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The study investigates the prediction and parametric effects in drilling of Prosopis juliflora
fiber (PJF)-reinforced epoxy resin hybrid composite using a combined Taguchi-artificial
neural network (ANN) approach. The composite was prepared via hand lay-up technique with
natural reinforcement including vetiver fiber (VF) and coir pith (CP). The effects of drill bit
diameter (DBD), spindle speed (SS), and feed rate (FR) on thrust force (TF) and surface
roughness (SR) were evaluated through a full factorial design. An ANN model developed using
a feedforward backpropagation algorithm successfully predicted the responses. Analysis of
variance (ANOVA) results revealed that the regression coefficient (R?) for TF and SR were
96.39% and 95.54%), respectively. The DBD and FR were identified as the most significant
parameters influencing TF and SR, both significant at the 95% confidence level (p<0.05). The
regression plot exhibited a strong correlation (R=0.9883) between the predicted and actual
values, while the ANN model achieved a mean squared error (MSE) of 0.089758 within 2
epochs. TF and SR increased with higher DBD and FR but decreased with an increased SS, as
indicated by the main effect plots. Scanning electron microscope (SEM) revealed drilling-
induced mechanisms, including fiber pullout, delamination, matrix cracking, matrix
debonding, and matrix deformation. The findings demonstrate enhanced machining
performance, offering potential for industrial applications and future research on bio-
composite materials.
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This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

1. Introduction

and cost-effectiveness [2]. In particular, Prosopis
juliflora fiber (PJF), derived from the mesquite

Composite materials are gaining significant
attention in diverse engineering applications due
to their exceptional characteristics, including
high  strength-to-weight  ratio, corrosion
resistance, and /remarkable versatility [1].
Natural . fiber-reinforced composites have
emerged as viable alternatives to conventional
synthetic fiber composites, attributed to their
eco-friendly behaviour, abundant availability,
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tree, has demonstrated promising mechanical
properties and is widely explored for its potential
applications in composite materials [3]. Epoxy
resin is extensively used as a matrix material in
composite manufacturing due to its excellent
mechanical properties, chemical resistance, and
ease of processing. When combined with natural
fiber like Prosopis juliflora, epoxy resin binder
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composites exhibit enhanced mechanical
performance, making them ideal for a range of
structural applications [4]. A crucial aspect in the
practical engineering applications of composite
materials is their machinability, particularly
drilling behaviour, as it significantly influences
manufacturing  processes like  assembly,
fabrication, and quality control. Understanding
the drilling behaviour of composite materials is
essential for optimizing machining parameters,
minimizing tool wear, and ensuring dimensional
accuracy of machined components [5]. Despite
the growing interest in natural fiber-reinforced
epoxy composites, comprehensive studies on the
prediction and optimization of drilling
performance remain limited [6]. Therefore, this
study aims to experimentally investigate the
drilling behaviour of wvarious natural fiber
reinforced composites through a series of drilling
tests.

The PJF is gaining increasing popularity in the
field of composite materials, especially when
combined with polyester-based binders. Ganesan
etal. [7] conducted an experimental investigation
on the mechanical behaviour of hybrid
composites made from natural fibers, specifically
Calotropis gigantea and Prosopis juliflora.
Taguchi-Grey Relational analysis was employed
to enhance the mechanical properties of the
composites. Raja et al. [8] investigated the
delamination and drilling behaviour of neem and
banyan fiber-reinforced sawdust particles hybrid
composite through response surface
methodology (RSM). According to an ANOVA test,
the optimal drilling parameters were DBD of 6
mm, FR of 10 mm/rev, and SS of 1500 rpm. The
minimum TF of 23.43 N and torque of 5.13 N-m
was achieved under these conditions. Lilly Mercy
et al. [9] studied the drilling behaviour of teak
wood reinforced epoxy resin using a Taguchi L9
orthogonal array. The effect of SS and FR on TF
and temperature was analysed during the drilling
process. The results revealed that as SS increased,
TF decreased, and temperature increased.
Conversely, as FR increased, TF increased while
temperature decreased. Mohan Kumar et al. [10]
investigated the drilling characteristics  of
palmyra sprout fiber natural composite, focusing
on drilling parameters such as rotating speed,
tool feed, and resin types. The results revealed
that the candlestick drill bit produced lower TF
compared to twist and step cone drill bits.
Rajaraman et al. [11] investigated the drilling
parameters for kenaf and banana-based
composite materials. They used high-speed steel
drill bits of three different diameters, and they
employed the L9 factorial method for their
experimental study. The results revealed that SS
0f 3000 rpm and FR of 150 mm/min were optimal
for producing defect-free holes. Boga and

Koroglu [12] predicted and optimized machining
parameters for enhancing surface roughness in
dry milling of high-strength carbon fiber
composite using an ANN and a genetic algorithm
(GA). ANOVA results revealed that cutting tool
and feed rate are the most significant factors in
enhancing SR. The best SR was achieved at 250
mm/rev and 5000 rpm with a TiAlN-coated tool,
with a correlation value of 0.96177 and a mean
square error of 0.074. demonstrating its efficacy
in surface roughness estimation and achieving
high prediction accuracy. Bolat et al. [13]
predicted the milling performance of low-cost
expanded clay-added synthetic foam using ANN.
The experiments were performed using a 3-axis
CNC-based milling machine, with controlled
process variables including cutting speed,
lubrication condition, and depth of cut. The
Levenberg-Marquardt algorithm demonstrated
superior performance in predicting milling
performance compared to the scaled conjugate
gradient method.

The literature findings revealed that a natural
fiber-reinforced hybrid composite improves
machining behaviour. The Taguchi approach was
widely applied in-various composite drilling
processes, resulting in enhanced machining
performance. However, no investigations have
been ' recorded on the optimization and
prediction of the drilling process using a
combined optimization approach. The TF and SR
are critical parameters that significantly
influence the quality and efficiency of drilling
operations. Hence, it is important to optimize and
predict the process during the drilling of natural
fiber-reinforced composites. This investigation
offers new insights for machining of bio-
composites with challenging behavior employing
a hybrid Taguchi-ANN method to predict and
optimize drilling performance of Prosopis
juliflora fiber composite. The problem addressed
in this study is to-identify the process parameters
and their optimal levels to enhance both the
drilled surface quality and the performance of the
composite.

2. Materials and Methods

In this investigation, Prosopis juliflora fiber
(PJF), vetiver fiber (VF), and coir pith (CP) were
selected as the natural reinforcement materials,
while epoxy resin (LY-5062) and hardener (HY-
5062) were chosen as the matrix components.
The matrix and reinforcement composition
comprised 40% PJF, 25% VF, 13% CP, 14% ER,
6% cobalt, and 2% catalyst.

2.1. Preparation of Fibres and Composites

The extracted natural fibers (P]F, VF, and CP)
are dried at room temperature for 3 days and



oven-conditioned at 60°C for 5 hours. Prior to the
heat treatment process, the average moisture
content of PJF, VF, and CP is maintained at 5.44%,
6.54% and 4.48%, respectively. The extracted
natural fiber has been subjected to drying at
room temperature and a heat treatment process,
as depicted in Fig. 1.
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Fig. 1 (a) Fiber extraction, (b) heat treatment

After preparing-the fibers, a wooden mold
was prepared to fabricate the composite. The
matrix for fabricating composite laminates was
formulated by blending resin and hardener in a
10:1 weight ratio, respectively. The epoxy resin
and hardener mixture were thoroughly blended
using a mechanical stirrer for 10 min to ensure
uniform consistency before being poured into the
mold. The composite laminates were developed
using the hand-lay-up method. Initially, the
treated natural fibers were carefully arranged in
the mold, and matrix material on the fibers. The
fibers were again arranged over the matrix
materials, and discharged matrix material on the -
fiber surfaces. A roller was employed to evenly
distribute the matrix across the entire area of the
mold. To achieve uniform thickness and remove
excess matrix materials, the mold was subjected
to loads of 10 kg for 12 hours at room
temperature. Then, the composite laminate was
placed in a hot air oven at 60°C for 1 hour to
ensure complete curing. The final fabricated
composite laminate is depicted in Fig. 2.

Fig. 2. Composite laminate fabricated in the study

2.2 Drilling Experimental Procedure

The drilling of fabricated laminate was
conducted using a vertical machining centre
(Model: LV 45, Make: LMW), as shown in Fig. 3, at
PSG Research Institute, Coimbatore. The
experiment design was planned using Taguchi
L27 orthogonal array, incorporating three
process parameters and their levels, as detailed
in Table 1. Drill bits with varying diameters were
used for investigation. As per the experimental
design, a total of 27 experiments were conducted
on the laminate composite, as illustrated in Fig. 4.
For each drill bit, nine experiments were
performed, varying the other parameters. The
experimental values of TF and SR are listed in the
Table. 2. The TF was measured using a
piezoelectric dynamometer (Kistler type),
mounted on the machining table to record real-
time thrust force during drilling. The
dynamometer was connected to a data
acquisition system for continuous monitoring
and precise measurement. The SR values were
measured using a contact-type surface roughness
tester (Mitutoyo SJ-210). For each sample, three
measurements were taken for both TF and SR,
and the average was considered the experimental
result.

Fig. 3. Vertical machining centre

Table 1. Drilling parameters and their levels

Levels
Parameter Unit
Low Medium | High
Drill bit Diameter (DBD) mm 6 8 10
Spindle speed (SS) rpm 740 1480 2220




Feed rate (FR) mm/min | 80 ‘ 160 | 240 ‘
Table 2. Experimental values of TF and SR
Drilling Parameters Responses
Ex. No
DBD (mm) SS (rpm) | FR (mm/min) | TF (kgf) SR (nm)

1 6 740 80 2.3 6.11
2 6 740 160 3.3 7.21
3 6 740 240 4.0 8.28
4 6 1480 80 3.2 5.21
5 6 1480 160 3.8 6.75
6 6 1480 240 4.7 7.95
7 6 2220 80 2.3 4.56
8 6 2220 160 3.2 6.05
9 6 2220 240 43 7.25
10 8 740 80 2.7 7.73
11 8 740 160 3.6 8.56
12 8 740 240 4.5 9.59
13 8 1480 80 3.4 7.12
14 8 1480 160 4.5 7.85
15 8 1480 240 5.4 8.88
16 8 2220 80 2.7 6.14
17 8 2220 160 3.6 7.05
18 8 2220 240 4.6 7.81
19 10 740 80 3.4 8.98
20 10 740 160 43 8.61
21 10 740 240 53 9.15
22 10 1480 80 39 9.05
23 10 1480 160 4.7 9.68
24 10 1480 240 5.8 8.48
25 10 2220 80 3.5 7.91
26 10 2220 160 4.0 8.18
27 10 2220 240 5.1 8.96




Fig. 4. Drilled lamir;ate composite '

2.3 Artiﬁcial Neural Network Model

ANN is a computational model designed to
process input parameters and generate output
responses using predefined activation functions.
Commonly referred to as a multilayer perceptron,
the ANN serves as an excellent method for
connecting process parameters to the response
characteristics and predicting outcomes [14].
This technique effectively uncovers complex

curvilinear and quadratic relationships: across -

various input levels, even in poorly defined
systems [15]. In this study, two responses, such
as TF and SR, were investigated, with a proposed
ANN to predict their responses. Similar to the
human . brain, ANNs excel at performing
nonlinear tasks by leveraging bias and weight
values to model complex relationships. The
feedforward backpropagation algorithm was
applied in this study to develop the model. The
architecture of the ANN model employed in the
study is depicted in Fig. 5. The basic structure of
an ANN comprises three layers: the input layer,
hidden layer, and output layer.

Hidden Layer Output Layer

TR 2ol

Fig. 5. Architecture of the developed ANN model
In this research, three process parameters, i.e,
DBD, SS, and FR, were used as input. Therefore,
the first layer, known as the input layer, consists
of three input parameters. The maximum number
of neurons is determined based on the learning
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rate, which ranges from E-4- E-1. The hidden
layer, represented as the middle layer, contains
between 18 neurons. The optimal performance of
the ANN model is achieved by adjusting its
complexity appropriately. When the hidden layer
is configured with the optimal number of
neurons, the model/ exhibits improved
performance, offering more accurate predictions
and well-aligned points along the response curve.
However, an overly complex architecture can
limit ‘the ability of the model to generalize,
potentially leading to overfitting and reduced
performance on unseen data. The output
variables, represented as the third layer, include
two response measures (TF and SR). The data set
was randomly split into 80% for training and
10% of data for validation and testing. The
formulas for the coefficient of determination (R?)
and root mean squared error (RMSE) are given in
Equations (1) and (2), respectively; as follows:

2 _ _Z?:l(yl'—f/i)z . =
R =1=5 o &)
1 A~
MSE = \/;22;1(%- 9 @)
where,

y; -Actual value of input parameters
y;-predicted value

y;-Average of actual value

R?-Model accuracy, ranging from zero to one,
where a value close to 1 indicates a better fit and
higher predictive accuracy

3. Results and Discussion
3.1 Analysis of TE.and SR -

All Data analysis was performed using the
signal-to-noise (S/N) ratio from the Taguchi
technique. Since both TF and SR need to be
minimized, the smaller-the-better criterion was
employed. The mathematical expression for the
S/N ratio under the smaller-the-better is as given
in Eq. (3).
2= —1010g[>(xy?)] (3)
where
n- Number of observations.

y- Observed value of TF and SR for ith
observation.

Using Eq. (3), the S/N ratio for each
experimental run was determined. The S/N ratio
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analysis was used to assess the influence of input
parameters on the output responses. Tables 3
and 4 present S/N ratio values for TF and SR,
respectively. The results indicate that FR was the
most significant parameter affecting TF, followed
by DBD and SS. Conversely, DBD exhibits the
greatest impact on SR, followed by FR and SS.
ANOVA was used to identify the parameters
significantly influencing the response
characteristics. It determines the importance of
each parameter and its interaction by comparing
the mean square values against estimated
experimental errors at specific confidence levels.
The percentage contribution quantifies the
influence of each factor, calculated as the ratio
sum of the squared deviations for each factor to
the total sum of squared deviations. Tables 5 and
6 present the ANOVA results for the control
factors influencing TF and SR during the drilling
of the laminate. The ANOVA results, analysed at a
95% confidence level (p<0.05), revealed that FR
and DBD were significant parameters influencing
the drilling performance. The percentage
contribution (PC) of FR and DBD for TF was
65.66% and 22.9%, respectively. Similarly, for SR,
the PC of DBD and FR were 56.9% and 20.7%,
respectively. The regression analysis has been
developed to study the functional relationship
between the responses and control variables.
Multiple regression analysis was employed to
establish the correlation between the responses
and parameters. The regression equation for TF
and SR was given in Egs.'(4) and Eq. (5),
respectively. From these equations, the predicted
R? values for (TF and SR were 96.39% and
95.54%, respectively. These values indicate the
strong predictive capability of the regression

model and a high level of correlation between the
parameters and responses.

Table 3. S/N ratio table for TF

DBD FR
Level (mm) SS (rpm) (mm/min)
1 -10.490 -11.143 -9.535
2 -11.562 -12.656 -11.696
3 -12.854 -11.106 -13.675
Delta 2.363 1.550 4.140
Rank 2 3 1

TF(kgf)=1.137+0.036*DBD+0.003853*SS+0.00
627*FR+0.0158(DBD*DBD)-0.00000(SS*SS)
+0.000012(FR*FR)-0.000038(DBD*SS)
+0.000147(DBD*FR) 4)

R?=96.39%

Table 4. S/N ratio table for SR

Level DBD SS FR
(mm) (rpm) (mm/min)
1 -16.37 -18.72 -16.92
2 -17.84 -18.10 -17.90
3 -19.55 -16.94 -18.94
Delta 3.18 1.78 2.01
Rank 1 3 2

SR(um)=1.166+0.264*DBD+0.001603*SS+0.0
1985*FR+0.06306(DBD*DBD)+0.000013 (FR*F
R)-0.000197(DBD*SS)-0.001620(DBD*FR)

)

R2=95.54%

Table 5. ANOVA table for TF

Source DF Adj SS AdjMS F-Value P-Value
Model 9 221920 2.4658  155.14  0.000
Linear 3 19.4630 6.4877 408.19  0.000
A-DBD 1 4.7100 4.7100 296.35  0.000
B-SS 1 0.0027  0.0027  0.17 0.003
C-FR 1 14.7503 14.750  928.06  0.000
Square 3 2.6847  0.8949 5631 0.000
DBD* DBD 1 0.0239  0.0239 1.50 0.002
SS*SS 1 2.6264  2.6264 165.25  0.000
FR*FR 1 0.0344  0.0344 2.16 0.160
2-Way Interaction 3 0.0443 0.0148 0.93 0.448
DBD*SS 1 0.0376 ~ 0.0376  2.36 0.015
DBD*FR 1 0.0066  0.0066  0.42 0.027
SS*FR 1 0.0001  0.0001 0.01 0.032
Error 17 0.2702  0.0159

Total 26 22.4622

Table 6. ANOVA table for SR



Source DF Adj SS AdjMS F-Value P-Value
Model 9 65.8573 7.3175 927.86  0.000
Linear 3 63.3526 21.1175 2677.72 0.000
A-DBD 1 37.5556 37.5556 4762.08 0.000
B-SS 1 12.1032 12.1032 1534.70 0.000
C-FR 1 13.6939 13.6939 1736.40 0.000
Square 3 0.6764  0.2255  28.59 0.000
DBD* DBD 1 0.3817 0.3817  48.40 0.000
SS*SS 1 0.2508  0.2508  31.80 0.000
FR*FR 1 0.0439  0.0439 5.57 0.030
2-Way Interaction 3 1.8283 0.6094 77.27 0.000
DBD*SS 1 1.0208 1.0208 129.44  0.000
DBD*FR 1 0.8060  0.8060 102.20 0.000
SS*FR 1 0.0014 0.0014 0.18 0.678
Error 17 0.1341 0.0079
Total 26 65.9914
Table 7. Prediction results for TF and SR
S.No DBD SS FR _ TF (kef) - B
Predicted Actual Error Predicted Actual Error
1 6 2220 80 2.65 2.7 1:85 4.97 5.71 4.6

Table 7 presents the predicted and actual results
of TF and SR for the drilling of laminate.  The
optimal predicted and actual values for TF are
2.65 kgf and 2.7 Kkgf, respectively, while SR
predicted and actual values are 4.97 pm and
5.57%, respectively. The error percentages for TF
and SR are calculated as 1.85% and 4.6%,
respectively, indicating a close agreement
between the model predictions and experimental
observations. Figure 6 illustrates the comparison
between the predicted and actual values of TF
and SR at a 95% confidence level. The
comparison underscores the accuracy and
reliability of the predictive model in evaluating
drilling performance metrics.

&

o Predicted
| Actual

TF (g
Response Characteristics

Fig. 6. Comparison plot for predicted and actual

58 (um)

3.2 Prediction of TF and SR using ANN

In this investigation, an ANN model for TF
and SR was developed using the feedforward
backpropagation technique.

(a)  Training: R=0.99992

(b)
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Fig. 7. ANN model results at training, testing, and validation.

The Levenberg-Marquard algorithm was
employed to train, test, and validate the data
obtained from the experimentation. After
training the ANN model, the regression analysis
was performed. The regression plot for training,
testing, validation, and overall data showed a
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coefficient correlation (R) of 0.9883, indicating
strong agreement between predicted and actual
experimental values, as illustrated in Fig. 7d.

Figure 7aillustrates the training input data for
the ANN, where the dotted line represents the
smooth fit, and the blue line indicates the direct
fit. The ANN training is defined by the equation:
projected value = 1 x Target value x 0.0029,
indicating a strong correlation and optimal
agreement between the experimental and
predicted values. Figure 7b shows the validation
data for ANN, where the inclined dotted and
green line represents the smooth fit and direct fit,
respectively. After the training and validation, the
testing phase of the ANN was performed, as
illustrated in Fig. 7c. Figure 8 shows  the
performance graph for the best prediction when
the model was trained, tested, and validated. The
selected ANN achieved a mean squared error
(MSE) of approximately 0.089758 during the
training phase at 2 epochs, with the training
process converging after nearly 6 epochs. It was
observed that TF and SR had a coefficient of
determination (R%) of 96.39% and 95.54%,
respectively, indicating that the model is highly
adequate. Similarly, the correlation coefficient
between the experiment and ANN ANN-predicted
value was 0.98 for all training, testing, and
validation phases, demonstrating the accurate
prediction and strong predictive capability of the
ANN model.

Best Validation Performance is 0.089758 at epoch 2

Mean Squared Error (mse)

6 Epochs
Fig. 8. Performance plot for training, testing, and validation

3.3. Effect of Drilling Parameters on TF and SR

Figure 9 illustrates that TF increases with a
rise in DBD, SS, and FR, but decreases at higher SS
values. The smaller DBD of 6mm typically results
in lower TF, as it removes less material per
revolution, requiring less force to penetrate the
workpiece [16]. Conversely, a larger DBD of 10
mm requires a higher TF due to the increased
volume of material removed per revolution. At an
SS of 740 rpm, the drill bit rotates at a slower rate,

reducing cutting action and increasing contact
time with the workpiece. This extended contact
time facilitates more heat dissipation and
potentially decreases friction. However, the
prolonged interaction can lead to higher
resistance, resulting in an increase in TF due to
extended dwell time in the material [17].

Main Effects Plot for Thrust force
Data Means

o Drill bit Diameter (mm) Spindle speed (rpm) | Feed rate (mm/min)

’

45

Mean
»
=y

35

3.0 *
6 8 10 740 1480 2220 80 160 240

Fig. 9. Effect of drilling parameters on TF

At an SS of 1480 rpm, the drill bit achieves a
moderate rotational velocity, facilitating efficient
material removal with minimal dwell time. The
SS of 2220 rpm results in rapid rotation, enabling
high cutting velocities and efficient material
removal rates. The rapid rotation reduces dwell
time, minimizing frictional forces and potentially
lowering the TF [18]. However, excessively high
SS generates significant heat, which may cause
defects such as melting or charring in the
composite. The lower FR of 80 mm/min generally
results in reduced TF due to less aggressive
cutting action. The slower advancement allows
for controlled chip formation and evacuation,
reducing the risk of chip jamming and associated
TF spikes. The drilling at FR of 160 mm/min
results in moderate TF, balancing productivity
with machining quality by ensuring efficient
material removal, while maintaining control over
chip formation and evacuation [19]. At a higher
FR of 240 mm/min, the tool engages more
material per unit of time, which speeds up
material removal and increases cutting
resistance, resulting significant rise in TF.
Additionally, increased heat and friction can lead
to defects like melting or charring of the
composite, which further contribute to increased
TF drastically [20, 21]. Figure 10 illustrates the
main effect plot for SR, revealing that SR
increases with an increase in DBD and FR, but
decreases as SS increases. At a DBD of 6 mm, the
reduced cutting area in contact with the
composite surface leads to limited cutting-edge
engagement, with each cutting edge removing
less material per revolution compared to a larger
DBD. This localized cutting action can increase
stresses and irregularities on the surface,
resulting in higher SR [22]. Ata DBD of 10mm, the
increased surface area in contact with the
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workpiece reduces friction and heat generation
during drilling. The lower temperatures
minimize material softening and the formation of
defects [23], contributing to lower SR. As SS
increases, SR decreases.

Main Effects Plot for Surface roughness
Data Means

| Drill bit Diameter (mm) | Spindle speed (1pm) | Feed rate (mm/min) |
95
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6 8 10 740 1480 2220 80 160 240
Fig. 10. Effect of drilling parameters on SR

At-an SS of 2220 rpm, the drill bit rotates
faster, reducing the contact time between the
cutting edges and materials, which helps achieve
smoother surface finishes by limiting the
formation of defects. In contrast, at SS of 740
rpm, ineffective chip evacuation can lead to chip
formation around the cutting edges, decreasing
cutting efficiency and increasing SR.

At FR of 240 mm/min, a greater volume of
material is removed per unit time, leading to
increased cutting forces acting on the drill-bit.

These elevated forces can cause  greater"

deformation and tearing of the material around
the drilled hole, resulting in a higher SR [24].
Conversely, at FR of 80 mm/min, the prolonged
contact times between the drill bit cutting edges
and the material allow for more controlled and
effective cutting action, leading to a smoother
surface finish.

3.4. Microstructure Analysis

DBD has a significant impact on the surface
morphology of the drilled composite. At a DBD of
6 mm, high stress concentration occurs at the
cutting interface, which promotes the formation

of finer and more precise holes [25]. However, @
this can also increase the likelihood of fiber pull-

out, as illustrated in Fig. 11(a). In contrast, at a
DBD of 10 mm, the increased frictional heat
generated in-the drilling zone results in a more
robust. hole structure. However, this also
increases 'the risk of thermal breakdown and
delamination of the laminate, as shown in Fig.
11(b). At an SS of 740 rpm, reduced heat
generation leads to defects and fiber pull-out,
resulting in higher SR. Increasing the SS to 1480
rpm reduces SR and strikes a balance between
minimizing thermal impact and producing
sufficient heat for a cleaner cut. However, at SS of

2220 rpm, the increased frictional heat facilitates
smoother and more precise cuts but risks matrix
degradation and matrix debonding [26], as
depicted in Fig. 12.

Fig. 11. Microstructure on DBD ta) Fiber pullout at 6 mm, (b)
delamination at 10 mm P

Fig. 12. Microstructure on SS Matrlx debondlng at 2220 rpm

While the higher heat generation improves
cutting quality, it may still thermally deteriorate
the matrix. Therefore, an SS of 1480 rpm
efficiently reduces SR while preserving the



Authors / Mechanics of Advanced Composite Structures Vol (year) first page-last page

microstructural integrity [27]. At an FR of 80
mm/min, the drilling process is efficient, leading
to reduced stress on the material and a smoother
surface morphology with fewer defects, such as
matrix cracking, as shown in Fig. 13(a). However,
the lower FR may exacerbate thermal impacts,
potentially leading to heat-induced materials
deterioration [28]. When the FR is increased to
160 mm/min, a higher level of impact stress is
introduced, causing more noticeable
microstructural changes, such as matrix

deformation, as seen in Fig. 13(b). At the
maximum FR of 240 mm/min, the drilling
becomes significantly more aggressive, resulting
in severe impact stress and rapid material
ablation. This intense drilling action leads" to
delamination [29], matrix cracking; and extensive
fiber damage [30], which increases SR.

i =
£, "R A -')W: ‘Matri
By ; oy
5 £ .
Fig. 13. Microstructure on FR (a) Matrix cracking at 80
mm/min, (b) Matrix deformation at 160 mm/min

4. Conclusions

This investigation explored the prediction and
optimization of drilling characteristics, such as
TF and SR, using an integrated Taguchi and ANN
approach. The epoxy resin-based hybrid
composite reinforced with natural fibers was
fabricated using the hand lay-up technique.
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ANOVA with the smaller-the-better criterion was
applied to identify the significant parameters. An
ANN model was developed using a feedforward
backpropagation algorithm to predict the
responses. The study examined the effects of
DBD, SS, and FR on TF and SR. Based on the
results observed from the Taguchi and ANN
models, the following conclusions were drawn.

The ANOVA results indicated that the
parameters had a significant effect on both TF
and SR at a 95% confidence level (p<0.05). The
regression coefficient (R%) for TF and SR were
96:39% and 95.54%, respectively, demonstrating
a strong correlation between the parameters and
the responses.

The FR and DBD were identified as the most
significant parameters influencing TF, with their
respective contributions being 65.66% and
22.9%, respectively. Similarly, SR, DBD, and FR
contributed 56.9% and 20.7%, respectively.

The coefficient of correlation (R) of 0.9883
was achieved during the training, testing, and
validation phases of the ANN model, indicating a
good agreement between the predicted and
actual experimental values: The proposed ANN
model attained an MSE @ of approximately
0.089758 during the testing phase after 2 epochs,
demonstrating its high prediction accuracy.

The main effect plots showed that both TF and
SR increased with an increase in DBD and FR,
while they decreased as SS increased. The
predicted TF and SR values were 2.65 kgf and
4.97um, respectively, at the optimal conditions of
6 mm DBD, 2220 rpm SS, and 80 mm/min FR. The
error between the actual and predicted values
during the optimization of TF and SR was 1.85%
and 4.6%, respectively.

SEM analysis revealed the formation of fiber
pullout and delamination at varying DBD of 6 mm
and 10 mm, respectively. Additionally, matrix
cracking and matrix deformation were observed
at FR of 80 mm/min and 160 mm/min,
respectively. )

Itwas concluded that Taguchi, combined with
the ANN approach, demonstrated strong
effectiveness, significantly improving the
prediction accuracy for both TF and SR. This
hybrid method offered enhanced performance by
optimizing parameters and accurately predicting
the drilling characteristics of the composite
laminate.

In order to improve predictive modeling and
practical applicability, further study may
examine the effects of various resin systems, tool
geometries, and fiber combinations on drilling.
Additionally, real-time monitoring and advanced
machine learning may be integrated.
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