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Abstract

This research is dedicated to establishing the existence and uniqueness of solutions for a Caputo-Fabrizino fractional
differential system. Additionally, it explores the Hyers-Ulam-Rassias and Hyers-Ulam-Mittag-Leffler stability of these
solutions. This study utilizes the alternative fixed point theorem as a fundamental tool in its analysis. In recent papers,
authors used the Schauder fixed point theorem and the Laplace transform to prove the stability of Caputo-Fabrizio
equations, but we use the alternative fixed point theorem to prove the stability of these equations.
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1 Introduction

Fractional calculus, which extends classical differentiation to non-integer orders, has revolutionized the modeling
of memory-dependent phenomena in physics, engineering, and biology [11]. The Caputo derivative dominated early
research but faced limitations due to its singular kernel [12]. To address this, Caputo and Fabrizio (2015) introduced
a groundbreaking non-singular derivative (CF) using an exponential kernel that enables accurate modeling of material
heterogeneities and anomalous diffusion and it is used in fields such as control theory, viscoelasticity, and signal
processing [2, 13, 17, 6, 5].

Losada and Nieto established foundational properties of CF operators, including inversion formulas and integral
representations [10]. Subsequent work generalized CF calculus to variable-order and higher dimensions . Parallel devel-
opments introduced Atangana-Baleanu (AB) derivatives (2016) using Mittag-Leffler kernels [1], expanding applications
to viscoelasticity and cardiac electrophysiology.

The Caputo-Fabrizio derivative model is used in various fields such as heat transfer in nanomaterials [15], epidemic
dynamics with memory effects, and viscoelastic deformation of polymers. Stability guarantees robustness against
perturbations critical for control systems and numerical implementations, and fixed-point theorems became central
to stability proofs. The alternative fixed-point theorem (Diaz-Margolis [3]) enables weaker constraints on µ(κ, P (κ))
and provides explicit error bounds for stability. While fixed-point theorems (Banach, Schauder) have been used for
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CF derivatives [10, 13], the alternative fixed-point theorem remains underexplored for CF stability, a gap this work
addresses.

This paper explores the stability of Caputo-Fabrizio fractional differential equations, focusing on Hyers-Ulam-
Rassias (HUR) and Hyers-Ulam-Mittag-Leffler (HUML) stability for{

CFDβP (κ) = µ(κ, P (κ)) κ ∈ [0, b],

P (0) = 0,
(1.1)

in which CFDβ is the Caputo-Fabrizio differential of order β and µ : [0, b] × R → R be continuous and Lipschitz in
P. By analyzing these types of stability, the study seeks to understand how solutions react to small perturbations.
This understanding is essential for applications that require precise and stable solutions, such as in engineering and
scientific modeling. The research offers valuable insights into the behavior of fractional differential equations, thereby
enhancing both their practical utility and theoretical understanding.

In the next section, we build on these foundations to outline the key definitions and theorems used in our sustain-
ability analysis. Then we present a physically motivated example covering ferromagnetism, biological systems, and
control engineering.

2 Preliminaries

Theorem 2.1 (Alternative fixed point ). ([3]). Consider generalized complete metric space (Φ, γ), and Lipschitz
mapping T : Φ −→ Φ with constant β < 1. Then, for some i ∈ Φ either,

γ(Tm(i), Tm+1(i)) = +∞ (m ≥ 0),

or we can find a natural number m0 such that:

γ(Tm(i), Tm+1(i)) < +∞ (∀m ≥ m0),

then the followings are true:

1. The fixed point α of T is the convergence point of the sequence {Tn(i)};
2. In the set M = {α∗ ∈ Φ: γ(Tm(i), α∗) < +∞}, α is the unique fixed point of T ;

3. For all α∗ ∈ M, γ(α∗, α) ≤ 1
1−β γ(α

∗, T (α∗)).

Definition 2.2. ([2]). Assume an absolutely continuous function P : [α,∞) → R, where α ≤ 0 then:

CFDβP (κ) =
1

1− β

∫ κ

α

exp
−β(κ−ν)

1−β P
′
(ν) dν, for κ ≥ 0, (2.1)

is Caputo-Fabrizio fractional derivative.

Definition 2.3. ([10]). The function P : [α,∞) → R is an absolutely continuous , then the Caputo-Fabrizio integral
of order β is defined as

CF IβP (κ) = (1− β)[P (κ)− P0] + β

∫ κ

0

P (ν) dν, (2.2)

with P0 =
∫ 0

α
e−

β
1−β νP ′

ν dν. Of course, if α = 0, then P0 = 0, and

CF IβP (κ) = (1− β)P (κ) + β

∫ κ

0

P (ν) dν. (2.3)

Theorem 2.4. ([10]). The following relations will be useful to solve fractional ordinary and partial differential equa-
tions,

CFDβ CF IαP (κ) = P (κ)− P (α)e−
β

1−β (κ−α), (2.4)
CF Iβ CFDβP (κ) = P (κ) + c, (2.5)

with c an arbitrary real constant.
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Definition 2.5. A function φ(κ) > 0 used in the inequality (2.6) to bound the perturbation of the equation is called
a control function.

Definition 2.6. Let φ ∈ C([0, b],R) be a positive control function, if for each P ∈ C([0, b],R) the following condition
is verified: ∣∣∣(1− β)µ(κ, P (κ)) + β

∫ κ

0

µ(ν, P (ν)) dν − P (κ)
∣∣∣ ≤ φ(κ), (2.6)

then the system (1.1) is Hyers-Ulam-Rassias stable and there exists a solution Q ∈ C([0, b],R) of system (1.1) such
that:

|Q(κ)− P (κ)| ≤ σφ(κ), κ ∈ [0, b] (2.7)

where the positive constant σ does not depend on P .

Definition 2.7. ([9]). Assume the gamma function Γ. A generalization of the exponential function is the Mittag
Leffler function given by

Ei(∆) :=

∞∑
κ=0

∆κ

Γ(κi+ 1)
, i ∈ C, Re(i) > 0. (2.8)

Definition 2.8. The system (1.1) is Hyers-Ulam-Mittag-Leffler stable according to Ei(−|κ|) if for each P ∈ C([0, b],R),
the following condition is verified:∣∣∣(1− β)µ(κ, P (κ)) + β

∫ κ

0

µ(ν, P (ν)) dν − P (κ)
∣∣∣ ≤ Ei(−|κ|), (2.9)

then there exist a positive constant σ, and a solution Q ∈ C([0, b],R) of (1.1) such that

|Q(κ)− P (κ)| ≤ σEi(−|κ|), κ ∈ (0, b). (2.10)

3 Main results

This section shows that (1.1) has a unique solution. Then, the stability of Hyers-Ulam-Rassias, and Hyers-Ulam-
Mittag-Leffler for (1.1) according to the alternative fixed point theorem is investigated.

Lemma 3.1. Let φ,P,Q ∈ C([0, b],R), if we define a mapping d : C([0, b],R)× C([0, b],R) → [0,+∞], by

d(P (κ), Q(κ)) := inf

{
c ≥ 0 : |P (κ)−Q(κ)| ≤ cφ(κ)

}
. (3.1)

Then we demonstrate that (C([0, b],R), d) constitutes a generalized metric space.

Proof . For every κ ∈ [0, b] we show that d(P (κ), Q(κ)) = 0 if and only if P (κ) = Q(κ). Assume d(P (κ), Q(κ)) = 0,
then for all P (κ), Q(κ) ∈ C([0, b],R) and κ ∈ [0, b], we have:

inf

{
c ≥ 0 : |P (κ)−Q(κ)| ≤ cφ(κ)

}
= 0,

so for every κ ∈ [0, b] we have P (κ) = Q(κ), and conversely. Symmetry d(P (κ), Q(κ)) = d(Q(κ), P (κ)) holds by
definition. Now, consider for j = 1, 2; there exist constants fj such that d(P (κ), η(κ)) = f1 and d(Q(κ), η(κ)) = f2.
Then, we have {

|P (κ)− η(κ)| ≤ f1φ(κ),

|Q(κ)− η(κ)| ≤ f2φ(κ),
(3.2)

according to the triangular property in absolute magnitudes, we can define k1 = f1 + f2 such that:

|P (κ)−Q(κ)| ≤ |P (κ)− η(κ)|+ |Q(κ)− η(κ)| ≤ k1φ(κ), (3.3)
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if we take the infimum from the above relationship, we obtain:

d (P (κ), Q(κ)) ≤ inf {f1 ≥ 0 : |P (κ)− η(κ)| ≤ f1φ(κ)}+ inf {f2 ≥ 0 : |Q(κ)− η(κ)| ≤ f2φ(κ)}
= d(P (κ), η(κ)) + d(Q(κ), η(κ)).

Now, we demonstrate the completeness of (C([0, b],R), d). Consider a Cauchy sequence {Pn(κ)}n. This means that
for any positive number i, there exists a natural Ni such that for all n,m ⩾ Ni, we have:

d(Pn(κ), Pm(κ)) < i.

With definition (3.1), for all κ ∈ [0, b] we can express:

|Pn(κ)− Pm(κ)| ⩽ iφ(κ). (3.4)

Let κ ∈ [0, b] is fixed, so the sequence {Pn(κ)}n is a Cauchy sequence in R and, due to the completeness of R,
converges for each κ ∈ [0, b]. Consequently, we can define a function P (κ) : [0, b] → R by

P (κ) = lim
n→∞

Pn(κ).

Since φ(κ) is continuous on [0, b], there exists T > 0 such that φ(κ) < T for all κ ∈ [0, b]. Thus, (3.4) implies that
{Pn(κ)}n converges uniformly to P (κ) in the usual topology of R. Hence, P ∈ C([0, b],R). If we suppose m approaches
to infinity, for i > 0 a natural Ni exists such that for n ⩾ Ni it follows from (3.4) that

|Pn(κ)− P (κ)| ⩽ iφ(κ), (3.5)

for all positive i there exists natural Ni such that for all n > Ni considering equation (3.1), we obtain

d(P (κ), Pn(κ)) ⩽ i.

This indicates that the Cauchy sequence {Pn} converges to P in (C([0, b],R), d), demonstrating the completeness
of (C([0, b],R), d). □

Remark 3.2. Unlike prior fixed point theorems approaches, our use of Theorem 2.1 enables weaker constraints on
µ(κ, P (κ)).

Lemma 3.3. Let µ ∈ [0, b]× R → R be a continuous function. Then (1.1) is equivalent to

P (κ) = (1− β)µ(κ, P (κ)) + β

∫ κ

0

µ(ν, P (ν)) dν.

Theorem 3.4 (UHR stability). Assume P ∈ C([0, b],R) satisfies (2.6) for a control function φ ∈ C([0, b],R+), and
the following hold:

(R1) There exists a constant θ > 0 such that

|µ(κ, P (κ))− µ(κ,Q(κ))| ≤ θ|P (κ)−Q(κ)|, (3.6)

(R2) There exists a constant δ < 1 such that ∫ κ

0

φ(ν) dν ≤ δφ(κ), (3.7)

(R3) There exists a constant γ < 1 such that

γ = θ(|1− β|+ δβ). (3.8)

Thus a unique solution of (1.1) is Q ∈ C([0, b],R) such that

Q(κ) = (1− β)µ(κ,Q(κ)) + β

∫ κ

0

µ(ν,Q(ν)) dν, (3.9)

in which

|Q(κ)− P (κ)| ≤ c1
1− γ

φ(κ), κ ∈ [0, b]. (3.10)
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Proof . Assume that P,Q ∈ C([0, b],R) and κ ∈ [0, b] define a mapping d : C([0, b],R)× C([0, b],R) → [0,+∞] by

d
(
P (κ), Q(κ)

)
= inf{c > 0, |P (κ)−Q(κ)| < cφ(κ)}. (3.11)

According to Lemma 3.1 (C([0, b],R), d) is a generalized metric space.

Step 1. Define the operator F : C([0, b],R) → C([0, b],R) and then we prove that it is contractive.

F (P (κ)) = (1− β)µ(κ, P (κ)) + β

∫ κ

0

µ(ν, P (ν)) dν. (3.12)

Since µ is continuous and P ∈ C([0, b],R), then µ(κ, P (κ)) is continuous. On the other hand, the integral of a
continuous function and the composition of continuous functions are also themselves continuous. Therefore F (P ) ∈
C([0, b],R), and F is well-defined.

We need to prove that F (P (κ)) belongs to the space C([0, b],R). Based on the fundamental theorem of calculus,
we can conclude that F (P (κ)) is continuously differentiable on the interval [0, b] , since P (κ) is a continuous function,
which implies that F (P (κ)) ∈ C([0, b],R). We claim that F is contractive on C([0, b],R). Let P,Q ∈ C([0, b],R), and
d(P (κ), Q(κ)) = h so that h ∈ [0,∞] be a constant. Furthermore, we can express:∣∣∣P (κ)−Q(κ)

∣∣∣ ≤ hφ(κ). (3.13)

It can be written using relations (3.11), (R1), and (R2)∣∣∣(1− β)µ(κ, P (κ)) + β

∫ κ

0

µ(ν, P (ν)) dν −
(
(1− β)µ(κ,Q(κ)) + β

∫ κ

0

µ(ν,Q(ν)) dν
)∣∣∣ (3.14)

≤
∣∣∣(1− β)µ(κ, P (κ))− (1− β)µ(κ,Q(κ)) +

(
β

∫ κ

0

µ(ν, P (ν)) dν − β

∫ κ

0

µ(ν,Q(ν)) dν
)∣∣∣

≤
∣∣∣(1− β)

(
µ(κ, P (κ))− µ(κ,Q(κ))

)∣∣∣+ ∣∣∣β(∫ κ

0

µ(ν, P (ν)) dν −
∫ κ

0

µ(ν,Q(ν)) dν
)∣∣∣

≤ |1− β|
∣∣∣µ(κ, P (κ))− µ(κ,Q(κ))

∣∣∣+ β

∫ κ

0

∣∣∣µ(ν, P (ν))− µ(ν,Q(ν))
∣∣∣dν

≤ θ|1− β|
∣∣∣P (κ)−Q(κ)

∣∣∣+ β

∫ κ

0

θ
∣∣∣P (ν)−Q(ν)

∣∣∣dν
≤ θ|1− β|hφ(κ) + θβ

∫ κ

0

hφ(ν) dν

≤ hθ|1− β|φ(κ) + θβδhφ(κ)

≤ θ(|1− β|+ δβ)hφ(κ).

If we take the infimum from the above relationship, we have:

d
(
F (P (κ)), F (Q(κ))

)
≤ θ(|1− β|+ δβ)d(P (κ), Q(κ)). (3.15)

According to (R3), F is a contraction .

Step 2. Suppose P ∈ C([0, b],R), then we show that d
(
P (κ), F (P (κ))

)
< ∞ for κ ∈ [0, b]. According to (2.6),(3.11),

and (3.12), we have

d
(
P (κ), F (P (κ))

)
= inf

{
c > 0,

∣∣∣∣∣P (κ)−

(
(1− β)µ(κ, P (κ)) + β

∫ κ

0

µ(ν, P (ν)) dν

)∣∣∣∣∣ ≤ φ(κ)

}
≤ 1 < ∞. (3.16)

Now, according to the Theorem 2.1, we can find the element Q ∈ C([0, b],R) that satisfies the following conditions:

1. The fixed point Q of F is the convergence point of the sequence {Fm (P (κ))};



6 Tavousi, Tamimi, Ghaemi, Saadati

2. In the set Υ =
{
P ∗ ∈ C([0, b],R) : d

(
F ((P (κ)), P ∗(κ)

)
< ∞, κ ∈ [0, b]

}
, Q is a unique fixed point of F , such

that,

F (Q(κ)) = (1− β)µ(κ,Q(κ)) + β

∫ κ

0

µ(ν,Q(ν)) dν.

3. If P ∗ ∈ Υ, and γ = θ(|1− β|+ δβ), then we have

d (P ∗(κ), Q(κ)) ≤ 1

1− γ
d (F (P ∗(κ)) , P ∗(κ)) .

From (3.16), because P ∈ Υ we get

d
(
P (κ), Q(κ)

)
≤ c

1− γ
.

Then,

|P (κ)−Q(κ)| ≤ c

1− γ
φ(κ), κ ∈ [0, b]. (3.17)

□

This theorem establishes the Hyers-Ulam-Rassias stability of (1.1) under the assumptions (R1)− (R3).

Corollary 3.5 (UHML stability). Assume P ∈ C([0, b],R) satisfies 2.6, and the following hold:

(R
′

1) There exists a constants θ > 0 such that

|µ(κ, P (κ))− µ(κ,Q(κ))| ≤ θ|P (κ)−Q(κ)|. (3.18)

(R
′

2) There exists a constant δ < 1 such that ∫ κ

0

Eι(−|ν|) dν ≤ δEι(−|κ|). (3.19)

(R
′

3) There exists a constant γ < 1 such that

γ = θ(|1− β|+ δβ). (3.20)

Thus, a unique solution of (1.1) is Q ∈ C([0, b],R) such that

Q(κ) = (1− β)µ(κ,Q(κ)) + β

∫ κ

0

µ(ν,Q(ν)) dν, (3.21)

in which

|P (κ)−Q(κ)| ≤

(
c

1− γ

)
Ei(−|κ|), κ ∈ [0, b]. (3.22)

Proof . Similarly to Theorem 3.4, we can prove this Corollary. □

Example 3.6. The following example satisfies the conditions of Theorem 3.4 with control function φ(x) = e−|x|,CFD0.5P (κ) =
tanh(P (κ))

100 + sech(P (κ))
κ ∈ [0,

1

2
],

P (0) = 0.
(3.23)
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Proof . First, µ(κ, P ) =
tanh(P (κ))

100 + sech(P (κ))
satisfies (R1) :∣∣∣∣∣ ∂µ∂P

∣∣∣∣∣ < 0.01,

so θ = 0.01. For (R2) verify: ∫ κ

0

e−νdν = 1− e−κ ≤ δe−κ, with δ = e0.5 − 1.

Since 1 − e−κ < e0.5 − 1, (R2) holds. Finally, γ = θ(|1 − β| + δβ) = 0.01 × (0.5 + 0.5 × 0.648) = 0.0106 < 1. It is
sufficient to take δ = e0.5 − 1, , β = 0.5, and γ = 0.01.

□

The nonlinear term µ(κ, P ) = tanh(P (κ))
100+sech(P (κ)) models saturation phenomena in physical systems where growth

diminishes due to constraints. Specifically, in ferromagnetic hysteresis modeling, the tanh(P ) term directly corresponds
to the Langevin function describing magnetic moment alignment in ferromagnetic materials under applied fields [7, 8]:

M(H) = Ms

(
coth

(
H

a

)
− a

H

)
≈ Ms tanh

(
H

3a

)
,

where H (magnetic field) and Ms (saturation magnetization) are P, and 100
100 respectively in our example. The Caputo-

Fabrizio derivative CFD0.5 captures memory-dependent hysteresis in nanocrystalline alloys [4]. In biological systems,
tanh(P ) models growth with carrying capacity [14], where P represents population density, and the denominator
models resource limitations; the fractional order β = 0.5 describes subdiffusive processes in constrained environments
[16]. For engineering control, the expression resembles activation functions in neuromorphic circuits [18], and the

bounded output
∣∣∣ ∂µ∂P

∣∣∣ < 0.01 ensures stability in control systems subject to perturbations. The exponential decay

φ(κ) = e−|κ| represents spatial decay in diffusion processes (where κ denotes position) and temporal relaxation in
viscoelastic materials (where κ represents time).
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