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Abstract— Neurodegenerative diseases refer to progressive
disorders of the nervous system that impair motor functions.
Using machine learning techniques to analyze and classify gait
data can lead to early diagnosis and better management of
treatments. This paper aims to classify neurodegenerative
patients and healthy individuals by analyzing a three-second
gait signal using a combination of effective features from cross-
recurrence quantification analysis (CRQA) and statistical
analysis. The dataset includes force signals from the left and
right feet of 16 healthy individuals (HC), 13 with amyotrophic
lateral sclerosis (ALS), 15 with Parkinson's disease (PD), and 20
with Huntington's disease (HD). The CRQA features extracted
include recurrence rate, determinism, averaged diagonal length,
length of longest diagonal length, entropy of diagonal length,
laminarity, trapping time, length of longest vertical line,
recurrence time of 1st type, recurrence time of 2nd type,
recurrence period density entropy, clustering coefficient, and
transitivity. Statistical features include mean, variance,
skewness, and kurtosis. A sequential feature selection algorithm
was used to select effective features. The classification accuracy
for the Ensemble (Bagged Trees) classifier was obtained using
10-fold cross-validation for the groups HC vs. PD, HC vs. HD,
HC vs. ALS, ALS vs. PD, ALS vs. HD, PD vs. HD, NDD vs. HC,
and ALS vs. PD vs. HD vs. HC, with the respective accuracy
values of 98.3%, 94.8%, 97.7%, 98.2%, 98.4%, 95%, 94%, and
93.5%. The results indicate that the effective fusion of features
and the ability of cross-recurrence quantification analysis to
quantify the synergistic relationship of the dynamic movements
of the left and right feet provide an effective means of diagnosing
diseases during the short 3-second walking period.
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I. INTRODUCTION

EURODEGENERATIVE disease (NDDs) have

affected over 57 million people worldwide, and this

number is expected to increase significantly by 2050 [1].
NDDs refers to the process of damage or death of nerves in
different areas of the nervous system, leading to the loss of
function and structure of neurons. NDDs include
amyotrophic lateral sclerosis (ALS), Parkinson's disease
(PD), and Huntington's disease (HD). The symptoms of
neurodegenerative diseases, which are directly related to
neuron function, include changes in executive functions,
speech, memory, pain, and muscle weakness [2,3]. The most
common symptoms are changes and fluctuations in gait
patterns, such as slow walking and a stooped posture [4],
which result in motor dysfunction [5]. Healthy individuals
(HC) typically exhibit a rhythmic pattern of alternating left
and right leg movements in contact with the ground [6]. This
process naturally occurs with coordination between the
central nervous system and the body’s muscles, such that step
lengths are nearly constant and coordinated, with alternating
movement of the left and right legs. In individuals with
Parkinson’s disease (PD), there are fundamental disturbances
in muscular control and movement coordination, which,
according to Hasdorff's theory [7], result in shorter and more
variable step lengths. These disturbances manifest as a
'shuffling gait' (short, closely spaced steps), leading to
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reduced gait speed, shorter step length, and increased
difficulty in walking [8]. In comparison to Parkinson's
disease, walking in individuals with Huntington’s disease
(HD) is characterized by involuntary fluctuations and
unpredictable movements during the step cycle. In HD, the
abnormal accumulation of proteins in the brain causes motor
impairments, leading to decreased stability and rhythm in
walking [9]. Patients with HD often take non-alternating and
variable steps, which may result in either shorter or longer
step lengths. These fluctuations make movement control
more difficult for them [10]. Walking in ALS patients is
affected by severe muscular weakness, leading to a reduced
ability to take natural and coordinated steps. In these patients,
step lengths are typically longer than usual, but each step
requires more time, and the movements are generally less
coordinated and less uniform [11,12].

The differences in gait patterns across various diseases can

serve as a criterion for disease classification. In many
neurological diseases, early diagnosis not only helps
accelerate treatment but may also have a significant impact
on altering the treatment course [13-14]. However, in cases
with mild disease symptoms, clinical specialists may be
unable to make an accurate diagnosis. In such cases, using
machine learning methods for timely diagnosis, disease
classification, and precise assessment of its progression can
play a vital role in improving the treatment process [17]. The
following section reviews recent research on the analysis of
motor  signals  for  diagnosing and classifying
neurodegenerative diseases, focusing on applying recurrence
quantification analysis (RQA) features.
Faisal et al. [18] designed the NDDNet model for identifying
neurodegenerative diseases by processing force signals and
gait pattern features. This method was able to detect abnormal
gait patterns with an accuracy of 96.75%. Zhou et al. [19]
compared seven deep learning architectures for classifying
NDD patients using gait data. Results showed that the ResNet
model performed better in distinguishing healthy individuals
from neurodegenerative and Parkinson’s patients, while the
TST model achieved the highest accuracy in detecting ALS
and HD from the healthy group. Visvanathan et al. [20]
extracted features using switching state-space decomposition
and Shannon entropy. Classification was performed by a
genetic algorithm-optimized perceptron, achieving an
accuracy of 98.4%. Zhou et al. [21] designed a dual-channel
LSTM model to combine time-series features and the
recorded force signal from NDD patients. The results of these
studies are reported in Table 3.

Recurrence quantification analysis (RQA) is a suitable
tool for processing nonlinear and dynamic data, which is used
in areas such as detecting abnormal heartbeats [22].
Subsequently, recent studies on NDD classification using
RQA in gait patterns have been reviewed. Prabhu et al. [23]
extracted eight features from RQA for the time series gait data
of Huntington’s, Alzheimer’s, Parkinson’s patients, and
healthy individuals, evaluating the efficacy of RQA features
such as stride, stance, and swing interval for classifying these
patients. Prabhu [24] extracted RQA-based features along
with statistically significant features determined by the
Mann-Whitney test, including minimum, mean, maximum,
skewness, standard deviation, and kurtosis from the gait
signals of healthy individuals and neurodegenerative disease
patients over a five-minute period. Then, they employed the

Hill Climbing feature selection method to choose an effective
combination of features. Subsequently, they used
probabilistic neural network (PNN) and support vector
machine (SVM) classifiers, along with leave-one-out cross-
validation (LOOCV), to classify the two classes of NDD
diseases.

Fam [25], using a qualitative approach, transformed the
time series of walking into texture images using fuzzy
recurrence plots to gain a deeper intuitive understanding of
disease patterns. Goshvarpour et al. [26] reconstructed the
delayed Poincaré map from the gait patterns of the right and
left foot. Then, using polar indices, they quantified these
maps and employed a neural network classifier for binary
classification. Azleglu et al. [27] conducted a multi-class
classification of these diseases to diagnose PD, ALS, and HD
diseases from groups of NDD patients and healthy
individuals. Methods such as detrended fluctuation analysis
(DFA), dynamic time warping (DTW), and autocorrelation
coefficient (AC) were used to extract features from the
ground reaction force signal. Finally, SVM, KNN, and neural
networks were also applied to compare the performance of
the classifiers. The results indicated that DFA performed
better in diagnosing ALS, DTW in diagnosing PD, and AC in
diagnosing HD.

Despite extensive research conducted in recent years on

gait pattern analysis, a fundamental challenge remains in the
need for relatively long signals for accurate analysis.
However, reducing the signal recording duration has gained
significant attention, since recording long signals not only
causes user fatigue but can also reduce the user-friendliness
of analytical methods. Therefore, it is necessary to develop an
efficient method capable of accurately recognizing gait
patterns within shorter time intervals.
The main objective of this study is to present an innovative
approach for classifying gait patterns of individuals with
neurological disorders compared to healthy individuals,
based solely on a short three-second signal segment. To this
end, the proposed method utilizes features from Cross
Recurrence Quantification Analysis (CRQA) as an effective
tool for extracting dynamic and synergistic information from
the right and left foot force signals during walking.

Il. METHODS

Fig. 1shows the overall framework of the paper, which
includes the database and the steps involved, such as data
preprocessing, extraction of CRQA and statistical features,
feature selection, and classification using machine learning
algorithms. In this process, the right and left foot ground
reaction force (VGREF) signals were initially used as the input
data. In the data preprocessing stage, all input data were
thoroughly and visually examined, and those affected by
external factors, which caused changes in the signal shape,
were removed from the dataset. Then, the signals were
divided into 100 three-second windows. In the feature
extraction stage, since gait signals are nonlinear, non-
stationary, quasi-periodic, and noisy, 13 features from cross-
recurrence quantification analysis (CRQA), along with
statistical features such as mean, variance, skewness, and
kurtosis, were calculated for each input window. These
features were calculated and extracted separately for both the
left and right feet. Afterward, all statistical and CRQA
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features were combined to create a comprehensive set. To
reduce the dimensionality of the extracted features and select
an effective feature combination, the sequential feature
selection (SFS) algorithm was used. In this stage, the features
that had the most significant impact on the model’s
performance were selected without reducing the model's
accuracy [28, 29]. Finally, the features chosen by SFS were

input into the Ensemble (Bagged Trees) machine learning
model for binary and multi-class classification. Additionally,
cross-validation techniques were employed to evaluate the
accuracy of the classifiers and the model's performance. Each
of these steps will be discussed in detail in the following
sections.
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Fig. 1. Overall diagram of the proposed method

A. Database

Hasdorff and colleagues presented the VGRF database for
neurodegenerative diseases used in this study [30]. The data
were collected using eight sensors that separately record the
distributed force under each foot. A total of 64 recordings
from 48 participants were available, including 20 patients
with Huntington’s disease (13 females and 7 males; 29-71
years), 15 patients with Parkinson’s disease (5 females and
10 males; 44-80 years), 13 patients with amyotrophic lateral
sclerosis (3 females and 10 males; 36-70 years), and 16
healthy controls (14 females and 2 males; 2074 years). On

Separation Separation Separation
of ALS of PD from of HD from
from HC HC HC

Separation
of NDD
from HC

average, ALS and Parkinson’s patients were older than
participants in the other two groups. The healthy controls and
Huntington’s patients were predominantly female, whereas
the Parkinson’s and ALS groups were predominantly male.
The database includes two types of data: force signal data and
time-series features derived from the force signal. In this
study, only the force signals of the left and right feet of the
participants were used. The force signals were recorded for
five minutes at a sampling frequency of 300 Hz. Table 1
provides a summary of the demographic information and
features of the individuals, including weight (kg), number,
gait speed (m/s), and age (years) of the participants.

TABLEI
Demographics of the Subjects in the Neurodegenerative Disease Database

Class Number Ages (Year)
PD 15 46.65 +12.6
HD 20 55.62 +12.83
ALS 13 66.8 £10.85
HC 16 39.31+18.51

Weight (kg) Gait Speed(m/s)
75.07 £16.9 1.0£0.2

73.47 £16.23 1.15+0.35
77.11+21.15 1.05+0.22
66.81 +11.08 1.35+0.16
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B. Data Preprocessing

In the first step, it should be noted that the number of
individuals in different classes is not the same. To standardize
the number of participants in each group, 20 individuals were
selected to match the highest number of individuals in the HD
group for the PD, HC, and ALS groups, with fewer
participants. Participants were recruited from the beginning
based on the shortage of people in each group until the
number reached 20.

The five-minute recorded gait signals were divided into
100 three-second windows to increase the number of
available samples, resulting in 900 non-overlapping samples.
In a five-minute recording of individuals walking down a
corridor, they were instructed to continue walking in the
opposite direction after reaching the end of the path. During
this process, a set of noisy signals were generated at the
beginning, middle, and end of the samples. After reviewing
the samples, the changes in the noisy and healthy windows
were compared, and a threshold was set for these windows. If
the changes in the 900 sample windows were below the
threshold, the window was identified as noisy and eventually
removed.

C. Feature Extraction

Considering the gait characteristics of patients with
Parkinson’s disease, Huntington’s disease, amyotrophic
lateral sclerosis, and the healthy control group presented in
Table 2, disease diagnosis based solely on gait parameters is
challenging and may lead to errors. Therefore, it is essential
to investigate the hidden relationships among gait signals
associated with these three neurodegenerative diseases. Such
relationships, in turn, enable the automation of patient
classification based on gait signals in neurodegenerative
disorders [31].

TABLE Il
Symptoms and Gait Characteristics in Progressive
Neurological Disorders: Parkinson’s Disease, Huntington’s
Disease, and Amyotrophic Lateral Sclerosis [31].

NDD Symptoms Gait Characteristics
Hyperkinetic Decreased walking
movement, speed
Bradykinesia, Increased cadence
Parkinson Hypertonia, Tremor, Reduced stride
Disease Flexed posture, length
Festination, Loss of Reduced swing time
postural reflexes, and Higher double
freezing support time
Decrease walking
Uncontrolled speed
movements Decrease step/stride
Huntington Emotional problems length
Disease Psychiatric disorders Increase stance-
Loss of thinking swing phase
abilities Decrease single
support time
Perturbations in the Decreased \(/jvalklng
Amyotrophic fluctuation dynamics, speg id
Lateral , altered gait rhythm, Increase_ Et.rll. €
Sclerosis weakness in legs, time variability
Increased stride
feet, or ankles. time

In the early stages of neurodegenerative diseases, subtle
changes in motor signals can be observed that time-domain
features cannot detect. It seems that feature extraction from
the force signals of both feet is a suitable choice for analyzing
gait motor signals, as these signals exhibit nonlinear, non-
stationary, quasi-periodic, and noisy oscillations in
neurodegenerative disorders [24]. According to previous
studies [23], the RQA technique has been introduced as one
of the most effective methods for representing nonlinear
dynamics patterns in individuals' walking. The feature
extraction process used in recent papers reduces real-time
limitations such as noise and non-stationarity of motor
signals. In this study, cross-recurrence quantification analysis
is used to take advantage of the simultaneous information
from the left and right foot gait signals and calculate the
interrelations between them. Therefore, the CRQA technique
is proposed as an efficient approach for analyzing nonlinear
and non-stationary dynamic patterns in individuals with
neurodegenerative disorders. This approach can also clearly
reveal synergistic dynamic relationships between the lower
limbs.

To this end, 13 effective CRQA features were extracted,
including recurrence rate, determinism, averaged diagonal
length, length of longest diagonal length, entropy of diagonal
length, laminarity, trapping time, length of longest vertical
line, recurrence time of 1st type, recurrence time of 2nd type,
recurrence period density entropy, clustering coefficient, and
transitivity. Based on the embedding theorem, CRQA
examines the cross-recurrent nature of force signals in the
reconstructed phase space [32]. This theorem helps in better
understanding the dynamics and gait patterns.

To determine the recurrence plot and chaotic features of
CRQA, the optimal embedding dimension and time delay
parameters were estimated using the false nearest neighbor
algorithm and mutual information. The 100 windows were
used with 900 samples, each considered an independent
signal sample for extracting CRQA features. Then, to adjust
the embedding dimension and time delay, the values of these
parameters were determined for all individuals from different
groups, and their median value was selected as the criterion
[33, 34]. In total, 39 effective CRQA features were extracted
from each window, calculated three times separately with
different time delays, embedding dimensions, and thresholds.
Additionally, statistical features were used to obtain
meaningful quantitative gait parameters. The CRQA features,
along with statistical features such as mean, variance,
skewness, and kurtosis from the signals of both feet, were
combined, resulting in a total of 47 extracted features. All
these features were independently calculated from each signal
(including both the left and right feet). The CRP toolbox in
MATLAB was used for the visual representation of the force
signal and the quantitative calculations of CRQA features.
Further explanations of the features derived from CRQA and
statistical features are provided below.

Cross-Recurrence Quantification Analysis Features

Gait signals are inherently nonlinear and are deeply
coordinated with the brain's complex activities. CRQA is a
suitable tool for processing nonlinear and dynamic data that
continuously change. In this study, CRQA was used to
investigate the dynamic structures of stepping by quantifying
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the recurrence plots (RP). The RP visually illustrates the
spatial and temporal correlations between the features related
to the left and right foot VGRF and is presented as a matrix.
The mathematical relationships for the recurrence plot are as
follows:

Rije=0(e—||%-y)ij=1..N €))

In this case, RP is the recurrence plot matrix, ||%; — ||
represents the difference between the step distances of the left
and right feet, ¢ is the threshold value, and @ is the Heaviside
function. The 13 features derived from CRQA are as follows:

e Recurrence Rate

The recurrence rate is a measure of the density of
recurrence points in the recurrence plot, calculated as the ratio
of the number of recurrence points to the total number of
points in the recurrence plot (N), as calculated in equation (2).

N

1
RR() = > Ry (o) @
i,j=1
In this regard, the expression Zjivj: . Rij (¢) represents the
sum of the recurrence matrix, or in other words, the number
of recurrence points, where the variable N is the length of the
time series and the term N2 represents the total number of
points in the plot.
e Determinism
Determinism, or predictability, is one of the features based
on the histogram of diagonal lines and is defined as the ratio
of the recurrence points that form diagonal structures with a
minimum length to all recurrence points, as given by equation

@3).

N Lp(
DET=7()

[=lmin

i 1P

In this regard, [ represents the length of the diagonal
structure, l,,;, is the minimum length of the diagonal
structures, N is the length of the time series, and P is the
histogram of the diagonal line lengths. The histogram of the
diagonal lines is calculated according to equation (4), where
the symbol & has been omitted for simplicity in the CRQA
measurements.

3)

N
P(g,l)=— Z (1= Ri_1,j-1(e)(1
ij=1
-1

— Rit1,j+1(€)) 1_[ Risr,j+k(€)
P@eD) = P(D) - @

e Averaged Diagonal Length
The averaged diagonal length is obtained based on the
histogram of diagonal lines. The averaged diagonal length
represents the average time two path sections are close to each
other and can indicate prediction time. This feature is
obtained by equation (5):

2L PD
" T, PO ®

[=lmin

e Length of the longest diagonal length
The length of the longest diagonal line and its inverse are

recognized as divergence features related to the diagonal

lines, which are obtained by equations (6) and (7).

Liax = max({l;;i=1,..,N;}) (6)
1

DIV = 7

Lmax

In these relations, the parameter N; represents the total
number of diagonal lines, which is calculated by equation (8):

N, = Z P(D) (8)

12lmin

e Entropy of Diagonal Line
The entropy of the diagonal line measures the complexity
and randomness of the diagonal lines in the recurrence plot,
indicating nonlinear behavior and irregularity in the system.
It is calculated by equation (9).
N

ENT = — Z p(D) In(p(D) 9

l=line

In this relation, p(1) is the probability of finding a diagonal
line of a specific length I, which is calculated by equation
(10).

P(l
PO =57

(10)
e Laminarity

The laminarity feature indicates the occurrence of layered
states in the system without describing the duration of these
layered stages. This feature is calculated as the ratio of the
recurrence points that form vertical structures to the total set
of recurrence points, as shown in equation (11).

N
LAM = Z—”:,;’mi" vPW) (11)
2p=1V P(V)

In this regard, v is the length of the vertical structure, v,,;,,
is the minimum length of the vertical structures, N is the
length of the time series, and P is the histogram of the vertical
structure lengths. The total number of vertical lines with
length v in the recurrence plot is calculated as the histogram
of the vertical lines, according to equation (12).

N v-1
P) == ) =Ry ) =Ry) [ [Riyme  (12)
k=0

ij=1

e Trapping Time
Trapping time refers to the duration for which the system
remains in a specific repetitive state. This feature is calculated
by considering the minimum length of the vertical structures
and can assist in identifying the steady-state conditions of the
system. It is calculated by equation (13).
g:vml—n v P(v)

> P()

V=Vmin

TT = (13)

e Length of Longest Vertical Line
The length of the longest vertical line, similar to the length
of the longest diagonal line, is obtained using equation (14).
The length of the longest vertical line in the recurrence plot
indicates the maximum period of invariance in the system.

Vmax = max({vi}?]:v1) (14’)
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e Recurrence time of 1st type
The time or number of steps for the first recurrence in the
data, which indicates the time when the repetition of patterns
begins. This feature is obtained according to equation (15).
(1) . .
T = - 15
{ k Jr+1 ]k}keN (15)
Due to possible tangential movements, some recurrence
plots in R; may be associated with first recurrence times

Tk(l) = 1. To obtain the true recurrence points, all consecutive

recurrence points with Tk(l) = 1 are removed from the set R;,
and the new set is obtained according to equation (16):

R_{]l’ }

e Recurrence time of the 2nd type

The recurrence time of the 2nd type refers to the time
interval between the start of consecutive vertical recurrence
structures in the recurrence plot. It is obtained through
equation (17) or equation (18).
{Tk(2) =jk+1 —jk'}k €N

{Tk(Z) = Jes1 _]k}

(16)

17)
(18)
keN
e Recurrence period density entropy

The entropy of the recurrence period density represents the
normalized entropy of the distribution of recurrence times in
the time series, indicating the complexity level of a system.
This parameter is calculated by equation (19).
—YImax p(i) In P(i)

InTax

(19)

Hyorm =

In this context, Ty, is the maximum recurrence time, and
P is the probability density of recurrence times, which is
calculated by equation (20).
R(T)

ZTmax R ( )

e  Clustering Coefficient
The clustering coefficient is a feature that describes the
complex recurrence network. This network consists of nodes
and edges, where the nodes represent the state-space vectors,
and the edges represent the recurrences.
1 (i,))eEE
Ry =R = {0 (i,j))¢E

P(T) = (20)

(21

Here, R is the adjacency matrix, i and j are the nodes of
the set V of the network vertices, and E is the set of edges of
the network. The clustering coefficient represents the
likelihood of adjacency between any two occurrences of each
state and is calculated using equation (22).

22 RmsRmsRms
jk=1

e  Transitivity
Transitivity is the probability that two neighbors of a given
state are also neighbors of each other, and the relationship
among three nodes is expressed in equation (23).
Aij = Aik = 1'Ajk = 1

(22)

(23)

Here, i, j and k are nodes from the set V of vertices. The
transitivity feature is calculated using equation (24).

N
m,e pm,& pMm,&
2, Ryj Rjj Ri
i,j,k=1

N

E meE pm,e
. Rl] Rkl
i,j,k=1

Statistical Features

The computed statistical features include characteristics
such as mean, variance, kurtosis, and skewness of the VGRF
signals from the left and right foot, measured during only
three seconds of walking in the shortest possible duration.

e Mean

The mean is defined as the average value of the stepping
signal. It is calculated by summing the signal values x; and
dividing by the total number of samples N:

_ Tiix

N

C= (24)

(25)

e Variance
Variance is a squared measure of the standard deviation. It
is calculated based on the sum of the squared differences
between each element x; and the mean x, divided by the total
number of samples. Variance is computed using equation
(26):

> G = w)?

N =1 (26)

Var =
e  Skewness
Skewness is used as a measure of asymmetry in the
amplitude distribution relative to the mean and can be
calculated as follows:
1 on
¥ 2 (Al = u)?
Sk=NZi=tT @7)
Varz

e Kurtosis
Kurtosis measures the tendency of a signal’s distribution
to produce outlier values and is calculated as:

1 on .
N Zi:1(Al —u)*

Ku =
u Var?

(28)

The above statistical features were independently
extracted from each signal sample for both the left and right
foot. Finally, in this study, gait parameters were analyzed by
combining effective CRQA and statistical features derived
from a short 3-second gait period across both pathological
and healthy individuals.

D. Feature Selection

The Sequential Feature Selection (SFS) algorithm is a
feature search technique used to create a subset for model
design and reduce the dimensionality of the original features.
This technique is employed to minimize the mean squared
error and maximize the accuracy percentage. Let S be the set
of all features, N the number of features to be selected, Sy the
set of selected features, and acc(Sy) the classification
accuracy for this set. Initially, Sy is considered an empty set.
Then, each feature is evaluated by the classifier individually,
and the feature with the highest accuracy is added to Sy. In
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the next step, pairwise combinations of features, including the
first selected feature and the other features, are examined to
identify the best combination, which is then chosen as the
new Sy. Subsequently, if adding a new feature improves
performance, it is added to the set; otherwise, the weakest
feature is removed [35-40]. This process continues until the
desired number of features is reached. As an efficient tool in
machine learning and analysis of complex data, the SFS
algorithm plays a significant role in optimizing models
(reducing classifier computations), improving prediction
accuracy, and selecting the most effective features [32, 33].

E. Classification

The Ensemble method using Bagged Trees was employed
as a powerful and effective approach for classifying. This
method is considered suitable for this research due to its
outstanding ability to analyze and classify data, as well as its
capacity to distinguish between different groups. The use of
the Ensemble Bagged Trees technique enables the modeling
of complex nonlinear relationships, effectively extending the
class separation margins and providing significant resistance
to noisy data.

F. Cross Validation

A 10-fold cross-validation technigue was used to evaluate
the classifiers' performance. In this technique, the data is
randomly divided into 10 parts, and the classifiers are
iteratively evaluated on the data of each part. In each cross-
validation iteration, nine parts of the data are used for training
the model, and the remaining part is used as the test data to
assess the model's performance. Finally, the results from the
10 iterations are combined to provide a final evaluation of the
classifier's performance. Cross-validation prevents errors
caused by random data splitting and overfitting, enabling a
more accurate evaluation of the classifiers.

G. Evaluation Metric

The accuracy metric was used to evaluate the performance
of the model. Accuracy is calculated as the ratio of the
number of correct predictions to the total number of samples.
This metric widely facilitates the simulation and evaluation
of the model’s performance under various conditions.
Accuracy is computed using the numbers from the confusion
matrix according to equation (29), where TP, TN, FP, and FN
are defined as follows:

TP (True Positives): The number of samples correctly
identified as positive.

TN (True Negatives): The number of samples correctly
identified as negative.

FP (False Positives): The number of samples incorrectly
identified as positive.

FN (False Negatives): The number of samples incorrectly
identified as negative.

B TP +TN
" TP+TN +FP+FN

Acc (29)

I1l. RESULTS

This study provides valuable information regarding the
effectiveness of combining the relevant CRQA features and

statistical measures that describe the changes in nonlinear and
non-stationary gait signals for the quantitative and qualitative
assessment of NDD patients. Therefore, by implementing
CRQA on the synchronized left and right foot gait signals of
individuals, different groups are classified. Cross-recurrence
plots derived from the CRQA technique are used to represent
the texture patterns of physiological gait signals visually, and
their parameters are measured through quantitative cross-
recurrence analysis. These plots contain structures such as
diagonal lines, vertical lines, and isolated points. Fig. 2 shows
the distinction between different groups of NDDs using these
plots. The texture patterns in the recurrence plots of healthy
individuals are notably regular and repetitive. In this group,
all patterns appear repeatedly and with a specific order over
three seconds, indicating coordination and stability in the
stance and swing intervals of the main signal. These features
reflect the specific gait cycle characteristics of healthy
individuals, where each stance and swing interval repeats
regularly and consistently. In contrast, the texture patterns in
the recurrence plots of individuals with ALS are significantly
more complex. In these plots, two types of black squares are
observed, one larger and the other smaller. These squares
represent the stance phase and swing phase, respectively. It is
noteworthy that the size of the larger squares is larger
compared to the healthy and other patient groups, indicating
increased stance intervals in individuals with ALS. The
recurrence plots of individuals with PD show more irregular
features. Specifically, the black squares in these plots are
irregular and scattered, clearly indicating instability in step
and swing intervals. These irregular changes are notably more
apparent when compared to healthy individuals. Finally, the
recurrence plots of individuals with HD have the most
irregular yet distinct features among other neurological
disorders. In this group, the size of the two types of squares
is almost identical, indicating no significant difference
between the stance and swing intervals in these individuals.
These features represent a more complex and irregular pattern
compared to other patient groups. These analyses
demonstrate the effectiveness of the CRQA method in
describing the nonlinear and non-stationary dynamic changes
in walking and distinguishing between different groups of
neurodegenerative diseases.
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Fig. 2. Quantitative cross recurrence analysis of four classes of neurodegenerative diseases and healthy individuals. The ambiguous sections of the RP
diagrams indicate the presence of more frequent data points. The vertical lines represent the stability of the system's state and its lack of change in the current
state for a short period.

TABLE III

Comparison of the Accuracy Percentage Between the Suggested Method and the Recent Literature

Classification Task (21] [26] [27] Proposed Algorithm

HC vs PD 94.96 91.93 - 98.3

HC vs HD 97.33 92.92 - 94.8

HC vs ALS 97.43 91.13 - 98.7
PD vs HD B - - 95

PD vs ALS B - - 98.2

ALS vs HD B - - 98.4
NDD vs HC 96.42 - - 94

- - 93.5 93.5

PD vs HD vs ALS vs HC
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This study aims to classify short-time two-class and
four-class data using Ensemble (Bagged Trees) with
ground reaction force signals as the input. In machine
learning, one of the main challenges is creating extensive
changes in the gait signal datasets to provide the best
training set for the algorithms. These changes include
signal enhancement and feature extraction to optimize
classifier performance. Initially, a set of noisy signals
located at the beginning, middle, and end of the samples
was generated. Then, the noise was removed using the
aforementioned preprocessing methods, and the enhanced
signals were prepared for subsequent analyses. The feature
extraction phase is one of the most crucial steps in
improving classifier performance, as effective and
meaningful features can provide a better representation of
signal patterns and increase classifier accuracy. In this
study, effective statistical and CRQA features were
extracted from three seconds of gait force signals of both
legs from the patient groups and healthy individuals. The
SFS algorithm was used to select the optimal features. A
set of features was selected, including recurrence rate,
entropy, average diagonal length, trapping time,
recurrence period density entropy, recurrence time of 1st
type, transitivity from CRQA, skewness, and kurtosis from
statistical features. Ultimately, 17 features out of 47
features were chosen. In this study, eight binary
classifications were considered, including ALS vs. PD,
ALS vs. HD, PD vs. HD, ALS vs. HC, PD vs. HC, HD vs.
HC, NDD vs. HC, and the four-class classification ALS
vs. PD vs. HD vs. HC. The results obtained are presented
in Table 3. After evaluation with various classifiers, the
best accuracy for disease and control groups, such as HC
vs. ALS, HC vs. PD, and HC vs. HD, were 98.7%, 98.3%,
and 94.8%, respectively, using Ensemble (Bagged Trees).
The accuracy for two disease groups, such as HD vs. PD,
PD vs. ALS, and HD vs. ALS were 95%, 98.2%, and
98.4%, respectively. The accuracy of separating disease
classes from the healthy group (NDD vs. HC) was 94%.
Up to this point, all separations were performed in a binary
classification. In the four-class classification based on
ALS vs. PD vs. HD vs. HC, an accuracy of 93.5% was
achieved. These results demonstrate that the proposed
algorithm, based on the combination of CRQA and
statistical features of the three-second time window,
effectively improves the performance of Ensemble
(Bagged Trees) in classifying different groups of
neurodegenerative patients and healthy individuals.

TABLE IV
Four-class Classification Accuracy of the Ensemble
Classifier Using CRQA Features, Statistical Features, and
their Combination
Accuracy of the four-class
classification

Feature Set

CRQA Features 88.74
Statistical Features 83.69

CRQA Features + Statistical

Features 93.55

Table IV presents the four-class classification accuracy

for each feature set to compare the effectiveness of CRQA
features, statistical features, and their combination. The
results indicate a complementary effect of the two feature
sets for classifying neurodegenerative diseases, such that
their combination achieves the highest classification
accuracy.

1V. DiscussiON AND CONCLUSION

Gait analysis and extracting relevant features are
recognized as primary tools for assessing the status of
neurodegenerative diseases and supporting therapeutic
processes. In this study, fluctuations and dynamic
distinctions in the gait of healthy and sick individuals were
extracted from just three seconds of ground reaction force
signals. One of the key points of this research is the
simultaneous use of information from both the left and
right feet, which leads to information synergy and
improves accuracy in identifying different states. Feature
extraction from the force data represents the synergistic
dynamic relationship between the left and right feet and
more accurately reflects the complex interactions among
the lower limbs. Additionally, it has a positive effect on
identifying different patterns and is capable of detecting
characteristic changes between different disease groups.
The Ensemble (Bagged Trees) model, along with 10-fold
cross-validation, was used to classify various groups to
improve the classification system's performance and
achieve higher accuracy.

In previous studies [18-27], the recording duration of
signals was five minutes, and the long recording time
represented a practical limitation. In contrast, the present
study considered a much shorter recording duration of 3
seconds. In study [26], using five-minute data, the average
accuracy for three disease classes versus healthy subjects
reached 91.9%, whereas the present study, using three-
second data, achieved an average accuracy of 97.26%.
Furthermore, the results of the study [21], which utilized
both force signals and time-series features over a five-
minute walking period, showed lower accuracy in
distinguishing Parkinson’s disease from healthy subjects,
as well as ALS from healthy subjects, compared to the
proposed method.

To further strengthen the clinical applicability of the
proposed method, it is recommended to evaluate its
generalizability across diverse walking environments,
such as inclined, uneven, or obstacle-laden surfaces.
Numerous studies have shown that gait parameters—
including walking speed, step length, symmetry, and
plantar  pressure distribution—are influenced by
environmental conditions and surface type. For instance,
study [41] demonstrated that walking speed, step length,
and gait symmetry vary significantly in outdoor paths,
such as grass or sidewalks, compared to flat indoor
surfaces. Additionally, another study [42], using pressure-
sensing insoles, reported that inclined, flexible, or uneven
surfaces substantially affect vertical ground reaction
forces and center of pressure location. These findings
highlight the limitations of studies conducted solely on flat
and straight paths and indicate that gait assessments should
be performed under varied environmental conditions for
true generalizability and clinical relevance. Expanding
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testing in this manner, particularly for daily-life scenarios
such as walking at home or on urban pathways, is expected
to enhance the accuracy, stability, and reliability of gait
analysis and recognition models.

This research aims to provide an efficient
computational approach for identifying the dynamics of
gait in healthy individuals compared to various conditions
of patients with neurodegenerative disorders by extracting
precise features and using a short time window. The
advantages of using a short time in medical processes
significantly impact the efficiency and comfort of both
users and specialists. Short time not only prevents user
fatigue but also helps doctors to engage in the diagnosis
and treatment process quickly and more accurately.
Additionally, using a short time allows researchers to use
sensors like Kinect for data recording. For example, when
a patient enters a doctor's office, the gait signals of the
patient are recorded by Kinect sensors during a 3 to 4-
second movement (depending on the room size) toward
the doctor. Then, the data is analyzed using the proposed
method, and the type and condition of the disease are
diagnosed. Non-invasive and low-cost sensors like Kinect
are considered effective tools for diagnosing
neurodegenerative disorders. The results obtained from
this research successfully develop a novel approach for
gait analysis in NDD patients using diverse feature
extraction and machine learning-based classification
algorithms.
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