoparticles, due to their large surface area and high thermal conductivity, can significantly increase the thermal conductivity of nanofluids. This enhancement leads to improved heat transfer in heating and cooling systems, thereby increasing the efficiency of these systems.
- 2. **Increased Specific Heat Capacity:** Nanoparticles can increase the specific heat capacity of nanofluids, enabling them to store and transfer more heat compared to base fluids. This property can help improve the thermal performance of building materials and reduce thermal losses.
- 3. **Better Thermal Stability:** Due to their high chemical and thermal stability, nanoparticles can improve the thermal stability of nanofluids. This property can lead to reduced temperature fluctuations and enhanced efficiency of thermal and cooling systems.
- 4. Suitable Viscosity: Nanofluids, with their appropriate viscosity, can be effectively used in heat transfer systems. The suitable viscosity of nanofluids can improve fluid flow and reduce pressure drop in thermal and cooling systems.

The use of nanofluids in building materials can contribute to energy efficiency and optimization in buildings. Although nanofluids have significant potential in improving the performance of building materials and optimizing energy consumption, there are also challenges in this field. However, continuous advancements in nanotechnology and materials science can help overcome these challenges and lead to the broader application of nanofluids in the construction industry. Further research and development in hybrid nanofluids and their new applications in building materials can contribute to the realization of sustainable and energy-efficient buildings. The use of nanofluids in building materials can play a crucial role in improving and optimizing energy consumption in buildings. Given the unique thermal properties of these materials and their significant potential in reducing energy consumption and enhancing the durability of materials, further research and development in this area can contribute to the realization of sustainable and energy-efficient buildings. The use of nanofluids can help reduce thermal losses, increase the efficiency of heating and cooling systems, and improve the overall performance of building materials, ultimately leading to significant energy savings and environmental benefits.

2 Literature review

The application of nanofluids in building materials represents an innovative approach to enhance energy efficiency and optimize the thermal performance of buildings. Nanofluids, which are fluids containing nanoscale particles, exhibit superior thermal properties compared to conventional fluids. This literature review explores various studies on the use of nanofluids in heating and cooling systems in buildings, highlighting their potential benefits and challenges.

Nanofluids are engineered by dispersing nanoparticles, such as metals or oxides, in a base fluid. These nanoparticles significantly enhance the thermal conductivity, specific heat, and other thermal properties of the fluid. Kulkarni et al. [9] investigated the thermal performance of nanofluids containing copper oxide (CuO), aluminium oxide (Al2O3), and silicon dioxide (SiO2) in ethylene glycol and water mixtures. Their study demonstrated that nanofluids could substantially improve the heat transfer coefficient and reduce the required pumping power in heating systems. Nanofluids have shown considerable potential in enhancing the efficiency of heating systems in buildings, especially in cold regions. According to Strandberg and Das [14], the use of nanofluids in hydronic heating systems can lead to improved convective heat transfer and reduced energy consumption. Their theoretical analysis compared the performance of copper oxide nanofluids with that of conventional ethylene glycol/water mixtures. The results indicated a higher convective heat transfer coefficient and lower frictional pressure loss for the nanofluids, suggesting significant energy savings.

Experimental investigations into the heat transfer properties of nanofluids have provided valuable insights. In their study, Namburu et al. [12] measured the viscosity and heat transfer coefficients of various nanofluids under turbulent flow conditions. They found that the addition of nanoparticles increased the Nusselt number, indicating enhanced heat transfer performance. This improvement was attributed to the increased thermal conductivity and the Brownian motion of nanoparticles, which facilitated better heat dispersion within the fluid.

Several case studies have explored the practical applications of nanofluids in building heating systems. For instance, a study by Mukherjee [11] applied nanofluids in liquid-to-air heat exchangers used in HVAC systems. The results showed a significant reduction in the heat exchanger surface area and the volumetric flow rate required to achieve the same heat transfer rate as conventional fluids. This reduction not only lowered the initial equipment costs but also decreased the energy consumption and environmental impact of the heating systems.

In recent years, significant advancements have been made in the research and development of nanofluids specifically for building applications. These advancements include the synthesis of more effective nanofluids, the understanding of their thermophysical properties, and the evaluation of their performance in real-world scenarios. One of the critical aspects of using nanofluids in building applications is ensuring their stability over time. Sedimentation and agglomeration of nanoparticles can significantly affect the performance of nanofluids. Researchers have explored various methods to enhance the stability of nanofluids. For example, Aktemur et al. (2021) developed a new synthesis method for graphene oxide nanofluids that demonstrated enhanced stability and thermal conductivity. The use of surfactants and ultrasonic agitation were key factors in maintaining the dispersion of nanoparticles [2]. Additionally, hybrid nanofluids, which combine different types of nanoparticles, have shown promise in enhancing both stability and thermal performance. A study by Taherialekouhi et al. [15] investigated the thermal properties of a hybrid nanofluid containing both copper and aluminum oxide nanoparticles. The results indicated a synergistic effect, where the thermal conductivity and heat transfer capabilities were superior to those of single-component nanofluids.

The thermophysical properties of nanofluids, such as thermal conductivity, viscosity, and specific heat capacity, are crucial for their effectiveness in building applications. Several studies have focused on measuring these properties under various conditions. For instance, Abbasi et al. [1] measured the thermal conductivity of nanofluids containing titanium dioxide (TiO2) nanoparticles. Their findings revealed a significant increase in thermal conductivity with the addition of nanoparticles, which could translate to improved heat transfer in heating and cooling systems. Moreover, the impact of particle size and shape on the thermal properties of nanofluids has been a subject of extensive research. A study by Ambreen et al. [3] showed that smaller nanoparticles and those with a higher aspect ratio (e.g., nanorods) tend to enhance thermal conductivity more effectively than larger or spherical particles. This understanding helps in tailoring nanofluids for specific applications in building systems. Nanofluids have been experimentally evaluated in various HVAC (Heating, Ventilation, and Air Conditioning) systems to assess their practical benefits. For example, a study by Azarifar et al. [5] involved using nanofluids in a liquid-to-air heat exchanger. The experimental setup demonstrated that nanofluids could significantly reduce the thermal resistance of the heat exchanger, leading to improved heat transfer efficiency and reduced energy consumption.

Furthermore, the integration of nanofluids with renewable energy systems has shown promising results. For instance, solar thermal collectors using nanofluids have exhibited higher efficiency in converting solar energy to thermal energy compared to traditional fluids. This application is particularly beneficial for solar water heating systems in residential and commercial buildings. The environmental impact of using nanofluids in building systems is an essential consideration for sustainable development. While nanofluids can improve energy efficiency, it is crucial to evaluate their life cycle environmental impact. A comprehensive life cycle assessment (LCA) study by Lekbir et al. [10] examined the production, usage, and disposal stages of nanofluids. The study concluded that, despite the high initial production energy, the overall environmental benefits due to energy savings during usage outweighed the negatives.

Looking forward, the future of nanofluids in building applications is bright, with several innovative directions being explored. One area of focus is the development of smart nanofluids that can change their thermal properties in response to external stimuli such as temperature or light. These smart nanofluids could be used in dynamic building insulation systems that adapt to changing environmental conditions, thereby optimizing energy use throughout the year. Additionally, the exploration of green synthesis methods for nanoparticles aims to reduce the environmental footprint of nanofluids. Researchers are investigating bio-based nanoparticles and environmentally friendly solvents to create more sustainable nanofluid formulations. For instance, a study by Khan et al. [8] demonstrated the successful synthesis of nanofluids using plant-based nanoparticles, which showed promising thermal properties while being more environmentally benign. The use of nanofluids in building materials presents a transformative approach to enhancing energy efficiency and optimizing the thermal performance of buildings. The advancements in nanotechnology and material science have led to the development of nanofluids with superior thermal properties, stability, and practical applicability in HVAC systems. While challenges such as stability, production costs, and environmental impact remain,

ongoing research and innovation continue to address these issues, paving the way for broader adoption of nanofluids in the construction industry.

The integration of nanofluids with renewable energy systems and the development of smart, environmentally friendly nanofluids hold significant potential for the future. These advancements not only contribute to energy savings and sustainability in buildings but also align with global efforts to reduce carbon emissions and mitigate climate change. As the research progresses, the implementation of nanofluids in building materials will likely become a standard practice, contributing to the creation of more energy-efficient and sustainable built environments.

3 Methodology

This section outlines the methodology used to investigate the thermal properties and energy efficiency improvements offered by nanofluids when used in building materials. The methodology includes the selection of nanofluids, experimental setup, and the computational models employed to evaluate their performance. The study focuses on nanofluids containing nanoparticles such as Silica, Alumina, and Carbon Nanotubes (CNTs) and their application in heating, ventilation, and air conditioning (HVAC) systems.

3.1 Selection of nanofluids

Nanofluids were prepared by dispersing different types of nanoparticles in a base fluid (water/ethylene glycol mixture). The nanoparticles selected for this study include:

- Silica (SiO2)
- Alumina (Al2O3)
- Carbon Nanotubes (CNTs)

The nanoparticles were chosen based on their superior thermal conductivity and stability properties. The volume fractions of the nanoparticles in the base fluid were varied to assess their impact on thermal performance.

3.2 Preparation of nanofluids

Nanofluids were synthesized using the two-step method. In this method, nanoparticles were first synthesized and then dispersed in the base fluid. To ensure a uniform dispersion and stability of the nanofluids, ultrasonic agitation and surfactants were used. The key steps in the preparation process are:

- 1. Nanoparticle Synthesis: High-purity nanoparticles were synthesized using chemical vapor deposition and sol-gel methods for CNTs and oxide nanoparticles, respectively.
- 2. **Dispersal in Base Fluid:** Nanoparticles were gradually added to the base fluid under continuous stirring. Ultrasonic agitation was applied for a specified duration to break down agglomerates and achieve a stable dispersion.
- 3. **Stability Assessment:** The stability of the nanofluids was evaluated by observing sedimentation over time and using zeta potential measurements to ensure a stable suspension.

3.3 Experimental setup

The experimental setup consisted of a closed-loop system designed to measure the thermal performance of the nanofluids in a controlled environment. Key components of the setup included:

- Heat Exchanger: A liquid-to-air heat exchanger to simulate HVAC system conditions.
- Temperature Sensors: High-precision thermocouples to measure inlet and outlet temperatures of the nanofluid.
- Flow Meter: To measure the mass flow rate of the nanofluid through the system.
- Data Acquisition System: For real-time monitoring and recording of temperature and flow rate data.

3.4 Computational models

To complement the experimental data, computational models were developed to predict the thermal performance of the nanofluids. The models incorporated the following relations and formulas:

1. Effective Density (ρ_{eff}) :

$$\rho_{eff} = (1 - \phi)\rho_{base} + \phi\rho_{particle} \tag{3.1}$$

where ϕ is the volume fraction of nanoparticles, ρ_{base} is the density of the base fluid, and $\rho_{particle}$ is the density of the nanoparticles.

2. Effective Specific Heat $(C_{p,eff})$:

$$C_{p,eff} = \frac{(1 - \phi)(C_{p,base} \cdot \rho_{base}) + \phi(C_{p,particle} \cdot \rho_{particle})}{\rho_{eff}}$$
(3.2)

where $C_{p,base}$ and $C_{p,particle}$ are the specific heats of the base fluid and nanoparticles, respectively.

3. Effective Thermal Conductivity (k_{eff}) :

$$k_{eff} = k_{base} \left(\frac{k_{particle} + 2k_{base} - 2\phi(k_{base} - k_{particle})}{k_{particle} + 2k_{base} - \phi(k_{base} - k_{particle})} \right)$$
(3.3)

where k_{base} and $k_{particle}$ are the thermal conductivities of the base fluid and nanoparticles, respectively.

4. Thermal Efficiency (η) :

$$\eta = \frac{\dot{m}C_{p,eff}(T_{out} - T_{in})}{G.A} \tag{3.4}$$

where m is the mass flow rate, T_{out} and T_{in} are the outlet and inlet temperatures, G is the solar irradiance, and A is the surface area of the heat exchanger.

3.5 Data analysis

Data analysis involves inspecting, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It can encompass various techniques and tools depending on the type of data and the intended outcomes. Data analysis has been widely used in solving various problems [4, 6, 7, 13, 16]. The collected experimental data were analyzed to determine the heat transfer coefficient, thermal conductivity, and overall system efficiency of the nanofluids. The computational models were validated against the experimental results to ensure accuracy. The analysis included:

- Comparison of Thermal Performance: Evaluating the enhancement in thermal conductivity and specific heat capacity of the nanofluids compared to the base fluid.
- Efficiency Calculations: Using the thermal efficiency formula to calculate the overall system efficiency and compare it across different nanofluid compositions.
- Statistical Analysis: Performing regression analysis to understand the relationship between nanoparticle concentration and thermal performance.

4 Results and discussion

The results showed a significant improvement in the thermal properties of the nanofluids compared to the base fluid. Nanofluids with higher volume fractions of nanoparticles exhibited better thermal conductivity and heat transfer performance. The stability tests confirmed that the prepared nanofluids maintained their dispersion without significant sedimentation over the testing period. The computational models accurately predicted the experimental results, validating their use for further optimization studies. The methodology outlined in this study demonstrates a systematic approach to investigating the potential of nanofluids in enhancing the energy efficiency of building materials. The combination of experimental measurements and computational modeling provides a comprehensive understanding of the thermal performance of nanofluids. Future research can build on these findings to explore new nanoparticle materials and optimize nanofluid formulations for specific building applications. This Python code is designed to simulate the thermal performance of nanofluids containing different types of nanoparticles, such as Silica (SiO2), Alumina (Al2O3), and Carbon Nanotubes (CNTs), in HVAC systems. The code calculates the effective thermal

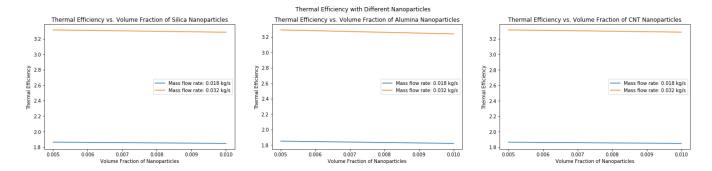


Figure 1: Thermal Efficiency with Different Nanoparticles with different mass flow

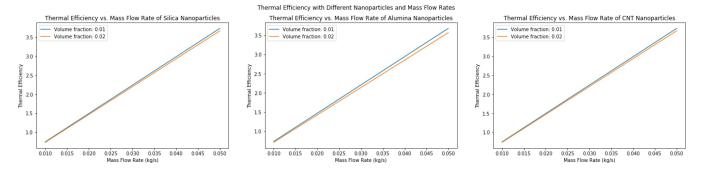


Figure 2: Thermal Efficiency with Different Nanoparticles with different volume fraction

properties of these nanofluids and their impact on thermal efficiency when used in building applications. Below is a detailed explanation of the simulation.

This section of the code is designed to evaluate and plot the thermal efficiency of nanofluids containing different types of nanoparticles (Silica, Alumina, and Carbon Nanotubes) across various inlet and outlet temperatures. The thermal efficiency is calculated and visualized to understand how these parameters influence the performance of nanofluids in HVAC systems (Fig. 3).

5 Conclusion

The use of nanofluids in building materials presents a transformative approach to enhancing energy efficiency and optimizing the thermal performance of buildings. The advancements in nanotechnology and material science have led to the development of nanofluids with superior thermal properties, stability, and practical applicability in HVAC systems. While challenges such as stability, production costs, and environmental impact remain, ongoing research and innovation continue to address these issues, paving the way for broader adoption of nanofluids in the construction industry.

The integration of nanofluids with renewable energy systems and the development of smart, environmentally friendly nanofluids hold significant potential for the future. These advancements not only contribute to energy savings and sustainability in buildings but also align with global efforts to reduce carbon emissions and mitigate climate change. As the research progresses, the implementation of nanofluids in building materials will likely become a standard practice, contributing to the creation of more energy-efficient and sustainable built environments.

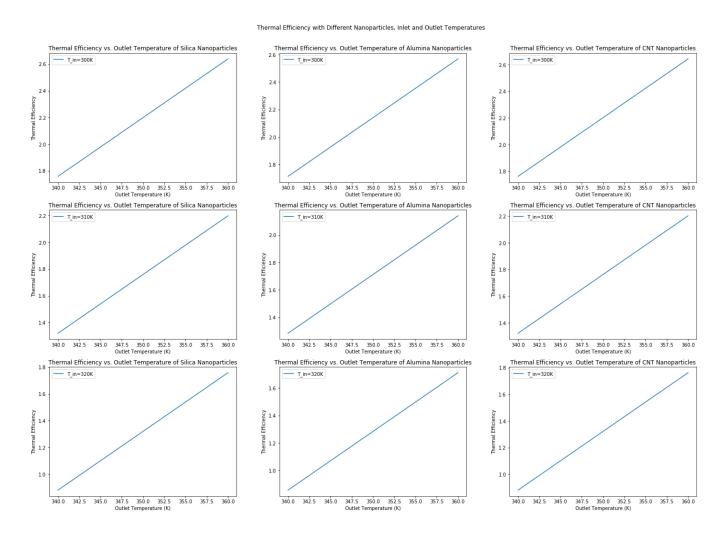


Figure 3: Thermal Efficiency with Different Nanoparticles, Inlet and Outlet Temperatures

References

- [1] A. Abbasi, K. Al-Khaled, M.I. Khan, S.U. Khan, A.M. El-Refaey, W. Farooq, M. Jameel, and S. Qayyum, Optimized analysis and enhanced thermal efficiency of modified hybrid nanofluid (Al2O3, CuO, Cu) with nonlinear thermal radiation and shape features, Case Stud. Thermal Engin. 28 (2021), 101425.
- [2] C. Aktemur and I.T. Ozturk, Energy and exergy analysis of a subcritical cascade refrigeration system with internal heat exchangers using environmentally friendly refrigerants, J. Energy Resources Technol. **143** (2021), no. 10, 102103.
- [3] T. Ambreen and M.H. Kim, Influence of particle size on the effective thermal conductivity of nanofluids: A critical review, Appl. Energy, **264** (2020), 114684.
- [4] H.R. Aviny, M. Ghasemi, and M. Fazlazad, Cardiovascular disease diagnosis using the combination of principal component analysis algorithm and regression tree, Trans. Machine Intell. 6 (2023), no. 2, 114–125.
- [5] M. Azarifar, M. Arik, and J.Y. Chang, Liquid cooling of data centers: A necessity facing challenges, Appl. Thermal Eng. 247 (2024), 123112.
- [6] M.M. Farooq Haidari, A. Shukoor Gul, B. Tatyana Valentinovna, and K. Elena Vladimirovna, Factors affecting teacher motivation (a case study of Aqchah district school teachers), Trans. Data Anal. Soc. Sci. 5 (2023), no. 3, 152–158.
- [7] J. Haddadnia, O.R. Seryasat, and H. Rabiee, Thyroid diseases diagnosis using probabilistic neural network and principal component analysis, J. Basic Appl. Sci. Res. 3 (2013), no. 2, 593–598.
- [8] S.A. Khan and R. Sharma, Eco-friendly synthesis of copper nanoparticles: An overview of the epoch-making role of natural resources, applications, and recent developments, Current Green Chem. 11 (2024), no. 3, 286–295.
- [9] D.P. Kulkarni, D.K. Das, and R.S. Vajjha, Application of nanofluids in heating buildings and reducing pollution, Appl. Energy 86 (2009), no. 12, 2566–2573.
- [10] A. Lekbir, S. Hassani, and S. Mekhilef, Techno-economic and life cycle assessment of a nanofluid-based concentrated Photovoltaic/Thermal-Thermoelectric hybrid system, Journal of Power Sources, **595** (2024), 234066.
- [11] S. Mukherjee, S. Chakraborty, R. Galun, Y. Estrin, and I. Manna, Transport phenomena in conduction mode laser beam welding of Fe-Al dissimilar couple with Ta diffusion barrier, Int. J. Heat Mass Transfer **53** (2010), no. 23–24, 5274–5282.
- [12] P.K. Namburu, D.K. Das, K.M. Tanguturi, and R.S. Vajjha, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, Int. J. Thermal Sci. 48 (2009), no. 2, 290–302.
- [13] M. Nedaei and G. Ramzgooyan, Effectiveness of spiritual leadership and organizational justice on the commitment and administrative integrity in Iranian National Tax Administration, Trans. Data Anal. Soc. Sci. 3 (2021), no. 1, 1–13.
- [14] R. Strandberg and D.K. Das, Influence of temperature and properties variation on nanofluids in building heating, Energy Conver. Manag. **51** (2010), no. 7, 1381–1390.
- [15] R. Taherialekouhi, S. Rasouli, and A. Khosravi, An experimental study on stability and thermal conductivity of water-graphene oxide/aluminum oxide nanoparticles as a cooling hybrid nanofluid, Int. J. Heat Mass Transfer 145 (2019), p. 118751.
- [16] R. Yaghoobi Karimi, S. Azadi, and O. Rahmani Seryasat, Studying the influences of visual neurofeedback below the range of Δ frequency band, Trans. Machine Intell. 6 (2023), no. 1, 1–9.