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Abstract

Given p,q € R. The purpose of this paper is to discuss inequalities related to p-angular and g-angular distances for
operators. We present some inequalities for absolute value operators which are generalization of inequalities studied
by Zou et al. The equality conditions are also investigated.
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1 Introduction

Let (X,].]]) be a nontrivial real normed linear space and B(H) be the algebra of all bounded linear operators
acting on a complex Hilbert space (H,{(.,.)) equipped with the operator norm.
A self-adjoint operator A € B(#H) is said to be positive if (Az,z) > 0 for all x € H. We write A > 0 if A is positive.
If A, B € B(H) are self-adjoint operators such that B — A > 0 we write A < B. For A € B(H), we denote by |A]| the
absolute value operator of A, that is, |A| = (A*A)z, where A* is the adjoint operator of A. An operator A € B(H) is
said to be normal if A*A = AA*.
Clarkson [2] introduced the concept of angular distance for any nonzero vectors z and y in X as afz,y] = |||z "'z —
Hy||_1yH Dunkl and Williams [5] obtained a useful upper bound for the angular distance. They showed that for any
nonzero vectors z and y in X,

Aflz —yl|
N R Pk -
Furthermore, the authors proved that the constant 4 can be replaced by 2 if X is an inner product space. Over the
years, many interesting refinements of and their reverse inequalities have been obtained. For more information
on the well-known Dunkl-Williams inequality and operator versions of it, the reader is referred to [6l 9] 1Tl 12].
Maligranda [6], considered the p-angular distance (p € R), as a generalization of the concept of angular distance,
between nonzero vectors z and y in X as o[z, y] = |||[|P "'z — [|y[|P~'y|. Dehghan [4] introduced the concept of skew

angular distance B[z, y] = |||lyl|~*« — ||z|| ~'y|| between nonzero vectors x and y in X. In [I0], the authors considered
the skew p-angular distance (p € R), as a generalization of the concept of skew angular distance, between nonzero
vectors z and y in X as SB[z, y] := ||=|yP~" — yll=z|P7||.

*Setareh Rajabi
Email addresses: setareh.rajaby@yahoo.com (Setareh Rajabi), second.author@email.address (Bahman Taherkhani)

Received: March 2025  Accepted: May 2025


http://dx.doi.org/10.22075/ijnaa.2025.37087.5427

2 Rajabi, Taherkhani

Recently Dadipour et al.[3] introduced several operator versions of the Dunkl-Williams inequality with respect
to the p-angular distance as a generalization of both the main result of Pecari¢ and Raji¢ [9] and that of Saito and
Tominaga [12]. Also, Afkhami and Dehghan [1]], studied the operator version of 8z, y], and also compared the operator
versions of afz,y] and B[z, y]. For A,B € B(H), let A = U|A| and B = V|B| be polar decompositions of A and B,
respectively. Saito and Tominaga [12] Theorem 2.3] obtained an inequality for absolute value operators as follows:

(U= V)IA|]* < r[A = B> +s(|A] - |B)?, (1.2)

wherer,s>1and%+%:1.

In this paper, we first introduce an operator version of the skew p-angular distance for Hilbert space operators,
and generalize the operator inequality o < 8 presented in [I]. Next, we obtain some inequalities for absolute value
operators which are generalization of inequalities due to Zou et al. As a consequence, we obtain some operator
inequalities related to p-angular and g-angular distances which are a generalization and also a refinement of the main
result of [3], in turn, [9] that have been proven in a different way. Throughout this paper, we assume that r,s > 1,
with % + % =1, and

ap[A, B] := |A|A]P~" — B|B[P7!| and B,[A, B] := |A|B|P~! — B|A|P~

where p,¢ € R and A, B € B(H) are such that |A| and |B| are invertible if necessary.

2 Dunkl—Williams type inequalities related to p-angular distance

In this section, we present operator inequalities associated with the p-angular and skew p-angular distances which
are operator versions of the Dunkl-Williams inequality. We start by comparing operator version of oy, [z, y] and 8, [z, y]
as a generalization of [I, Theorem 2.8]. For this purpose, we need the following lemma.

Lemma 2.1. Let A, B € B(H) be positive operators such that AB = BA.
(i) If p > 0, then (A — B)(A? — BP) > 0.
(ii) If p < 0 and A, B are invertible, then (A — B)(AP — BP) < 0.

Proof . By exchanging A and B with A + eI and B + el respectively, we can assume that A, B > 0. First, suppose
that p = 7" is a rational number in which m,n > 1 are integer numbers. We have

)
=(A-B) )( n 4 ..+Bm5)
2 0 =
_(A-BpA’ v:B )20.
A +ATBZ+...+BT

m m

(A— B)(AP — BP) = (A— B)An—B

(
(An

e (i) Now let p > 0, be arbitrary. There exists a sequence p, > 0 of rational numbers such that p,, — p, when
n — oo. Thus

(A— B)(AP — BP) = lim (A — B)(AP" — BP") > 0.

n—ro0
e (ii) For p < 0, we have
(A— B)(A? — BP) = APBP(A— B)(B™? — A™?) = —APBP(A— B)(A™? — B7?) <0.
O
Theorem 2.2. Let A and B be normal operators such that AB = BA, and |A| and | B| are invertible.
e (i) If p>1, then

o2[A, B] > B%[A, B]. (2.1)
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e (ii) If p =1, then

alA, B] = B[A, B].

e (iii) If p < 1, then
a2[A, B] < B2[A, B]. (2.2)
Equality holds if and only if |A| = |B|.
Proof . We have

8214, B] — a2[A, B] = |A|BP~' — BlAP~Y|* — |A|AP~! - B|B]P!?

= (A|B|P~" = BJAP~Y)*(A[BP~" = BJAPP~!) — (AJA]P~" = B|BIP~1)*(A|A]P~! — B|B[P)

= |BIPHAP|BIPTt — [BPTTA*BIAPT! — AP B AIBPT! + [APTHBP AP — AP

+ |A[PTTA*B|BIPT 4+ | BPTIBRAJAPPT! — | B
= |AP|B|**~* + B[P~ (B*A— A*B)|A]P~" + |A]P" (A" B — B*A)|B[P~" + |B]*|A|*P7% — |A]*P — |B|*
= —(|A? = [BI*)(|A]*P~2 — |B[*P~2).

Now, according to Lemma if p>1, we get (2.1)). If p < 1, we get (2.2)). The assertion in the case of p =1 and
also equality condition is clear. [J

In the following, we obtain some new operator inequalities by using the polar decomposition of operators. Equality
conditions are also presented. The next lemma will be used to prove equality conditions.

Lemma 2.3. Let V € B(#H) be such that |V| < I. Then for any operator A € B(H) which |A|?> = A*|V|?A, we have
A= |VPA.

Proof . A*A = A*V*V A implies A*(I — V*V)A = 0, and so A*(I — V*V)2(I — V*V)2A = 0. Then, we have
|(I —V*V)2 A|?> = 0. This implies that (I — V*V)2 A = 0, and hence, (I — V*V)A = 0. This means that A = V*V A..
O

The following theorem is a generalization of [I3, Therorem 2.1] (when p = 0,¢ = 1), and thus it is a generalization

and refinement of (|1.2)).

Theorem 2.4. Let A, B € B(H) be operators with polar decomposition A = U|A| and B = V|B| and let ¢ > p > 0.
Then

(UIA]” = VIBIP)|A[*=7|* < [UIA]? = VIBJ*]> + [| BIP (A" — [B]*™")|* — (T +T")
< r|UJA]" = VIB||* + s|| BIP(|A]*7F — |B]*77) %, (2.3)

where T = (|A|97P — |B|77P)|B[PV*(U|A|? — V|BJ9). Equality in the first part of holds if and only if
|BIP(JA*™7 = |B|""F) = V*VIB|P(JA]"™F — |B|*™P), (2.4)
and equality in the second part of holds if and only if
[BIP(JA]*™" = |B|*"F) = VIVB[P(|A]""" — [B|*"P),

and
r(UJA|" = V|B|?) = sV|BIP(|B|""P — |A]""P). (2.5)

Proof . Since V*V < I, we have

(UJA]? — V|BIP)|A|"7|? = |U|A|* = V|B|? — V|BIP(|A|" 7 — |B|1P)|?
= |UlA]? = V|B|* + |V|BPP(|A|"7 — |B|¢P)|* — (T + T%)
< |UAl" = V|B||* +||BIP(|A[* — | B|9P)[* = (T +T*).
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This proves the first part of (2.3). Next, we prove the second part of (2.3). To prove the second one, since
(r—1)(s—1)=1and V*V < I, we have
_ v 2 _ o2 N
r[UJA|" = VB + s||BP(JA|*™7 — |B|]*"P)|" = ([U|A]? = VIB|?]* + ||BIP(JA|""? — |B|*™7)|” — (T + T7))
= (r = DIUIA|" = V|B|" + (s — 1)|| BP(|A|""" — |B|*™)|” + (T + T*)
> (r = D|UJA" = VIB|]* + (s = D)|V[BIP(|A]*7 — [B|*™)|* + (T + T")

2
r—1UJA[" = V|B|") + Vs = IV[B["(|A]""" — IBI‘H’)‘ > 0.

This implies the second part inequality. By the above proof, equality holds in the first part on (2.3) if and only if
_ —p\ (2 _ o2
IBP(|A]F — |B77P)|" = [V[BIP(|A]"7 — |B|*P)|",

which according to the Lemma it is equivalent to (2.4]). Equality in the second part of (2.3)) holds if and only if
we have (2.4, and also

Vr = 1({U|A]" = VIB|?) = Vs = 1V[B[(|B|"™" — |A]"™"),
which is equivalent to (2.5)). O

Remark 2.5. By interchanging the roles of operators A and B in , for all ¢ > p > 0, we have
(UIAP = VIBIP)|BI" =2 < |U|AJ" = V|BJ[* + [|APP(JA]"~ — |B*~?)[* — (T + T*)
< r|UJA[ = VIB|]? + s[| AP (| A7~ — |B|7~)[?, (2.6)

where T = (|A|97P — |B|77P)|A|PU*(U|AJ]? — V|B|?). Equality in the first part of holds if and only if

[AP(JA["F = [B|T77) = UFU|APP(JA1*F — |B|"™P),
and equality in the second part of holds if and only if

[A[P(JA["F = [B|T77) = U*U|AP(JA1*"" — |B|"™P)
and

r(UIA]" = V|B|?) = sUIA]P(IB|*"" — |A]7P).

Corollary 2.6. Let A, B € B(H) be such that |A| and |B| are invertible, and p,q € R. Then

o2[A, B] < | AP (ra2[A, B] + || BIP(| 4|77 — |BJ"")[) | AP, (2.7)

o2[A, B < |BI" (ra2[A, B] + s||AIP(| A1 — |B[*)|*) BP0, (2:8)

Moreover equality holds in if and only if
(r = 1)(AJA["~" = B|B|""")[APP~7 = B|B|""'(JA|"~* — |B['7),
and equality holds in if and only if
(r = 1)(AJA]"~" = B|B|" 1) |BP~" = AJA[" (JAP~7 — |B|P7Y).
Proof . Let A = U|A| and B = V|B| be the polar decompositions of A and B respectively. According to (2.3)), we
have
(UAP = VIBP)[AI"|* < r[UJA|” = VB> + || BIP(|A]"~7 — | B]77P) 2. (2.9)
Since |A| and | B| are invertible, the condition ¢ > p > 0 is not necessary and is equivalent to
[AJT7P|(AJAP! = BIBIPP|A[77P < r[AJA]7" = BIBJ*7H 2 + 5| | BIP(JA]"77 — [B]77P) 2.

From which we get (2.7). By the same method and using (2.6)), we can easily get (2.8). By the above proof,
equality conditions are obvious. [J
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Remark 2.7. Obviously, the inequalities (2.7) and (2.8) are generalization of the inequalities which are due to
Dadipour [3], in turn, Pecari¢ and Raji¢ [9], and have proved by different method.

Theorem 2.8. Let A, B € B(H) be operators with polar decomposition A = U|A| and B = V|B]| and let ¢ > p > 1.
Then

(B[P~ = BIAP)|BI* P | < BIA. B] + || BIIAP~ (A" — B ")+ 7+ 7
< PB4 B+ s||BIIAP (A1 — Bl (2.10)
where T' = (|A|977 — | B|77P)|A|P~!|B|V*(A|B|?~* — B|A|?"!). Equality in the first part of holds if and only if
[BIIAPTH(JA["™P — |BJT77) = V'V B|| AP~ (JA|"~P — | B|77P), (2.11)
and equality in the second part of holds if and only if
[ BI|APTH(|A]7™P — |BJ17P) = V'V B||A]P~H(JA|777 — | B|77P),
and
r(A[B|"~" — BA|"™Y) = sV|B||A]P~ (AP — |B|*7P). (2.12)
Proof . Since V*V < I, we get
(B~ = BIAPHIBI" | = [(AB|* = BIA|™) + VBl AP (Al — | B[
— 2[4, B] + |V|B|| AP~ (|A]" P = |Bl1P) [P + T+ T*
< G314 B) + || BII AP~ (A1 — Bl )| + T+ 17,
which is the first inequality. To prove the second one, since (r — 1)(s — 1) = 1 and V*V < I, we have
rBy A B+ s||BIIAPN (1417 = |BI)|” — (8714, B] + [[BILAP (A1 — Bl P) [+ T+ 1)
= (r = DFA. B + (s = V|| BIIAP (1477 = B2 ?)* = (T + 1)
> (r—1)B2A, B] + (s = V|V[B||AP~ (| A[*F — |BI=?)]” — (T + T")
= Vr = 1(A[BI* = BJA["™") = Vs = 1V|B||A]P~} (|4~ — | B"™")[” > 0.
According to the above proof, equality in the first part of holds if and only if
VIBIlAP=(JA[= — |B=P)|” = [|Bl| AP~ (| A]*> — |B]*P)[%,

which according to the Lemma it is equivalent to (2.11). Equality in the second part of (2.10)) holds if and only
if we have (2.11]), and also

V= LA[B|""" = BIA|"™") = Vs — IV|B|| AP~} (|B|*" — [A]"™P).
Since, r —1 =% and s — 1 = 7, we get . O
Remark 2.9. By interchanging the roles of operators A and B in , we get
[(AIBIP~t = BLAP ) Al | < G214, B + [[AIBIP (4177 = Bl ) + 7+ 77
< rB2[A, B] + s||A|| BPL(|A|7F — |B|1)[, (2.13)

where T' = (|A|9™P — | B|77P)| B[P~ A|U*(A|B|?~! — B|A|?"!). Equality in the first part of holds if and only if

AIIBIP=1(|A|"? = | BI*=?) = U*UJA|| B~ (A" — |B|"~?),
and equality in the second part of holds if and only if

| A|BIP=H(JA]77P — |B|7F) = U*U|A||BIP~* (|A]"~F — |B|*7P),

and
r(A[B|"" — BJA|""") = sU|A|| B[P~} (|A]77P — | B|77P).
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Corollary 2.10. Let A, B € B(H) be such that |A| and |B| are invertible and p,q € R. Then

B2, B] < | B~ (rB21A, B] + 5[ | Bl AP (1A — |Bl*=") ) | BIP~, (2.14)

B21A, B) < | AP~ (rB2[A, B] + s|| Al BIP~}(| 4]~ — | BaP)[ ) | AP, (2.15)

Moreover equality holds in , if and only if
r(A[B|*™! = BIA]"™Y) = sBIAPT (JAPTT — | BIPTY),
and equality holds in if and only if
r(A|BIP~" = BJAPTY) = sAIBTH(JA|7P — |B|*7P).

Proof . According to Theorem Remark and invertibility of |A| and |B|, we can easily get the desired results.
O

Theorem 2.11. Let A, B € B(H) be operators with polar decomposition A = U|A| and B = V|B| and let ¢ > 1 >
p > 0. Then

|(UIAP = VIBP)|A*?[BI*~Y|” < B2[A, Bl + || BIP(IB' | A]"~* — |A" B~ )" — (T +T*)

< rB2[A, B] + s|| BIP(|B|' 7| A*"" — |A]* 7P| Bl (2.16)

where T' = (|A|'~P|B|9~1 — |B|7P|A|91) | B|PV*(A|B|?~! — B|A|9~!). Equality in the first part of (2.16) holds if and
only if
[BIP(IBI'™P|AJ1=" — [A['77|B*™) = V'V [BP(IB'"P|A]"~ — JA'"7|B]77Y), (2.17)

and equality in the second part of (2.16) holds if and only if
[BIP(IBI'P|A[7™! — |A['7P|B|™Y) = VIVIBIP(IB]'PA[1™ — [A]7P|B77Y),
and
r(A[B|"! = BIA|"™Y) = sV|BP(JA['?|B|"! — |B'7P|A]77). (2.18)
Proof . Since V*V < I, we get
|(UIA[” = V|BP)[A]'~?| B~ |* = |(U|A||B]*™" = V|B||A]"™") + V|BP(|B]'"#| Al — |A'~7| B~ )|
= [AIBI*" = BIAI [P 4 [VIBP(IBI Al — AP BI [ - (T4 1)
_ _ _ 12 .
< B3IA, Bl + [|BP(I1BI'P|A[T! — |A]"P[B|TH[" — (T +T7),
which is the first inequality. To prove the second one, since (r — 1)(s — 1) = 1 and V*V < I, we have
PB2LA, B] + || BIP(IBP|AI — |AI Bl 2 = (82[A, B] + || BIP(IB 7| 4| — [A"?[BI=Y)[* = (T + T7))
= (r = 1)B2A, Bl + (s — 1)||BP (B 7| A"~ = |A" 7| BI" )| + T+ 1"
> (r—1)B2[A, B] + (s — 1)|V[B]"(|B|"""|AJ"! — |A]'"?|Bl* )" + T+ T*
= [Vr = 1(A[B|*"" = BIA]"™Y) + Vs — 1V [BIP(|B' 7|4 — |A]"7(B]7~Y)]” > 0.
According to the above proof, equality in the first part of (2.16) holds if and only if
_ _ _ 12 _ _ _ 12
[VIBIP(IBI*P|A1= = JAP[BIT Y| = |[BIP(IBI'PIA[T™ — [AP[BI )],

which according to the Lemma it is equivalent to (2.17). Equality in the second part of (2.16]) holds if and only
if we have (2.17)), and also

V= LA[B|""! = BIA|"™") = Vs —1V[BP(JA' 7| B|*~" — | B]'7P|A]"7).

Since, r —1 =% and s — 1 = 2, it is equivalent to (2.18)). [J
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Remark 2.12. By interchanging the roles of operators A and B in (2.16), we get
(UA]? = VIBIP)[B|* 7P| A]=[* < B2[A, B] + ||AP(A]* 7| Bl"~* — | B[ P|A1"~ )" — (T +T7)
< rB2A, B] + s|| AP (AP (BTt — | B 7P| A]TY (2.19)

where T = (|A|'~P|B|7~! — | B|*7P|A|77 1) |A[PU*(A|B|?~! — B|A|9!). Equality in the first part of (2.19) holds if and
only if

[AP(JA]' P BT™" — |BI'TP|A[17) = UPUIAP(JA]'"P| BT~ — | B! 7P| A7),
and equality in the second part of (2.19) holds if and only if

[AP(JAPBT™" — |BI'TP|A[17) = URUIAP(JA]'P| BT~ — |B' 7P| A7),

and
r(AIB|*"" = BIA|"™") = sUIAP(JA['P|B|*~" — [B|'7P|A[17H).

Corollary 2.13. Let A, B € B(H) be such that |A| and |B| are invertible, and p,¢ € R. Then

_ _ _ _ _ 1412 _ _
02[A, B) < |AP B (rB2[A, B) + 8| | BP(BIPlAl — (A Bl hP) BAo APt (2:20)

o2[A, B] < |BI" A" (rB2A, B] + || AP (A | BI = B AlT ) Al B (221)

Moreover equality holds in (2.20)) if and only if
r(A[B|"™" — B|A|"™Y) = sB|BPH(|Al'7P| BT — |B'TP|ATT)
and equality holds in (2.21)) if and only if

r(A|B|"" — BIA["™Y) = sAJAPTH(JA]'7P[BIE — |BITTPIA]TT.

Proof . According to Theorem Remark and invertibility of | A| and |B|, we can easily get the desired results.
(]

3 Some other operator inequalities

In this section, we prove some inequalities for absolute value operators which are generalization of some main
results of [I3]. As a consequence of it, we also present inequalities associated with p-angular and g-angular distances
which are a refinements of the results already obtained in previous sections. We start with the following lemma.

Lemma 3.1. [13] Let A,B € B(H). If 1 <r <2, then

2
|A—B]* + =
.

2

(r—1DA+B? <r|A? +s|B? <|A—- B>+ Z|A+ (s — 1)B|*. (3.1)
S

If r > 2, then

2 2
A= B+ Z[A+ (s = 1)BI* < r|A]" + 5 B[* < [A = B|* +

(r—1)A+ B (3.2)

Theorem 3.2. Let A, B € B(H) be operators with polar decomposition A = U|A| and B = V|B|, and ¢ > p > 0.
i). If 1 <r <2, then

2
(UIAP = VIBIP)AIPP + 2|(r = D(UIA" = VIB|) + V|BIP(A[* 7 ~ B[+ )|’
< r|UJA]? = V|BJ9)* + s|| BIP(|A]* — | B|1~P) . (3.3)



8 Rajabi, Taherkhani

ii). If r > 2, then
2
(UIAP = VIBIP)AISPP + Z[UJA[" = VIBI + (s = DVIBP (Al — |B"7)[*
< r|UJA|9 = V|B|?|* + s|| BIP(|A|"7 — |BJP) . (3.4)

Proof . For 1 < r < 2, applying the first part of (3.1) on the operators U|A|? — V|B|? and V|B|P(|A|7"P — |B|77P),

we have
r|UIAf = VIBI + s||BIP(AP = B[P 2 r|U1Al = VIBI + s|VIBP(AITY — Bl )|
> [(UAlP — V|BJP)|A[*?|* + §|(r — )(UJA|" = V|B|?) + V|B[P(|A|*? — | B|*P)|?
For r > 2, applying the first part of on the operators U|A|? — V|B|? and V|B|P(]A|9"P — |B|?7"P), we have
r|UA|? = VIBI4|* + s||BIP(|A[*? — [B|*?)|* > r|U|A|* — V|B||* + s|V|BIP(|A]*? - |B|?)|*
> |WIAP — VIBI)AFP? + 2|U1A1 = VIBI? + (s — DVIBIP(A? - [Blr)
]

Remark 3.3. Interchanging the operators A and B in the inequalities (3.3 and (3.4]), we have the following:
If 1 <r <2, then

(UIAP —VIBP)BIP + 2|(1 = r)(UIA[? — VIBI?) = VIAP(A["~? — BJr)[*
< r|UlA]? = VIB[® + s[|AP(A17 — Bl
If r > 2, then
(UIAP = V|B[P)|BJT7P|* + §|U|A|q — VIB|"+ (s = )V |A]P(|A] — | B|7P)[’
< r|ulA)? = VB[ + s[|AP(Al — B2
The following corollary gives a refinement of and .
Corollary 3.4. Let A, B € B(H) be such that |A| and |B| are invertible, and p,q € R. If 1 < r < 2, then
o2[A, B] < |APP~9(ra2[A, B] + s| | BIP(|A[7 — | BJi~7)|

2
—~|(r = D(AJAI" = BIBI*) + VB (4] — |Bl7) ) A,

and
02[A, B] < |BP~1(ra2[A, B + s||APP(|A["? — | BJa7P)]?
- EW — 1)(AJA|7 = B|B|1™Y) + VIA[P(JA]*P — |B|1P)|*) | BJP~.
r
If r > 2, then
_ _ a2
a[A, B < |APP79(raz[A, Bl + s||BIP(JA|“"7 — | B|?77)|
2
- ;|A\AI(”’1 — B|B|! + (s — D)V|B[P(|A[T7 — |B|77)|*) | A]P~9,
and

03[A. B] < | BP9 (ro}[A B] + s||APP(1A1" 7 — B[P

- g!A\AI‘H = BIB|" + (s = )V[AP(|A]"~7 — |BI" ™)) | B,
S
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Proof . According to Theorem [3.2] Remark [3.3and invertibility of |A| and |B|, we get the desired inequalities. OJ

Theorem 3.5. Let A, B € B(H) be operators with polar decomposition A = U|A| and B =V|B| and ¢ >p > 0. If
1 <r <2, then

((UIA]? = V|BIP)|A|"7|? > r|U|A] — V|BJ9|* + s|| BIP(|A|*? — | B|1~7)? (3.5)

2
— S |UIA[T = VIB|? + (s = )V[BI(|A]*" — B[,

If r > 2, then
(UIA] = V|BP)|A["?|? > r|U|A| = V|B|?|* + s|| B[P(|A|" 7 — |BJ]1—P)|? (3.6)

2
— ~|(r = D)(UIA] = V|B|") + VB (|4 — |Bl*7)|",

Proof . For 1 < r <2, applying the second part of (3.1)) on the operators U|A|? — V|B|? and V|BJP(|A|7P — |B|?"P),
we have

r|lUIA|7 — V|B|9|? + s|V|BIP(|A|7P — | B|7—P)|?
|U|A| |B|7|” + s|V|B["(|A] |B|*~7)]

2
< [UIAP = VIBP)AIP [+ |UIAI = VIBI + (s = DVIBP (141" — [B*)|"

For r > 2, applying the second part of (3.2]) on the operators U|A|? — V|B|? and V|BP(|A|?P — |B|?7P), we have
r|UJA[" = V|BJ1|* + s|V|BP(|A]"? — |B|77)|*
2
< |@IAP = VIBP)AIT? 4 [ (r = DUIA" = VIBI) + VIBP (AT ~ (Bl 7)[.

O

Remark 3.6. Interchanging the operators A and B in the inequalities (3.5 and (3.6]), we have the following:
If 1 <r <2, then

(UAJP — V|BJP)|B|1™P2 > r|U|A]” — V|B||” + s[|A[P(|A|*” — | B|7~7)|? (3.7)

~2|UA[ — VIBJt + (s — DV]AP(|A[7P — |Bj=?) [
S

If r > 2, then
(UAJP — V|BJP)[BJ1~P2 > r|U|A]? — V|B||* + s||A[P(|A|"7 — | B|7~7)|? (3.8)

2
— 2| = DA = VIBI) + VIAP(A? - B

Corollary 3.7. Let A, B € B(H) be such that |A| and |B| are invertible, and p,q € R. If 1 <r <2, then
- _ oy (2
aplA, Bl = [AP~ (rag[A, Bl + s||BIP(|A]"7" — |B|"™")] (3.9)
2
— <Al = BIBI") + (s = DVIBP (4] - |Blo)[) AP,
and
_ _ py (2
o2[A, B] > |B|P~(ra’[A, B] + s||A|P(JA]“"P — | B|77P)| (3.10)
2
— <A77 = BB + (s = DVIAP(JA[TF — |Bl*7) ) 1B,
If r > 2, then
02[A, B] > |AP=9(ra2[A, B] + s| | BIP(| A~ — |BJ~7)[? (3.11)

= 2| = D(AJAI = BIBIT) + VIBP( AT — [BP)[) AP,
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and
af,[AB] > |B|”_q(ro¢3[A,B] + s|\A|”(|A|q_p — \B\q_p)]2 (3.12)

= 2| = D(AJAI - BIBI) + VIAP (Al — Bl B,

Proof . According to Theorem [3.5] Remark and invertibility of |A| and |B|, we get the desired inequalities. [J
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