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Abstract

In this paper, we are interested in finding regions of some quaternionic polynomials with restricted coefficients. We
relax the hypothesis and put less restrictive conditions on the coefficients of the quaternionic polynomial, and thereby
generalize some known results by virtue of a maximum modulus theorem. The obtained results for the class of
quaternionic polynomials generalize some recently proved results about the distribution of zeros of polynomials.
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1 Introduction

The study of the regional locations of the zeros of polynomial in geometric function theory is of relevance to
both mathematics and practical fields like physical systems. The distribution of zeros of polynomials with restricted
coefficients has received a great deal of attention in the beginning of 20th century, and there have been a number of
significant advancements. The first result concerning the location of zeros of a polynomial was probably due to Gauss
[6]. In order to obtain better and sharp zero bounds, it is desirable to put some restrictions on the coefficients of the
polynomial. Regarding the condition on the coefficients of a polynomial, the below given elegant result was initially
put by Enestrém and Kakeya independently. The Enestrom-Kakeya theorem is one of the most well-known findings
regarding the location of zeros with significant implications for geometric function theory, which is stated as follows.

n
Theorem 1.1. If P(z) = > as2°® is a polynomial of degree n with real coeflicients satisfying a,, > an—1 > -+ > ag >
=0

0, then all the zeros of P(z) lie in |z] < 1.

The above classical result is particularly important in the study of stability of numerical methods for differential
equations and is starting point of rich literature concerning its extensions, generalizations and improvements in several
directions (for instance, see papers [2],[4],[14],[5],[9],[10],[11], [12],[13]).

Below result was obtained in 1967, Joyal et al. [II] extended Theorem to those complex polynomials whose
coefficients are monotonic but not necessarily non-negative.
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Theorem 1.2. If P(z) = asz° is a polynomial of degree n with real coefficients satisfying a,, > a,_1 > -+ > ao,

n
s=0

then all the zeros of P(z) lie in |z| < an—|a0|+ao|.
an

Aziz et al. [I] relaxed the hypothesis of Theorem and obtained the following.

n
Theorem 1.3. If P(z) = > a4z® is a polynomial of degree n with real coefficients such that for some k > 1 satisfying ka, >
s=0

ka,, —
ap—1 > -+ > ap, then all the zeros of P(z) liein |z +k — 1] < a|ao|—+—|ag|'
an

2 Preliminaries

In the past decade, the holomorphic functions of quaternions were invented and developed by Irish mathematician
William Rowan Hamilton in 1843 and are essentially a generalization of complex numbers to four dimensions. The
set of quaternions is denoted by H in the honour of Sir Hamilton and they form a non-commutative division ring as
multiplication of quaternions is non commutative in general. For ¢ € H is of the form ¢ = a+ i +~vj + dk € H, where
a,,7,0 € R, and 4, j and k are the unit vectors along the three spatial axis and satisfying i = j2 = k? = ijk = —1.
Every element ¢ = a+ Bi+j + 0k is composed of the real part R(«) = ¢ and the imaginary part 3(q) = i8+ jy + kd.
Since the quaternions contain real numbers (when vector part is zero), so the field of real numbers is isomorphic to a
subset of the quaternions. Moreover the set of quaternions forms a four dimensional vector space over R with {1, 1, j, k}
as a basis. The conjugate of a quaternion ¢ = a+1i8+ jvy+ k¢ is denoted by ¢* and is defined as ¢* = a—i8 — jy — k.
In addition, the norm (or length) of a quaternion ¢ = a + 8 + jv + k¢ is given by

lal = Vaa™ = Va2 + 52 + 42 + 2.

We define the angle 6 between two quaternions ¢ = a; + i1 + jy1 + kd1 and ¢ = as + i02 + jv2 + k2 as

Z(q1,q2) = cos™ " (a1a2 + 8162 + M2 + 61(52>

llg1[ll g2l

The class of all n'" degree quaternionic polynomials is denoted by
P, = {P(Q);P(Q) = quas} -
s=0

In 2020, Carney et al. [4] proved the following extension of Theorem to the quaternionic polynomial p(q).

Y

Theorem 2.1. If P(q) = Y."_, q%as is a polynomial of degree n with real coefficients satisfying a, > a,—1 > ---
ap > 0, then all the zeros of P(q) lie in |g| < 1.

They also proved the following results in the same paper.

n
Theorem 2.2. If P(q) = Y ¢°as is a polynomial of degree n with real coefficients 0 < s < n, such that a,, > a,—1 >
s=0

1
.-+ > ag, then all the zeros of P(q) lie in |¢| < ﬁ(|an| —ag + |aol)-
an

Y

n

Theorem 2.3. Let P(q) = > ¢°as be a quaternionic polynomial of degree n satisfying a,, > a1 > -+ > «p
s=0

0, a, # 0 then all the zeros of P(q) lie in

n

2
gl <14+ —= 3 (1Bs] + sl + 165

™ s=0
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Theorem 2.4. Let P(q) = q°as be a polynomial of degree n with quaternionic coefficients and quaternionic

n
s=0 -
variable. Let b be a nonzero quaternion and suppose Z(as,b) < 6 < 5 for some # and s = 0,1,2,...,n. Assume

|an| > |an—1] > -+ > |ag|. Then all the zeros of P(q) lie in

, 2sin 0 <
lg| < cosf+sinf + —— Z las].
|an‘ s=0

n

Theorem 2.5. If P(q) = >_ ¢°as is a polynomial of degree n with quaternionic coefficients a; € H, 0 < s < n such
s=0

that

Qp 2 Qp—1 2 -+ 2 Qg,
Bn = Bn-1 2>+ 2> Bo,
Yn = Yn-1 2" 2 Y0,
Op 2> 0p_1 >+ 2> do,

then all the zeros of P(q) lie in

1
lg| < —|(an —ag + |aw|) + (B — Bo + 150]) + (9 — 70 + |70]) + (60 — b0 + |0]) |-

= an|

As remarked in the beginning, the main aim of this paper is to extend various results of Enestrom-Kakeya type
from complex to quaternionic setting to obtain regions containing zeros of quaternionic polynomial. We shall make
use of maximum modulus theorem, factorization theorem to get desired results. The obtained results produce a kind

of generalisations of Theorems

3 Main Results
n

Theorem 3.1. If P(q) = ) ¢®as is a polynomial of degree n with quaternionic coefficients as € H, 0 < s <n and
s=0

if for some positive integer A <n and k > 1

E Mo, > B a0 > > Eray > aa > > a0 > ag >0,

then all the zeros of P(q) lie in

1
gl <— | (k"7 = Dan + 2{(19’” = Dany + (K" 1)

n

Qp_2+ -+ (k?2 - 1)0[}_4.1} + (2k — Day + My |,

where, M1 =2 Y [|ﬁs| + |vs| + |(5S|].
s=0

S

If we take A = n, we obtain the following corollary.

n

Corollary 3.2. If P(q) = > ¢®as is a polynomial of degree n with quaternionic coefficients a; € H, 0 < s <n and
s=0
if for some k£ > 1

then all the zeros of P(q) lie in

1
|Q|§OT (2k — 1)o, + My |,

n
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n
where M7 =2 Y [|5s\ + |vs| + |5s‘]'
s=0

Remark 3.3. By taking ¥ = 1, Corollary [3.2] reduces to Theorem

For A = n — 1 and assuming all coefficients are real in Theorem we obtain the following result

n
Corollary 3.4. If P(q) = > ¢°as is a polynomial of degree n with real coefficients satisfying
s=0
kzan zkan—l ) Z cee 2 ag 2040 >O7

for some k > 1 then all the zeros of P(q) lie in

1
lg] < [(2k* — D)an +2(k — 1)an_1|.

|an|

Remark 3.5. Taking k& = 1, Corollary [3.4] reduces to Theorem

n
Theorem 3.6. If P(q) = > ¢®a, is a polynomial of degree n with quaternionic coefficients as € H, 0 < s < n and
=0

s=
if for some positive integer A < n and k > 1

kn_)\_Han > kn_)\anfl > > k>‘Oz,\ > ...a1 > o,
Bn = Bn-1 22 Po,
Yn Z Yn—1 2 2 Yo,
8 > Opeq > -+ > 0.

then all the zeros of P(q) lie in

1
lg| <—
‘an‘

[(%"*“ — Doy + 2{(/&A — Dap1 + (K71 =1)
Qp_o + -+ (kZ - 1)0{)\+1} -+ (2]{3 — 1)0[)\ + M2:| y

where,
My = [(|C¥0| —ag) + (|6l = Bo + Brn) + (10| — 70 +70) + (|00] — o + 5n)]~

Taking A = n in Theorem below result is attained.

n
Corollary 3.7. If P(q) = q°as is a polynomial of degree n with quaternionic coefficients as € H, 0 < s < n

s=0
satisfying
kanp > an—1 > -+ > ap,
ﬁn > ﬂnfl > > ﬁOa
Yn 2 Yn—1 2 2 70,
6n Z 6n—1 Z > 60a

for some k > 1, then all the zeros of P(g) lie in

1
lg| <—

o] 2= s+ ol = a0) + (180l = o+ + (] = 70+ 70 + (1ol = o + )}

Remark 3.8. For k = 1 Theorem [3.6] reduces to Theorem 2.5
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Theorem 3.9. If P(q) =

n

q°as is a polynomial of degree n with quaternionic coefficients and quaternionic variable.
s=0

Let b be a non-zero quaternion and suppose Z(as,b) < 6 <

< g for some 6 and if for some positive integer A < n and
k>1
A ag| > B Man | > -0 > EMaa| > Jaa—1| > -+ > Jag] > agl,

then all the zeros of P(q) lie in

1
|| S|a|{[k”_’\+1an| + k" Map_1| 4 - - + K|ax]](cos 0 + sin )

— [lan—1 + |@n—2| + - +]as|] (cos — sin ) + (k"' — 1) a,|

A1
+ (" = Dlan_1| + - + (k — 1)|ax_1| +2sin92 las| + |ag|(1 — cos 6 —sine)}.

s=0
If we take A = n in Theorem [3.9] following corollary is obtained.
n
Corollary 3.10. If P(q) = >_ ¢°as is a polynomial of degree n with quaternionic coefficients and quaternionic
s=0
0
variable. Let b be a non-zero quaternion and suppose Z(as,b) < 6 < — for some 6, s =0,1,...,n. Assume

2
klan| > lan—1| = -+ > la1| = |aol,
for some positive integer A and k > 1, then all the zeros of P(q) lie in
1 n—1
la| < |an|{(k‘ — 1)|an| + k|an|(cos 0 + sin 0) + |ag|(1 — cos @ —sin ) + QSiDQ; |as|},

which can be written in modified form as:

n—1
1
lq| <{(k —1)|an| + klan|(cos 8 + sin ) +2sin92 |a5|},

a |an| s=0

(usz’ng cosf +sinf > 1 when 6 €0, ;T])

Remark 3.11. Theorem [2:4]is a special case of Corollary [3.10] for k = 1.

4 Lemmas

We use the following lemmas in the proof of our results.

oo} oo}
Lemma 4.1. [7] Let f(q) = > ¢°as and g(q) = > ¢°bs, be two given quaternionic power series with radii of
s=0 5=0

oo S
convergence greater than R. The regular product of f(q) and g(q) is defined as (f*g)qo = >_ ¢°cs where cs = > ajbs—;.
s=0 =0

Let |qo| < R, then (f * g)(qo) = 0 if and only if f(go) =0 or f(qo) # 0 implies g(f(q0) ‘g0 f(q0)) = 0.

Lemma 4.2. [4] Let q1,go € H where ¢q1 = a1 4161+ jv +kd1 and g2 = as +1i82 + jv2 + kd2, such that Z(q1,¢2) =
20" < 20, and |q1| < |g2|- Then

lg2 — q1] <(lg2| — lq1]) cos 0 + (|g2| + [q1]) sin 6.
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5 Proof of Main Results

Proof of Theorem Consider the polynomial f(q) = > ¢"(as—as—1)+ao. Let P(¢)*(1—q) = f(q)—q¢" ",
s=1

therefore by Lemma P(Q)x(1—q)=0 iff either P(q) =0or P(q) #0 implies P(q)"'qP(q) —1=0,
that is P(q)"'qP(q) = 1. If P(q) # 0 then ¢ = 1. Therefore, the only zeros of P(q) * (1 — q) are ¢ = 1 and the zeros
of P(q). For |q| =1 we get

F@] < laol + 3 las — as 1]
s=1

< lao + B + jv0 + kdol + D (s — cts—1) +i(Bs = Bac1) + 5 (Vs = Ys—1) + k(05 — Gs-1)]

s=1

< |O‘0‘ + |60‘ + |70| + |50| + ZHO‘S - 043—1| + |ﬂs - Bs—1| + |’Ys - ’Ys—1| + ‘68 - 53—1”

s=1
n
< ag+ g = an1| Fano1 — ana| - o —anca| o laa —aol +2 D [18s] + sl + 18]
s=0
<ap+ "M a, — a1 +an — KM g BT gy — ana oy — B Mo e 4 [Ray — axg
+ oy — kan| + lax—1 —an_a| + - + | — aol + M,
n

where, M1 =2 Y Hﬂs| + |7vs| + |5s|]-

s=0
If ()] <E" 2 — Dy, + 2" = Dy + +2(E" 2 = Dap_g + -+ (2k — Dy + My

<" M Dy, +2[ (K" = Dy + ("2 = Dap_g + - + (k% — Dangr | + (2 — Doy + M.

Since,

Lo 1 — max } = max
E}i)i'q f(q)|_|q|i1‘f(q)| \qlil‘f(q”'

1
Therefore, ¢" * f(—) has the same bound on |¢g| =1 as f(q), so
q
1
g™ * f(5)| <@2E" M — 1)y, + 2{(14;”A ~ Va1 + E" = Day o+ 4 (k2 — 1)%“} + (2k — 1)ay + My,

for |¢| = 1. Applying maximum modulus theorem ([8, Theorem 3.4]) for quaternionic polynomials, we get

1
g™ * f(g)| <@2E" M 1)y, + 2{(14;”A — Va1 + *" = Day_o + -+ (k2 — 1)%“} + (2k — 1)ay + My,

for |¢| < 1. This implies

1

IF ()l SR

1
q

[(2/@””1 — Doy, + 2{(1<:”A ~ D1 + (B2~ Dayg + -+ (k2 — 1)0%1} + (2k — Day + Ml}

1
for |g| < 1. Replacing g by —, we have for |¢| > 1
q

If(q)] < [(21&“1 —Day, + 2{(1&A —Dap_1+ k"M = Do+ -+ (K — 1)0%1} + (2k — Day + Ml} lq|™.
(5.1)

But

[P(q)* (1—q)| = |f(q) — ¢" " |
> | g™ = | f(q)].
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Using we have for |¢| > 1
[P(q) * (1 = q)| Z|aw|lg]"*" — {(%"”1 — Doy, + 2{(/%"A — Dyt + (k" = Do+ + (K — 1)04)\+1}

2k~ Dy + 20 o
> [an||q| - ((2kn_)‘+1 —Dan + 2{(/€""\ Va1 + E" = Do+ + (K2 — 1)04)\“}

+ (2k — Doy + Mlﬂ lq|™.
This implies that [P(q) * (1 —¢)| >0, ie. P(q)*(1—q) #0if

1
lg| >— [(21&-“1 —Day, + 2{(k"—A —Dap_1+ E" M = Doaypo + -+ (K> = 1)%“} + (2k — Day + Ml].
(0%

o,

Since the only zeros of P(q) * (1 — ¢q) are ¢ = 1 and the zeros of P(q). Therefore, P(q) # 0 for

1
gl > [(Qk”_)‘+1 —Da, + 2{(l<;"_>‘ —Doapr 4+ (" = Dayo + - + (K% — 1)a,\+1} + (2k — Day + Ml] .

o,

Hence all the zeros of P(q) lie in

1
lq| <— [(21@”“1 — Doy, + 2{(k”A —Dap_1+ E" A =Dy o+ -+ (K% — 1)0%1} + (2k — Vay + Ml} .

n

This completes the proof of theorem.

Proof of Theorem (3.6, Consider the polynomial f(q) = 3. ¢"(as—as—1)+ao. Let P(q)*(1—q) = f(¢)—q" " tay,,

s=1
therefore by Lemma 4.1,  P(q) x (1 —q) = 0 iff  either P(q) = 0 or P(q) #0 implies P(q)"'¢P(q) —1 =0,

that is P(q)~*qP(q) = 1. If P(q) # 0 then q = 1. Therefore, the only zeros of P(q) * (1 —q) are ¢ = 1 and the zeros
of P(q). For |q| =1, we get

1£(0)] <laol + ) las — as—1]
s=1

:|a0 + 260 +]70 + k50| + Z |(as - Oésfl) + Z(ﬁs - ﬁsfl) +.7(fYS - 7571) + k<6s - 6871)|

.
<laol| + [Bol + [70l + o] + ZH% — 1| +|Bs — Bs—1l + [vs = vs—1] + |05 — ds—1l]
s=1
<laol + |an = 1| + |an—1 — an—2| + - +[ax —ax-1[ + -+ + o1 — a
+1Bn = Brnal + Bn-1 = Bn-2| + -+ [B1 — Bo
+ Y = V-1l + V-1 = Yn—2| + -+ |71 — 0l
+[0n — 01 + |0n—1 — Ip—a| + -+ - + |01 — o]
<lewol + 180l + 70| + |00] + 1" Moy, — a1 + ap — k"M Ly, |
+ |k"*’\ozn,1 — Oy + 1 — k”*’\an,2| + o Jkay —axn—1 + ay — kay|
+ lax—1 —ax—z| + -+ + |1 — ag| + (Bn — Bo) + (v — 70) + (0 — do)
<2~ Day, + 26" = Doy + +2(6" M = Do + - + (2k — Dy + M.

where, My = (|ag| — ao) + (|Bo] — Bo + Bn) + (|70l — Y0 + 7n) + (|d0] — do + ).

If(q)| <@2E" ! — Day, + 2{(l<:”A g+ K Dapg 4+ (K — 1)a>\+1} + (2k — Day + M.
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Since

max |q" * f(= )|_max\f(1)|—max\f( i

lgl=1 lgl=1 lgl=
1
therefore, ¢" % f(=) has the same bound on |¢| =1 as f(q), so
q
" £ L) <@k Z1)a, + 2{(1#“A a1+ (B = Dap g+ (K — 1)0%1} + (2% — 1)ax + Mo,
for |¢| = 1. Applying maximum modulus theorem (8, Theorem 3.4]), for quaternionic polynomials, we get
1
lg™ = f(=)] <E"M = 1)y, + 2{(1&-* —Dan1+ E" > = Dayo+ -+ (K2 — 1)0%1} + (2k — Day + My,
q
for |g| < 1. This implies

<

p | S (2k" M — 1oy, + 2{(1&‘A —Dap_ 1+ E" = Dayo + -+ (K> — 1)0%1} + (2k — Day + My|.

1
Replacing ¢ by —, we have for |¢| > 1
q

f(a)l < [216““ — Doy, + 2{(k” P Dana+ (BT 1)
g+ + (K — 1)a,\+1} + (2k — Doy + My | |q|™ (5.2)

But

[P(q)* (1—q)| = f(q) — ¢"*"an|
> Jan|lg"*" = | f(q)]-

Using [(5.2)] we have for || > 1
P (1= @)l Zlanlld™ = |2 = Dyt 2{ (677 = e + (171 = 1)
P 1)a>\+1} + (2k — Doy + M1} lg|™
> lonlll = { @ = D, 4 20 = D4 (0 <)
o+ + (K2 = Dang1] + (2k — Doy + MQH lg|™.
This implies that |P(g) * (1 —¢)| > 0, that is P(q) * (1 —q) # 0 if
lq| > % [(2/@"—“1 —Day, + 2{(1&-A — Va1 + ("1 1)

Qo+ -+ (kz — 1)0[>\+1} + (2k — 1)0{)\ + M2:| .

Since the only zeros of P(q) * (1 — q) are ¢ = 1 and the zeros of P(q). Therefore, P(q) # 0 for

1
lg| >— [(2/{"—“1 —Day, + 2{(/#—A —Dap_1 + ("1 —1)

|an

Qo + -+ + (kQ - 1)CV)\+1} -+ (2]{3 — 1)0[)\ + M2:| .
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Hence, all the zeros of P(q) lie in :

1
lq| <
‘an|

(2k" M — Doy, + 2{(1&-A Do + (K = Dapo 4+ (k2 — 1)a>\+1} +(2k — Day + My|.

where,
My = (Jaw] — ao) + (|Bol — Bo + Brn) + (|70l — 70 + v0) + (|00] — o + On)-

This completes the proof of theorem.
Proof of Theorem Consider the polynomial

Let P(q) x (1 —q) = f(q) — ¢"™a,, therefore by Lemma P(g)*x (1 —¢q) = 0 iff either P(qg) = 0 or
P(q) #0 implies P(q) 'qP(q) —1 = 0, that is P(q)” 'qP(q) = 1. If P(q) # 0 then ¢ = 1. Therefore, the only
zeros of P(q) * (1 — q) are ¢ = 1 and the zeros of P(q). For |q| =1 we get

1F(q)] <laol + ) las — as—1]
s=1

<lao| + [an — an—1|+ -+ +]arxy1 —ax| + |ax —ax—1| + -+ |a1 — a0l

<lao| + |[k" MYay — an_1 + an — k"M an |+ -+ |k ax —ax_1 4 ax — Erax| + |ax_1 —ax_o
+ -+ a2 — a1] + a1 — ag

<lao| + [E" M ap — ap_1| + (K" = D)fan| + K" an-1 — an_of + (K" = 1)]an_1|

4o [Erax —ax_1| + (B = Dax| + |arx—1 — ax_a| + - + |ag — a1| + a1 — aol.

Using Lemma it follows that

[f(@] <laol + (k" an| = |an-1]) cos @ + (k" an| + |ap-1])sin 0 + (k"1 — 1)]a,|

+ -+ (klan] — |ax—1]) cos @ + (k|ax| + |ax—1]) sin@ + (k — 1)]ax|+
(o] — lax2l) cos0 + (Jar_1| + |ax_sl)sind + - + (|az] — |a1]) cos b+
(laz| + |a1]) sin@ + (|a1| — |aol) cos @ + (|a1| + |aol|) sin 6

<k" " Ya,|(cos @ + sinf) — |an_1|(cosd — sin @) 4+ k" *|a,_1|(cos @ + sin 6)
— |an_2|(cos — sin @) + (k"> — 1)|ap_1| 4 - - - + k*|ars1|(cos  + sin 0)
— |ax|(cos @ —sin @) + (k* — 1)|axs1| + klax|(cos @ +sin @) + (k — 1)|ar_1|

A—1

+2sin 0 " |ag| + [ag|(1 — sin 6 — cos6).
s=0

This implies

(@] <[F" M an| + & Man—1| + - + klax|] (cos @ + sin0) — [|an—1 + |an—a| + -+ + |ax|] (cos & — sin @)
A-1
+ ("M — Dlan| + (" = Dlan_1]| + -+ (k= Dlax_1| + QSinez las| + |ao] (1 — cos @ — sin §).
s=0

Proceeding likewise as in the proof of Theorem we finally arrive at

|f(q)] §{ (K" 2 ay | + k" Mag—1| + -+ + klax|] (cos @ +sin ) — [|an—1 + |an—a2| + - + |ax|] (cos§ — sin6)

A-1
+ (KM~ Dan| + (K" = Dlan1| + - + (k — Dlar_1| + QSinGZ las| + |ao|(1 — cos @ — sin@)}
s=0
(5.3)
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for |g| > 1. Using[5.3] we have for |¢| > 1
[P(q) * (1 = @) Z|anlg"™ — |f(q)]
>lan|g" Tt - {[k"’\+1|an| +E" Map_1| 4+ + klax|] (cos 6 + sin 0)
— [lan—1] + |an—2| + - + |ax|] (cos @ — sin @) + (k" — 1)]a,| + ("> = 1)|an—1] + ...
A—1

+ (k—=1)|ax—1] +2sinb Z las| + |ag|(1 — cos @ — sine)} lg"  for |q| > 1.
s=0

This implies that |P(q) * (1 —¢q)| > 0, i.e., P(q) * (1 —q) # 0 if

1
lq] >|a— [[k"’\+1|an| + k" Map |4+ klax|](cos 6 + sin) — [|an—1] + [an—2| + - + |ax|] (cos 6 — sin 6)

A—1
+ ("M Dan| + (K" = Dan_1| + - + (k — D]ar_1] +251n92 las| + |ao|(1 — cos @ Sine)}
s=0

But by Lemma [£.1] P(q) * (1 — ¢) = 0 if and only if either ¢ = 1 or P(q) = 0. Hence all zeros of P(q) lie in

1
lq| Sa{ ("2 ay | 4+ k™ Man—1] + -+ + klar|] (cos @ + sin 0) — [|an—1] + |an—2| + -+ + |ax|] (cos § — sin )

A—1
+ (kn—A-H —1)lan| + (kn—A —Dlan_1|+ -+ (k= 1)]ar_1] —|—2sin92 las| + |ao] (1 — cos € — sinﬁ)}.
s=0

as claimed. This completes the proof of theorem.
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