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The study investigates the prediction and parametric effects in drilling of Prosopis juliflora 

fiber (PJF)-reinforced epoxy resin hybrid composite using a combined Taguchi-artificial 

neural network (ANN) approach. The composite was prepared via hand lay-up technique with 

natural reinforcement including vetiver fiber (VF) and coir pith (CP). The effects of drill bit 

diameter (DBD), spindle speed (SS), and feed rate (FR) on thrust force (TF) and surface 

roughness (SR) were evaluated through a full factorial design. An ANN model developed using 

a feedforward backpropagation algorithm successfully predicted the responses. Analysis of 

variance (ANOVA) results revealed that the regression coefficient (R2) for TF and SR were 

96.39% and 95.54%, respectively. The DBD and FR were identified as the most significant 

parameters influencing TF and SR, both significant at the 95% confidence level (p<0.05). The 

regression plot exhibited a strong correlation (R=0.9883) between the predicted and actual 

values, while the ANN model achieved a mean squared error (MSE) of 0.089758 within 2 

epochs. TF and SR increased with higher DBD and FR but decreased with an increased SS, as 

indicated by the main effect plots. Scanning electron microscope (SEM) revealed drilling-

induced mechanisms, including fiber pullout, delamination, matrix cracking, matrix 

debonding, and matrix deformation. The findings demonstrate enhanced machining 

performance, offering potential for industrial applications and future research on bio-

composite materials. 
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1. Introduction 

Composite materials are gaining significant 
attention in diverse engineering applications due 
to their exceptional characteristics, including 
high strength-to-weight ratio, corrosion 
resistance, and remarkable versatility [1]. 
Natural fiber-reinforced composites have 
emerged as viable alternatives to conventional 
synthetic fiber composites, attributed to their 
eco-friendly behaviour, abundant availability, 

and cost-effectiveness [2]. In particular, Prosopis 
juliflora fiber (PJF), derived from the mesquite 
tree, has demonstrated promising mechanical 
properties and is widely explored for its potential 
applications in composite materials [3]. Epoxy 
resin is extensively used as a matrix material in 
composite manufacturing due to its excellent 
mechanical properties, chemical resistance, and 
ease of processing. When combined with natural 
fiber like Prosopis juliflora, epoxy resin binder 
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composites exhibit enhanced mechanical 
performance, making them ideal for a range of 
structural applications [4]. A crucial aspect in the 
practical engineering applications of composite 
materials is their machinability, particularly 
drilling behaviour, as it significantly influences 
manufacturing processes like assembly, 
fabrication, and quality control. Understanding 
the drilling behaviour of composite materials is 
essential for optimizing machining parameters, 
minimizing tool wear, and ensuring dimensional 
accuracy of machined components [5]. Despite 
the growing interest in natural fiber-reinforced 
epoxy composites, comprehensive studies on the 
prediction and optimization of drilling 
performance remain limited [6]. Therefore, this 
study aims to experimentally investigate the 
drilling behaviour of various natural fiber 
reinforced composites through a series of drilling 
tests.  

The PJF is gaining increasing popularity in the 
field of composite materials, especially when 
combined with polyester-based binders. Ganesan 
et al. [7] conducted an experimental investigation 
on the mechanical behaviour of hybrid 
composites made from natural fibers, specifically 
Calotropis gigantea and Prosopis juliflora. 
Taguchi-Grey Relational analysis was employed 
to enhance the mechanical properties of the 
composites. Raja et al. [8] investigated the 
delamination and drilling behaviour of neem and 
banyan fiber-reinforced sawdust particles hybrid 
composite through response surface 
methodology (RSM). According to an ANOVA test, 
the optimal drilling parameters were DBD of 6 
mm, FR of 10 mm/rev, and SS of 1500 rpm. The 
minimum TF of 23.43 N and torque of 5.13 N-m 
was achieved under these conditions. Lilly Mercy 
et al. [9] studied the drilling behaviour of teak 
wood reinforced epoxy resin using a Taguchi L9 
orthogonal array. The effect of SS and FR on TF 
and temperature was analysed during the drilling 
process. The results revealed that as SS increased, 
TF decreased, and temperature increased. 
Conversely, as FR increased, TF increased while 
temperature decreased. Mohan Kumar et al. [10] 
investigated the drilling characteristics of 
palmyra sprout fiber natural composite, focusing 
on drilling parameters such as rotating speed, 
tool feed, and resin types. The results revealed 
that the candlestick drill bit produced lower TF 
compared to twist and step cone drill bits. 
Rajaraman et al. [11] investigated the drilling 
parameters for kenaf and banana-based 
composite materials. They used high-speed steel 
drill bits of three different diameters, and they 
employed the L9 factorial method for their 
experimental study. The results revealed that SS 
of 3000 rpm and FR of 150 mm/min were optimal 
for producing defect-free holes. Boga and 

Koroglu [12] predicted and optimized machining 
parameters for enhancing surface roughness in 
dry milling of high-strength carbon fiber 
composite using an ANN and a genetic algorithm 
(GA). ANOVA results revealed that cutting tool 
and feed rate are the most significant factors in 
enhancing SR. The best SR was achieved at 250 
mm/rev and 5000 rpm with a TiAlN-coated tool, 
with a correlation value of 0.96177 and a mean 
square error of 0.074. demonstrating its efficacy 
in surface roughness estimation and achieving 
high prediction accuracy. Bolat et al. [13] 
predicted the milling performance of low-cost 
expanded clay-added synthetic foam using ANN. 
The experiments were performed using a 3-axis 
CNC-based milling machine, with controlled 
process variables including cutting speed, 
lubrication condition, and depth of cut. The 
Levenberg-Marquardt algorithm demonstrated 
superior performance in predicting milling 
performance compared to the scaled conjugate 
gradient method. 

The literature findings revealed that a natural 
fiber-reinforced hybrid composite improves 
machining behaviour. The Taguchi approach was 
widely applied in various composite drilling 
processes, resulting in enhanced machining 
performance. However, no investigations have 
been recorded on the optimization and 
prediction of the drilling process using a 
combined optimization approach. The TF and SR 
are critical parameters that significantly 
influence the quality and efficiency of drilling 
operations. Hence, it is important to optimize and 
predict the process during the drilling of natural 
fiber-reinforced composites. This investigation 
offers new insights for machining of bio-
composites with challenging behavior employing 
a hybrid Taguchi–ANN method to predict and 
optimize drilling performance of Prosopis 
juliflora fiber composite. The problem addressed 
in this study is to identify the process parameters 
and their optimal levels to enhance both the 
drilled surface quality and the performance of the 
composite. 

2. Materials and Methods 

In this investigation, Prosopis juliflora fiber 
(PJF), vetiver fiber (VF), and coir pith (CP) were 
selected as the natural reinforcement materials, 
while epoxy resin (LY-5062) and hardener (HY-
5062) were chosen as the matrix components. 
The matrix and reinforcement composition 
comprised 40% PJF, 25% VF, 13% CP, 14% ER, 
6% cobalt, and 2% catalyst.  

2.1. Preparation of Fibres and Composites   

The extracted natural fibers (PJF, VF, and CP) 
are dried at room temperature for 3 days and 



 

3 

oven-conditioned at 60°C for 5 hours. Prior to the 
heat treatment process, the average moisture 
content of PJF, VF, and CP is maintained at 5.44%, 
6.54% and 4.48%, respectively. The extracted 
natural fiber has been subjected to drying at 
room temperature and a heat treatment process, 
as depicted in Fig. 1. 

 

 
Fig. 1 (a) Fiber extraction, (b) heat treatment 

 

 After preparing the fibers, a wooden mold 
was prepared to fabricate the composite. The 
matrix for fabricating composite laminates was 
formulated by blending resin and hardener in a 
10:1 weight ratio, respectively. The epoxy resin 
and hardener mixture were thoroughly blended 
using a mechanical stirrer for 10 min to ensure 
uniform consistency before being poured into the 
mold. The composite laminates were developed 
using the hand-lay-up method. Initially, the 
treated natural fibers were carefully arranged in 
the mold, and matrix material on the fibers. The 
fibers were again arranged over the matrix 
materials, and discharged matrix material on the 
fiber surfaces. A roller was employed to evenly 
distribute the matrix across the entire area of the 
mold. To achieve uniform thickness and remove 
excess matrix materials, the mold was subjected 
to loads of 10 kg for 12 hours at room 
temperature. Then, the composite laminate was 
placed in a hot air oven at 60°C for 1 hour to 
ensure complete curing. The final fabricated 
composite laminate is depicted in Fig. 2.  

 

 

2.2 Drilling Experimental Procedure 
  

The drilling of fabricated laminate was 
conducted using a vertical machining centre 
(Model: LV 45, Make: LMW), as shown in Fig. 3, at 
PSG Research Institute, Coimbatore. The 
experiment design was planned using Taguchi 
L27 orthogonal array, incorporating three 
process parameters and their levels, as detailed 
in Table 1. Drill bits with varying diameters were 
used for investigation. As per the experimental 
design, a total of 27 experiments were conducted 
on the laminate composite, as illustrated in Fig. 4.  
For each drill bit, nine experiments were 
performed, varying the other parameters. The 
experimental values of TF and SR are listed in the 
Table. 2. The TF was measured using a 
piezoelectric dynamometer (Kistler type), 
mounted on the machining table to record real-
time thrust force during drilling. The 
dynamometer was connected to a data 
acquisition system for continuous monitoring 
and precise measurement. The SR values were 
measured using a contact-type surface roughness 
tester (Mitutoyo SJ-210). For each sample, three 
measurements were taken for both TF and SR, 
and the average was considered the experimental 
result. 

 

 
Fig. 3. Vertical machining centre 

Fig. 2. Composite laminate fabricated in the study
 

Table 1. Drilling parameters and their levels 

Parameter Unit 
Levels 

Low  Medium  High  

Drill bit Diameter (DBD) mm 6 8 10 

Spindle speed (SS)  rpm 740 1480 2220 
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Feed rate (FR) mm/min 80 160 240 

 
 
 

Table 2. Experimental values of TF and SR 
 

Ex. No 
Drilling Parameters Responses 

DBD (mm) SS (rpm) FR (mm/min) TF (kgf) SR (µm) 

1 6 740 80 2.3 6.11 

2 6 740 160 3.3 7.21 

3 6 740 240 4.0 8.28 

4 6 1480 80 3.2 5.21 

5 6 1480 160 3.8 6.75 

6 6 1480 240 4.7 7.95 

7 6 2220 80 2.3 4.56 

8 6 2220 160 3.2 6.05 

9 6 2220 240 4.3 7.25 

10 8 740 80 2.7 7.73 

11 8 740 160 3.6 8.56 

12 8 740 240 4.5 9.59 

13 8 1480 80 3.4 7.12 

14 8 1480 160 4.5 7.85 

15 8 1480 240 5.4 8.88 

16 8 2220 80 2.7 6.14 

17 8 2220 160 3.6 7.05 

18 8 2220 240 4.6 7.81 

19 10 740 80 3.4 8.98 

20 10 740 160 4.3 8.61 

21 10 740 240 5.3 9.15 

22 10 1480 80 3.9 9.05 

23 10 1480 160 4.7 9.68 

24 10 1480 240 5.8 8.48 

25 10 2220 80 3.5 7.91 

26 10 2220 160 4.0 8.18 

27 10 2220 240 5.1 8.96 
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Fig. 4. Drilled laminate composite 

 

2.3  Artificial Neural Network Model 

ANN is a computational model designed to 

process input parameters and generate output 

responses using predefined activation functions. 

Commonly referred to as a multilayer perceptron, 

the ANN serves as an excellent method for 

connecting process parameters to the response 

characteristics and predicting outcomes [14]. 

This technique effectively uncovers complex 

curvilinear and quadratic relationships across 

various input levels, even in poorly defined 

systems [15]. In this study, two responses, such 

as TF and SR, were investigated, with a proposed 

ANN to predict their responses. Similar to the 

human brain, ANNs excel at performing 

nonlinear tasks by leveraging bias and weight 

values to model complex relationships. The 

feedforward backpropagation algorithm was 

applied in this study to develop the model. The 

architecture of the ANN model employed in the 

study is depicted in Fig. 5. The basic structure of 

an ANN comprises three layers: the input layer, 

hidden layer, and output layer. 

 
Fig. 5. Architecture of the developed ANN model 

 In this research, three process parameters, i.e, 

DBD, SS, and FR, were used as input. Therefore, 

the first layer, known as the input layer, consists 

of three input parameters. The maximum number 

of neurons is determined based on the learning 

rate, which ranges from E-4- E-1. The hidden 

layer, represented as the middle layer, contains 

between 18 neurons. The optimal performance of 

the ANN model is achieved by adjusting its 

complexity appropriately. When the hidden layer 

is configured with the optimal number of 

neurons, the model exhibits improved 

performance, offering more accurate predictions 

and well-aligned points along the response curve.  

However, an overly complex architecture can 

limit the ability of the model to generalize, 

potentially leading to overfitting and reduced 

performance on unseen data. The output 

variables, represented as the third layer, include 

two response measures (TF and SR). The data set 

was randomly split into 80% for training and 

10% of data for validation and testing. The 

formulas for the coefficient of determination (R2) 

and root mean squared error (RMSE) are given in 

Equations (1) and (2), respectively, as follows: 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)
2𝑛

𝑖=1
                                                (1) 

𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1                                       (2) 

where,   

𝑦𝑖 -Actual value of input parameters 

𝑦̂𝑖-predicted value 

𝑦̅𝑖-Average of actual value 

𝑅2-Model accuracy, ranging from zero to one, 

where a value close to 1 indicates a better fit and 

higher predictive accuracy  

3. Results and Discussion 

3.1  Analysis of TF and SR 

All Data analysis was performed using the 
signal-to-noise (S/N) ratio from the Taguchi 
technique. Since both TF and SR need to be 
minimized, the smaller-the-better criterion was 
employed. The mathematical expression for the 
S/N ratio under the smaller-the-better is as given 
in Eq. (3). 

 
𝑆

𝑁
= −10 log [

1

𝑛
(∑𝑦2)]                                          (3) 

where  
n- Number of observations.  
y- Observed value of TF and SR for ith 
observation. 

Using Eq. (3), the S/N ratio for each 
experimental run was determined. The S/N ratio 
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analysis was used to assess the influence of input 
parameters on the output responses. Tables 3 
and 4 present S/N ratio values for TF and SR, 
respectively. The results indicate that FR was the 
most significant parameter affecting TF, followed 
by DBD and SS. Conversely, DBD exhibits the 
greatest impact on SR, followed by FR and SS. 
ANOVA was used to identify the parameters 
significantly influencing the response 
characteristics. It determines the importance of 
each parameter and its interaction by comparing 
the mean square values against estimated 
experimental errors at specific confidence levels. 
The percentage contribution quantifies the 
influence of each factor, calculated as the ratio 
sum of the squared deviations for each factor to 
the total sum of squared deviations. Tables 5 and 
6 present the ANOVA results for the control 
factors influencing TF and SR during the drilling 
of the laminate. The ANOVA results, analysed at a 
95% confidence level (p<0.05), revealed that FR 
and DBD were significant parameters influencing 
the drilling performance. The percentage 
contribution (PC) of FR and DBD for TF was 
65.66% and 22.9%, respectively. Similarly, for SR, 
the PC of DBD and FR were 56.9% and 20.7%, 
respectively. The regression analysis has been 
developed to study the functional relationship 
between the responses and control variables. 
Multiple regression analysis was employed to 
establish the correlation between the responses 
and parameters. The regression equation for TF 
and SR was given in Eqs. (4) and Eq. (5), 
respectively. From these equations, the predicted 
R2 values for TF and SR were 96.39% and 
95.54%, respectively. These values indicate the 
strong predictive capability of the regression 

model and a high level of correlation between the 
parameters and responses. 

Table 3. S/N ratio table for TF 

Level 
DBD 
(mm) 

SS (rpm) 
FR 
(mm/min) 

1 -10.490 -11.143 -9.535 

2 -11.562 -12.656 -11.696 

3 -12.854 -11.106 -13.675 

Delta 2.363 1.550 4.140 

Rank 2 3 1 

TF(kgf)=1.137+0.036*DBD+0.003853*SS+0.00
627*FR+0.0158(DBD*DBD)-0.00000(SS*SS) 
+0.000012(FR*FR)-0.000038(DBD*SS) 
+0.000147(DBD*FR)                                             (4)                                 

R2= 96.39% 

 

 

 

Table 4. S/N ratio table for SR 

Level 
DBD 
(mm) 

SS 
(rpm) 

FR 
(mm/min) 

1 -16.37 -18.72 -16.92 

2 -17.84 -18.10 -17.90 

3 -19.55 -16.94 -18.94 

Delta 3.18 1.78 2.01 

Rank 1 3 2 

SR(µm)=1.166+0.264*DBD+0.001603*SS+0.0
1985*FR+0.06306(DBD*DBD)+0.000013(FR*F
R)-0.000197(DBD*SS)-0.001620(DBD*FR)          
(5) 

R2= 95.54% 

Table 5. ANOVA table for TF 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 22.1920 2.4658 155.14 0.000 

Linear 3 19.4630 6.4877 408.19 0.000 

A -DBD 1 4.7100 4.7100 296.35 0.000 

B-SS 1 0.0027 0.0027 0.17 0.003 

C-FR  1 14.7503 14.750 928.06 0.000 

Square 3 2.6847 0.8949 56.31 0.000 

DBD* DBD 1 0.0239 0.0239 1.50 0.002 

SS * SS 1 2.6264 2.6264 165.25 0.000 

FR * FR 1 0.0344 0.0344 2.16 0.160 

2-Way Interaction 3 0.0443 0.0148 0.93 0.448 

DBD*SS 1 0.0376 0.0376 2.36 0.015 

DBD*FR 1 0.0066 0.0066 0.42 0.027 

SS*FR 1 0.0001 0.0001 0.01 0.032 

Error 17 0.2702 0.0159   

Total 26 22.4622    

Table 6. ANOVA table for SR 
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Source DF Adj SS Adj MS F-Value P-Value 

Model 9 65.8573 7.3175 927.86 0.000 

Linear 3 63.3526 21.1175 2677.72 0.000 

A -DBD 1 37.5556 37.5556 4762.08 0.000 

B-SS 1 12.1032 12.1032 1534.70 0.000 

C-FR  1 13.6939 13.6939 1736.40 0.000 

Square 3 0.6764 0.2255 28.59 0.000 

DBD* DBD 1 0.3817 0.3817 48.40 0.000 

SS * SS 1 0.2508 0.2508 31.80 0.000 

FR * FR 1 0.0439 0.0439 5.57 0.030 

2-Way Interaction 3 1.8283 0.6094 77.27 0.000 

DBD*SS 1 1.0208 1.0208 129.44 0.000 

DBD*FR 1 0.8060 0.8060 102.20 0.000 

SS*FR 1 0.0014 0.0014 0.18 0.678 

Error 17 0.1341 0.0079   

Total 26 65.9914    

 

 

 

Table 7. Prediction results for TF and SR 

S. No DBD SS FR 
TF (kgf) SR (µm) 

Predicted Actual Error Predicted Actual Error 

1 6 2220 80 2.65 2.7 1.85 4.97 5.71 4.6 

Table 7 presents the predicted and actual results 
of TF and SR for the drilling of laminate. The 
optimal predicted and actual values for TF are 
2.65 kgf and 2.7 kgf, respectively, while SR 
predicted and actual values are 4.97 µm and 
5.57%, respectively. The error percentages for TF 
and SR are calculated as 1.85% and 4.6%, 
respectively, indicating a close agreement 
between the model predictions and experimental 
observations.  Figure 6 illustrates the comparison 
between the predicted and actual values of TF 
and SR at a 95% confidence level. The 
comparison underscores the accuracy and 
reliability of the predictive model in evaluating 
drilling performance metrics.   

 
Fig. 6. Comparison plot for predicted and actual 

3.2 Prediction of TF and SR using ANN 

In this investigation, an ANN model for TF 
and SR was developed using the feedforward 
backpropagation technique.  
 

 
Fig. 7. ANN model results at training, testing, and validation. 

 
 The Levenberg-Marquard algorithm was 
employed to train, test, and validate the data 
obtained from the experimentation. After 
training the ANN model, the regression analysis 
was performed. The regression plot for training, 
testing, validation, and overall data showed a 
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coefficient correlation (R) of 0.9883, indicating 
strong agreement between predicted and actual 
experimental values, as illustrated in Fig. 7d. 

Figure 7a illustrates the training input data for 
the ANN, where the dotted line represents the 
smooth fit, and the blue line indicates the direct 
fit. The ANN training is defined by the equation: 
projected value = 1 x Target value x 0.0029, 
indicating a strong correlation and optimal 
agreement between the experimental and 
predicted values. Figure 7b shows the validation 
data for ANN, where the inclined dotted and 
green line represents the smooth fit and direct fit, 
respectively. After the training and validation, the 
testing phase of the ANN was performed, as 
illustrated in Fig. 7c. Figure 8 shows the 
performance graph for the best prediction when 
the model was trained, tested, and validated. The 
selected ANN achieved a mean squared error 
(MSE) of approximately 0.089758 during the 
training phase at 2 epochs, with the training 
process converging after nearly 6 epochs. It was 
observed that TF and SR had a coefficient of 
determination (R2) of 96.39% and 95.54%, 
respectively, indicating that the model is highly 
adequate. Similarly, the correlation coefficient 
between the experiment and ANN ANN-predicted 
value was 0.98 for all training, testing, and 
validation phases, demonstrating the accurate 
prediction and strong predictive capability of the 
ANN model. 

 

 
Fig. 8. Performance plot for training, testing, and validation 

 

 
3.3. Effect of Drilling Parameters on TF and SR 

 
Figure 9 illustrates that TF increases with a 

rise in DBD, SS, and FR, but decreases at higher SS 
values. The smaller DBD of 6mm typically results 
in lower TF, as it removes less material per 
revolution, requiring less force to penetrate the 
workpiece [16]. Conversely, a larger DBD of 10 
mm requires a higher TF due to the increased 
volume of material removed per revolution. At an 
SS of 740 rpm, the drill bit rotates at a slower rate, 

reducing cutting action and increasing contact 
time with the workpiece. This extended contact 
time facilitates more heat dissipation and 
potentially decreases friction. However, the 
prolonged interaction can lead to higher 
resistance, resulting in an increase in TF due to 
extended dwell time in the material [17]. 

 

 
Fig. 9. Effect of drilling parameters on TF 

 
At an SS of 1480 rpm, the drill bit achieves a 

moderate rotational velocity, facilitating efficient 
material removal with minimal dwell time. The 
SS of 2220 rpm results in rapid rotation, enabling 
high cutting velocities and efficient material 
removal rates. The rapid rotation reduces dwell 
time, minimizing frictional forces and potentially 
lowering the TF [18]. However, excessively high 
SS generates significant heat, which may cause 
defects such as melting or charring in the 
composite. The lower FR of 80 mm/min generally 
results in reduced TF due to less aggressive 
cutting action. The slower advancement allows 
for controlled chip formation and evacuation, 
reducing the risk of chip jamming and associated 
TF spikes. The drilling at FR of 160 mm/min 
results in moderate TF, balancing productivity 
with machining quality by ensuring efficient 
material removal, while maintaining control over 
chip formation and evacuation [19]. At a higher 
FR of 240 mm/min, the tool engages more 
material per unit of time, which speeds up 
material removal and increases cutting 
resistance, resulting significant rise in TF. 
Additionally,  increased heat and friction can lead 
to defects like melting or charring of the 
composite, which further contribute to increased 
TF drastically [20, 21]. Figure 10 illustrates the 
main effect plot for SR, revealing that SR 
increases with an increase in DBD and FR, but 
decreases as SS increases. At a DBD of 6 mm, the 
reduced cutting area in contact with the 
composite surface leads to limited cutting-edge 
engagement, with each cutting edge removing 
less material per revolution compared to a larger 
DBD. This localized cutting action can increase 
stresses and irregularities on the surface, 
resulting in higher SR [22]. At a DBD of 10mm, the 
increased surface area in contact with the 



Authors / Mechanics of Advanced Composite Structures Vol (year) first page-last page 

9 

workpiece reduces friction and heat generation 
during drilling. The lower temperatures 
minimize material softening and the formation of 
defects [23], contributing to lower SR. As SS 
increases, SR decreases. 

 

 
Fig. 10. Effect of drilling parameters on SR 

   
At an SS of 2220 rpm, the drill bit rotates 

faster, reducing the contact time between the 
cutting edges and materials, which helps achieve 
smoother surface finishes by limiting the 
formation of defects.  In contrast, at SS of 740 
rpm, ineffective chip evacuation can lead to chip 
formation around the cutting edges, decreasing 
cutting efficiency and increasing SR. 

At FR of 240 mm/min, a greater volume of 
material is removed per unit time, leading to 
increased cutting forces acting on the drill bit. 
These elevated forces can cause greater 
deformation and tearing of the material around 
the drilled hole, resulting in a higher SR [24]. 
Conversely, at FR of 80 mm/min, the prolonged 
contact times between the drill bit cutting edges 
and the material allow for more controlled and 
effective cutting action, leading to a smoother 
surface finish. 

 

3.4. Microstructure Analysis 
 

DBD has a significant impact on the surface 
morphology of the drilled composite. At a DBD of 
6 mm, high stress concentration occurs at the 
cutting interface, which promotes the formation 
of finer and more precise holes [25]. However, 
this can also increase the likelihood of fiber pull-
out, as illustrated in Fig. 11(a). In contrast, at a 
DBD of 10 mm, the increased frictional heat 
generated in the drilling zone results in a more 
robust hole structure.  However, this also 
increases the risk of thermal breakdown and 
delamination of the laminate, as shown in Fig. 
11(b). At an SS of 740 rpm, reduced heat 
generation leads to defects and fiber pull-out, 
resulting in higher SR. Increasing the SS to 1480 
rpm reduces SR and strikes a balance between 
minimizing thermal impact and producing 
sufficient heat for a cleaner cut.  However, at SS of 

2220 rpm, the increased frictional heat facilitates 
smoother and more precise cuts but risks matrix 
degradation and matrix debonding [26], as 
depicted in Fig. 12. 

 

 
Fig. 11. Microstructure on DBD (a) Fiber pullout at 6 mm, (b) 

delamination at 10 mm 

  

 
Fig. 12. Microstructure on SS Matrix debonding at 2220 rpm 
 

While the higher heat generation improves 
cutting quality, it may still thermally deteriorate 
the matrix. Therefore, an SS of 1480 rpm 
efficiently reduces SR while preserving the 
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microstructural integrity [27]. At an FR of 80 
mm/min, the drilling process is efficient, leading 
to reduced stress on the material and a smoother 
surface morphology with fewer defects, such as 
matrix cracking, as shown in Fig. 13(a). However, 
the lower FR may exacerbate thermal impacts, 
potentially leading to heat-induced materials 
deterioration [28]. When the FR is increased to 
160 mm/min, a higher level of impact stress is 
introduced, causing more noticeable 
microstructural changes, such as matrix 
deformation, as seen in Fig. 13(b). At the 
maximum FR of 240 mm/min, the drilling 
becomes significantly more aggressive, resulting 
in severe impact stress and rapid material 
ablation. This intense drilling action leads to 
delamination [29], matrix cracking, and extensive 
fiber damage [30], which increases SR. 

 

 
Fig. 13. Microstructure on FR (a) Matrix cracking at 80 

mm/min, (b) Matrix deformation at 160 mm/min 

4. Conclusions 

This investigation explored the prediction and 
optimization of drilling characteristics, such as 
TF and SR, using an integrated Taguchi and ANN 
approach. The epoxy resin-based hybrid 
composite reinforced with natural fibers was 
fabricated using the hand lay-up technique. 

ANOVA with the smaller-the-better criterion was 
applied to identify the significant parameters. An 
ANN model was developed using a feedforward 
backpropagation algorithm to predict the 
responses. The study examined the effects of 
DBD, SS, and FR on TF and SR. Based on the 
results observed from the Taguchi and ANN 
models, the following conclusions were drawn. 

The ANOVA results indicated that the 
parameters had a significant effect on both TF 
and SR at a 95% confidence level (p<0.05). The 
regression coefficient (R2) for TF and SR were 
96.39% and 95.54%, respectively, demonstrating 
a strong correlation between the parameters and 
the responses.  

The FR and DBD were identified as the most 
significant parameters influencing TF, with their 
respective contributions being 65.66% and 
22.9%, respectively. Similarly, SR, DBD, and FR 
contributed 56.9% and 20.7%, respectively.  

The coefficient of correlation (R) of 0.9883 
was achieved during the training, testing, and 
validation phases of the ANN model, indicating a 
good agreement between the predicted and 
actual experimental values. The proposed ANN 
model attained an MSE of approximately 
0.089758 during the testing phase after 2 epochs, 
demonstrating its high prediction accuracy.  

The main effect plots showed that both TF and 
SR increased with an increase in DBD and FR, 
while they decreased as SS increased. The 
predicted TF and SR values were 2.65 kgf and 
4.97µm, respectively, at the optimal conditions of 
6 mm DBD, 2220 rpm SS, and 80 mm/min FR. The 
error between the actual and predicted values 
during the optimization of TF and SR was 1.85% 
and 4.6%, respectively. 

SEM analysis revealed the formation of fiber 
pullout and delamination at varying DBD of 6 mm 
and 10 mm, respectively. Additionally, matrix 
cracking and matrix deformation were observed 
at FR of 80 mm/min and 160 mm/min, 
respectively. 

 It was concluded that Taguchi, combined with 
the ANN approach, demonstrated strong 
effectiveness, significantly improving the 
prediction accuracy for both TF and SR. This 
hybrid method offered enhanced performance by 
optimizing parameters and accurately predicting 
the drilling characteristics of the composite 
laminate. 

In order to improve predictive modeling and 
practical applicability, further study may 
examine the effects of various resin systems, tool 
geometries, and fiber combinations on drilling. 
Additionally, real-time monitoring and advanced 
machine learning may be integrated. 
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