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The present article depicts the influence of linear thickness variation on the free
axisymmetric vibration of functionally graded material annular plates. For this, three
different types of boundary conditions have been taken into consideration. An ordinary
differential equation of fourth order has been formulated using classical plate theory and
Hamilton's principle. The differential transform method has been developed for the
numerical solution of such a differential equation along with three boundary conditions. The
obtained numerical results are reported and then analyzed by varying the various
parameters, like volume fraction index of plate materials, radius ratio, and taper parameter.
The comparative study has also been made to validate the obtained numerical results as well
as the technique. It has been observed that natural frequencies drop as the volume fraction
index rises. The frequency parameter usually increases with a smaller radius ratio. A decrease
in the natural frequency value has been seen when the plate thickness increases. Moreover,
the 3-D mode shapes for all the plates are also presented.
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GDQM Generalized Differential Quadrature Method
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VFI Volume Fraction Index

DTM Differential Transform Method

FGM Functionally Graded Material

1. Introduction

Several structural components are made in
the form of annular plates, and these components
have been widely used in static and dynamic
systems. In many practical applications, for the
requirement - of 'different designs, different
materials for the top and bottom surfaces of the
plate are being used. For this situation, FGM is the
best component, which is the advancement of the
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composite materials having continuous and
smooth variation of mechanical properties
defined in one or more directions, which is
formed by using a combination of different types
of metals and ceramics. FGM was developed in
1984 by Japanese researchers for their aerospace
project.

Due to various advantages of FGM over
conventional composite materials, the plates
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made of these materials are widely used not only
in aerospace engineering but also in various
other engineering applications. The free
vibration of multi-directional FG annular and
circular plates has been studied by Kermani et al.
(2012) using DQM. Asemi et al. (2014) have
analysed three-dimensional biaxial buckling of
an FG annular sector plate, which is fully or
partially supported on a Winkler elastic
foundation. Later, Asemi et al. (2015) studied the
shear buckling of FGM annular sector plates.
Wang et al. (2016) developed a method for the
unified solution of the vibration of FGM sector,
annular, and circular plates with general
boundary conditions. The effect of hydrostatic in-
plane force on the radially symmetric vibrations
of two-directional functionally graded circular
plates has been presented by Lal and Ahlawat
(2017). The analysis of the vibration of FGM
annular plates, which are elastically supported,
has been done by Zur (2018) via the Quasi-
Green’s function method. Civalek et al. (2018)
have analysed the vibration of a carbon nanotube
reinforced composite annular sector plate by
using the discrete singular convolution method.
Zhang et al. (2019) presented a vast review of the
work that was done on stability analysis,
buckling, and free vibration of FGM plates. The
finite annular prism method has been used by Wu
and Yu (2019) to analyse the vibration of two-
directional FGM plates. Tash and Neya (2020)
presented a solution for ' the bending of
transversely isotropic thick rectangular plates
with variable thickness. Eshraghi and Dag (2020)
analysed the forced vibration of FG circular and
annular plates by using the domain-boundary
element method. The analysis on the vibration of
an FG annular plate having edge supports and
resting on a Winkler foundation has been done by
Hashemi et al. (2021). Javani et al. (2021)
presented thermally induced vibrations of an
FGM annular sector plate using GDQM. Arefi et al.
(2021) have analysed the graphene nanoplatelets
reinforced cylindrical shell subjected to thermo-
mechanical loads based on shear deformation
theory. The thermal post-buckling analysis of
functionally graded annular sector plates
exposed to uniform temperature rise has been
presented by Shahsavari et al. (2021) for the first
time. The hygrothermal influence on the natural
frequencies of functionally graded circular plates
with piezo-magneto-electro-elastic layers sitting
on a Pasternak elastic foundation has been
studied by Kiarasi et al. (2022). Sobhani et al.
(2022) have analysed the vibrational behaviour
of coupled hemispherical-conical-conical shells
structures made of composite materials
reinforced with nanofillers. Vasara et al. (2022)

have used DQM to analyse the vibration of FG
annular and circular plates. Huang and Chung
(2023) presented an analytical solution based on
three-dimensional elasticity for the vibrations of
an FGM rectangular plate with two simply
supported opposite faces. Shariati et al. (2023)
presented the vibrational characteristics of an
annular FGM  nano-plate  using FSDT.
Khatoonabadi et al. (2023) have examined the
shear buckling of a functionally graded porous
annular sector plate reinforced with graphene
nanoplatelets: Recently, Sharma and Ahlawat
(2024) have studied the axisymmetric vibration
of FGM annular plates using DTM. Bridjesh et al.
(2024) have analysed the buckling of a two-
directional porous FG beam using higher-order
shear deformation theory.

Moreover, the plates with varying thickness
gained a lot of popularity as these types of plates
fulfil the practical requirements of the structural
components more effectively. Such plates are
highly preferred these days due to their
affordability and lightness, especially in modern
structures and aerospace technology. Lal and
Sharma (2004) used the Chebyshev collocation
method to 'study the vibrations of non-
homogeneous polar orthotropic annular plates
with variable thickness. Alipour et al. (2010)
analysed the vibration of a two-directional FGM
circular plate resting on an elastic foundation
with varying thickness. Hosseini et al. (2010)
analysed the vibration of tapered FG circular and
annular sectorial thin plates resting on a
Pasternak elastic foundation. DTM has been used
by Lal and Ahlawat (2015) to study the vibration
and buckling of an FGM circular plate with linear
thickness resting on a Winkler foundation. Lal
and Rani (2016) studied the axisymmetric
vibration of circular sandwich plates of linearly
varying thickness using DQM. Gupta et al. (2018)
have analysed the effect of non-uniform thickness
on the vibration of partially cracked isotropic and
FGM micro-plates. The vibration of an FGM
circular plate, which depends on temperature
with nonlinear thickness, has been analysed by
Lal and Saini (2019). Ahlawat and Lal (2020)
have studied the radially symmetric vibration of
an FGM circular plate with linearly varying
thickness resting on a Winkler foundation
subjected to a uniform tensile in-plane force.
Using the hyperbolic shear deformation theory,
Talebitouti et al. (2019) determined the FG
plate's acoustic transmission. Lal and Saini
(2020) have analysed the vibration of an FG
circular plate of variable thickness under a
thermal environment by GDQM. The vibration of
a tapered circular poroelastic plate has been
studied by Jalali and Heshmati (2020) by using



the pseudo-spectral method. Tran and Thai
(2023) presented an isogeometric analysis to
study the dynamic behaviour of multi-directional
FG plates with variable thickness. The study of
vibration of multidirectional FG sector, elliptical,
and circular plates with variable thickness has
been presented by Zhong et al. (2020). Hashemi
et al. (2021) analysed the vibration of an FG
rectangular non-linear plate using FSDT. Kumar
etal. (2021) have used Galerkin-Vlasov’s method
to study of vibration of an FGM plate with linearly
varying thickness. Minh et al. (2021) studied the
vibration of a cracked FGM plate resting on an
elastic foundation along with thickness variation.
Zarastvand et al. (2021) provide a review study
that was created to compile, categorize, and
arrange all of the earlier studies on the sound-
isolating properties of plate structures. A
systematic overview of all the previous studies on
sound transmission across multilayered plate
constructions is presented by Zarastvand et al.
(2022). In their investigation of the behaviour of
sound propagation in three-dimensional (3D)
sandwich panels, Ghafouri et al. (2022) highlight
the function of 3D Re-Entrant Auxetic Cellular
Structures (RACSs) in the panel core. Kumar et al.
(2023) have analysed the vibration of a tapered
porous FGM plate resting on an elastic
foundation. Saini et al. (2023) have analysed the
effect of temperature variation on FGM rings with
linearly varying thickness. Hadji et al. (2024)
analysed the buckling and vibration of multi-
directional functionally graded sandwich plates
subjected to various boundary conditions. Islam
and Kedar (2024) investigated the buckling
behavior of a thin rectangular FGM plate with
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variable thickness under hygrothermal loads.
The effect of non-linear thickness variation on
radially symmetric vibration of bi-directional
FGM circular plates resting on Winkler's
foundation has been investigated by Ahlawat and
Saini (2024). Recently, the free vibration
properties of rotating pre-twisted porous
sigmoid functionally graded material plates with
bi-directional thickness variation were examined
by Mandal et al. (2025). The vibration properties
of composite shells | with -a cylindrical-
hemispherical geometry made of functionally
graded porous materials in different thicknesses
have been studied by Jafari and Shaterzadeh
(2025).

Keeping the above work in view, the effect of
linearly varying thickness on the axisymmetric
vibrations of annular FGM plates has not been
collectively explored yet. Hence, in the present
work, a semi-analytical technique called DTM
[Zhou (1986)] has been used to analyse this
effect, in which the obtained ordinary differential
equation of fourth order is reduced to frequency
equations that have been derived for the three
sets of boundary conditions, namely clamped-
clamped, clamped-simply supported, and
clamped-free. ' In this method, recurrence
relations are obtained from the governing
differential equation and the boundary
conditions. These relations are then solved using
MATLAB, and the values of the frequency
parameter are obtained by varying the values of
different parameters. The comparative study has
also been made to verify the obtained numerical
results as well as the technique.

Fig. 1. Thickness variation of the annular FGM plate

2. Mathematical Formulation

The annular FGM plate (Fig. 1) has been
taken with outer and inner radius as b and a,
respectively. The plate thickness is assumed as h
and the material density as d. A cylindrical polar

coordinate system (R, 0,z) has been taken as a
reference for the present plate, where z = 0 is the
middle plane, R = 0 is the axis, z = h/2 is the
upper surface and z = —h/2 is the lower surface
of the plate.



The governing fourth-order differential
equation of motion, which represents the
axisymmetric vibration of the FGM annular plate
(Fig. 1), is given by [Leissa (1969)]

2
D X, prer +E[RD’R +D] X, e +

1

F[RZD,RRJrR(zw)D,R—D]x,RR (1

+%[RZUD,RR ~RD,; +D ] X,q +
hd x,, =0

where D is the flexural rigidity and x is the
transverse deflection.

The deflection x can be. expressed for the
harmonic vibrations as [Sharma and Ahlawat
(2024)]

X(t,R) = X (R)e'* (2)
Here, w represents the frequency in radians.
From Eqgs (1) and (2), we get

d3X
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1
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1 dXx
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(3)

We consider here that the lower surface of the
FGM plate \is made from metal and the upper
surface is made from ceramic. The mechanical
properties, i.e., density d(z) and Young's
modulus Y (z) which are varying in z-direction,
have been written as [Dong (2008)]

Y(Z) = [(Yz _Yl)Vz(Z) +Y1] (4)

d(z)=[(d,—d,)V,(z)+d, ] (5)

where Y;, Y, represents the Young’s modulus and
d,, d, represents the density of metal and
ceramic constituents, respectively.

Now, the volume fraction of ceramic
V,(z) has been taken as

z 1Y
V,(2) = (EJFEJ (6)

where g represents the VFI of the ceramic.

Here, taking the mathematical
expressions for D and d as given below [Lal and
Ahlawat, (2015)]

D= = | Y(2)z%dz (7)
1-v Wy
1%

d== [ d(2)dz (8)
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Combining the Egs. (4-6) with the Egs. (7-8), we
get,

_ h3YZS 9)
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where
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In order to make the variables non-dimensional,
. R X h T
we are using =7, -=p, - = h in Eq. (3), we

get
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Using h = hy(1 — yr) for linear variation in the
thickness, where h, is the dimensionless
thickness at the inner boundary of the plate and

y is the taper parameter of the plate.

Substituting the values obtained in Egs. (9-10)
into Eq. (11), we get

4 3
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Taking the centre at r, = b, the power series

expressions for different terms present in Eq.
(12) are as follows [Shariyat and Alipour (2014)]
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From Eq. (12), we have
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The accurate solution of Eq. (13) is not possible
as it is a differential equation with variable
coefficients; therefore, we are using DTM to
obtain the numerical solution for suitable
boundary conditions.

3. Boundary Conditions

We consider three types of boundary conditions
on the plate as follows:

(3.1). Clamped-Clamped: i.e., clamped at inner
and outer boundaries

p@ =0, 2|
D (14-17)

pb)=0, | _ o

(3.2). Clamped-Simply supported: i.e. inner
boundary is clamped and outer boundary is
simply supported

p@=0, P| -0

dr
p(b) =0,

Mr|r:b= -D d p Udp =0
dr? rdr .

(18-21)

r=a




where M, is representing the bending moment in
the radial direction.

(3.3). Clamped-Free: i.e., inner boundary is
clamped and outer boundary is free

dp
a)=0 —| =0
p(a) drlr_a

(atr =b)

2 22-25
d’p vdp_ (22:25)
dr®> rdr

d®p 1d’p 1 dp
+ _—
dr* rdr® r?dr

4. Method of Solution

Following [Lal and Ahlawat (2015)],let p(r) be a
function which _is analytic in the domain and in
that domain r =17, is any point. Then the
differential transformation of n*" derivative of
p(r) will be

pn:i d"’p) at r=r, (26)
n! dr”

and p(r)=>"(r—1,)"R, (27)

where P, represents the transformed function
and p(r) represents the original function.

Combining Eg. (26) and (27) for a finite value of
m, we get,

m . 5 n dn
|O(r)=§(r n:) [ degr)} (28)

atr=r,

The convergence of the frequency parameter will
decide the number of terms m.

Table 1: Basic transformation rules are given as:

Original functions Transformed functions
r() =9() £ 1() By =Gn £ Ly
p() = 49() P = Gy
n
p() = 9DIG) Po= ) Gilns
=0
- dkg() (n+k)!
P =1z P =G
p() = j* Py =68 —k)
_ {0 n# k}
1 n=k

4.1. Transformation of the Differential
Equation

Now, employing Table 1 on Eq. (13), we get

(n+4)!

) o
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n 6}/1+i —
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7 (i)
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Replacing n by (n — 4) in the above equation, the
frequency equation is given by
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wheren =0,1,2, ...... ... ,m

4.2. Transformation of Boundary
Conditions

Now, employing Table 1 on the boundary
conditions, we get

(4.2.1). Clamped-Clamped:

The transformed forms of Egs. (14-15) atr = a
are

i(a—b)” P, =0, in(a—b)"’l P,=0

n=0 n=1

(31-32)
and that of the Egs. (16-17) atr = b are

R=0 R=0 (33:39)

(4.2.2). Clamped-Simply supported:

The transformed forms of Egs. (18-19) atr = a
are

m

3 (a=b)'P,=0, > n(a-b)"*

n=0 n=1

(35-36)

and that of the Egs. (20-21) atr = b are

n-3-i

m+1 1+
= UZ(—%) (M+1-i)P,..;

(37-38)
(4.2.3). Clamped-Free:

The transformed forms of Egs. (22-23) atr =a
are

m
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=1

n
n=0 n

(39-40)
and that of the Egs. (24-25) atr = b are
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m+3

_ ”_”T%)M (m+2-i)(m+1-i)P, , ,
+§(1+i)(—%)2“(m+1—i)Pm+l_i

(41-42)
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5. Frequency Equations

Now, using the Egs. (31-34) into Eq. (30) and
putting n = 4 for the non-negative subscripts of
the P-terms, we get recurrence relations in terms
of P, and P; which is a system of homogeneous
equations as follows:

UP+U,P, =0

(43)
U,kP,+U,P, =0
where. uU, ,U,,U,,U, are mt"  degree

polynomials in €.

Representing Eq. (43) in matrix form as:

u, u P 0
1 2 2 | _ (44)
U, U,||r]| |0
The value of the determinant must be zero for the
non-zero solution, so we have

U U,

=0 45
o U (45)

Similarly, the frequency equations for the two
other boundary conditions can be obtained.



6. Numerical Results and
Discussion

The frequency equations obtained for the
three boundary conditions are solved using a
MATLAB program, and values of the frequency
parameter are obtained. Only the first three
roots, i.e,, the first three modes of these frequency
equations, are reported and analyzed by varying
the values of all the parameters, i.e. taper
parameter. y, radius ratio € and VFI g. Here, we
have chosen alumina as a ceramic and aluminium
as a metal constituent, and for these two, the
values of the parameters are taken from [Lal and
Ahlawat (2015)] as given below:

For aluminium

density d; = 2702 Kg/m?

and Young’'s modulus ¥; = 70 GPa,
For alumina

density d, = 3800 Kg/m?3

and Young’'s modulus Y, = 380 GPa
Poisson’s ratiov = 0.3,

Taper parametery = 0, £ 0.1, £ 0.3
radii ratio e = 7 = 0.1,02,0.3
andVFIg=0,1,2,3,4,5.

In order to fix the value of m, a MATLAB
program:was made and run, taking different
values of all' the parameters for all three
boundary conditions, taking the value of m =
17,18,19, 20, ... The value of m = 20 has been
fixed as the difference between two successive
values of Q is smaller than 5 X 107> for all three
boundary conditions and all three modes (Table
3).

Table 2 is the comparison table of the
values of the frequency parameter. ( in whichthe
results were compared with those obtained by
Sharma et al. (2010) and Soniiand Rao (1975) by
using the Chebyshev collocation technique for an
isotropic FGM annular plate. We observe that the
present results are very close for all three
boundary conditions and all three modes, which
represent the adaptability of the present method.

The numerical results are presented in
Tables 4-6 and Figs. 2-10. We observe that the
values of the frequency parameter () are lowest
for the clamped-free boundary condition and
highest for the same set of values of the
parameter for the clamped-clamped boundary
condition.

In Fig. 2-10, the behaviour of the
frequency parameter () with varying values of the
taper parameter y =0,+0.1,40.3, VFI g=
0,1,2,3,4,5 and radii ratio € = 0.1, 0.2, 0.3 for all
three boundary conditions, and all three modes
have been presented. Figs. 2-4 show the effect of
VFI g on the frequency parameter on the three
plates. It can be depicted that the value of the
frequency parameter Q keeps changing from
higher to smaller as the behaviour of the plate
varies from isotropic (fully ceramic) to composite
(FGM), i.e., with the increment in the values of VFI
g. We also observe that this rate of change in the
frequency parameter is more prominent when
VFI g < 2 in comparison to g = 3 for all three
modes and for all the plates. The frequency
parameter values of an isotropic plate are larger
than those of the comparable FGM plate, i.e.,, the
frequency parameter falls with increasing metal
constituent contribution.

The graphs between radii ratio € and
frequency parameter ) are represented in Figs.
5-7 for a different set of values of VFI g and taper

parameter y. As the radius ratio & (= %) is the

ratio of the inner radius a and outer radius b of
the annular plate, respectively, so the plate
becomes lighter when the annulus area of the
plate is reduced. Here we are fixing the outer
radius and varying the inner radius of the plate.
From the graphs, we can observe that the value of
the frequency parameter () increases whenever
the value of the radius ratio € increases. Hence,
for all three boundary conditions, the frequency
parameter likewise increases or decreases in
proportion to the change in the radius ratio, or
the hole size of the annular plate.

The graphs of the frequency parameter Q
and the taper parameter y for the different sets of
values of VFIi g and radius ratio ¢ for all three
modes and for all the plates, have been shown in
Figs.8-10. These graphs depict that the frequency
parameter Q decreases with increasing values of
the taper parameter y from -0.3 to 0.3 for the
different sets of values of VFI g and radius ratio ¢.
So, as the taper parameter's values rise, the
frequency parameter also rises.

Figs. 11-13 show the three-dimensional view
of the three modes of the vibrations for all three
boundary conditions, taking & = 0.1, g=
3andy = 0.1.

7. Conclusions

In the present article, the effects of linearly
varying thickness, VFI, and radius ratio have been
examined on the axisymmetric vibrations of
annular FGM plates for all three boundary



conditions using DTM. The obtained results have
been verified with the results found in the
literature and also analysed by graphs.

From the tabular and graphical data, the
following conclusions have been observed:

1.

The decrement in the variation of the
constraints, which is applied only on the
outer boundary of the plate by fixing the
inner boundary as clamped, is the
frequency parameter (1 shows a
decrease in the following order Q.; >
Qes > Qcp.

In order to get less impact of vibrations
on the structural components, the
contribution of the metallic constituent
to the ceramic one is more valuable than
a fully ceramic plate because the
frequency parameter shows less impact
on the structure for a composite (i.e,,
FGM plate taking VFI g > 0) than an
isotropic (i.e., fully ceramic plate taking
VFIg=0).

The increasing pattern in the values of
the frequency parameter can be seen as
the annulus region of the plate increases,
i.e, as the value of the radius ratio
increases.

The decreasing pattern in the values of
the frequency parameter has been
observed when the plate becomes
thicker (i.e., taper parameter y changes
from negative to positive).
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Present 21.2689 67.7557 141.144
C-S Sharma et al. (2010) 21.2689 67.7557 141.1443
Soni and Rao (1975) 21.2590 68.0115 ---
Present 5.7907 31.147 84.6509
C-F Sharma et al. (2010) --- --- ---
Soni and Rao (1975) 5.7713 31.0899 ---
Table-3: Convergence of frequency parameter ) takingate = 0.3,g = 3,y = 0.3
Boundary m I mode Il mode Il mode
Conditions
19 27.9681 77.5461 152.491
C-C 20 27.9681 77.5461 152.49
21 27.9681 77.5461 152.49
17 20.6784 67.4891 141.263
C-S 18 20.6784 67.4893 141.269
19 20.6784 67.4894 141.269
20 20.6784 67.4894 141.269
18 472161 27.7351 77.8219
C-F 19 472161 27.7352 77.822
20 472161 27.7352 77.822




Table-4: Frequency parameter () for Clamped-Clamped plate

el yil mode g=0 g=1 g=3 g=5
I 31.9442 26.5751 24.7376 23.6827
-0.3 11 87.9571 73.1735 68.1141 65.2095
11 172.63 143.615 133.685 127.984
I 28.8538 24.0041 22.3444 21.3915
-0.1 I 79.6206 66.2381 61.6582 59.0289
111 156.47 130.171 121.17 116.003
I 27.2805 22.6953 21.1261 20.2252
0.1 0 it 75.3662 62.6989 58.3637 55.8749
11 148.214 123.302 114.777 109.882
I 25.6842 21.3672 19.8898 19.0417
0.1 11 71.0413 59.1008 55.0144 52.6684
11 139.814 116.314 108.272 103.655
I 22.4021 18.6368 17.3482 16.6084
0:3 I 62.1208 51.6797 48.1064 46.055
111 122.463 101.879 94.8352 90.791
I 41.005 34.113 31.7544 30.4002
-0.3 1 113.102 94.092 87.5863 83.8512
111 221.926 184.625 171.86 164.531
I 36.7603 30.5817 28.4672 27.2532
-0.1 I 101.585 84.5112 78.6679 75.3132
111 199.525 165.989 154.512 147.923
I 34.6093 28.7922 26.8015 25.6585
0 I 95.7407 79.6489 74.1418 70.9801
0.2 111 188.149 156.525 145.703 139.489
I 32.4343 26.9828 251171 24.046
0.1 I 89:8239 74.7265 69.5598 66.5934
111 176.627 146.94 136.78 130.947
I 27.9901 23.2856 21.6756 20.7512
0.3 1 77.7081 64.6471 60.1773 57.6111
11 153.012 127.294 118.493 113.44
I 54.3459 452116 42.0855 40.2908
-0.3 I 149.904 124.708 116.086 111.135
11 294.025 244.606 227.693 217.984
I 48.3654 40.2363 37.4543 35.8571
-0.1 I 133.6 111.145 103.46 99.0481
11 262.229 218.154 203.07 194411
I 45.3462 37.7245 35.1162 33.6187
0.3 0 11 125.362 104.292 97.0806 92.9407
111 246.157 204.784 190.625 182.496
I 423023 35.1923 32.759 31.362
0.1 | 117.051 97.3774 90.6445 86.7791
11 229.939 191.291 178.065 170.471
I 36.1158 30.0455 27.9681 26.7754
0.3 1 100.137 83.3061 77.5461 74.2392
111 196.914 163.817 152.49 145.988




Table-5: Frequency parameter Q for Clamped-Simply Supported plate

el yli mode g=0 g=1 g=3 g=5
I 20.0179 16.6533 15.5019 14.8408
-0.3 )| 69.5216 57.8365 53.8376 51.5418
111 147.127 122.398 113.935 109.077
I 18.5462 15.429 14.3622 13.7498
-0.1 )| 63.3115 52.6702 49.0285 469377
111 133.724 111.248 103.556 99.14
I 17.7894 14.7994 13.7761 13.1886
0.1 0 1 60.1441 50.0352 46.5756 44.5895
111 126.881 105.555 98.2564 94.0664
I 17.0151 14.1552 13.1765 12.6146
0.1 )| 56.9256 47.3577 44,0832 42.2034
1 119.921 99,7649 92.8669 88.9067
I 15.3994 12.8111 11.9253 11.4168
0.3 11 50.293 41.8399 38.947 37.2861
1 105.559 87.8166 81.7448 78.2589
I 26.0214 21.6477 20.151 19.2917
-0.3 | 89.6712 74.5995 69.4415 66.4803
1] 189.427 157.588 146.692 140.437
I 23.8309 19.8254 18.4547 17.6677
-0.1 11 80.9615 67.3536 62.6967 60.023
11 170.719 142.025 132.205 126.568
I 22.7144 18.8966 17.5901 16.84
0.2 0 )| 76.5436 63.6783 59.2755 56.7477
111 161.224 134.126 124.852 119.528
I 21.5802 17.9531 16:7118 15.9991
0.1 | 72.0733 59.9594 55.8137 53.4335
11 151.611 126.128 117.407 112.401
I 19.242 16.0078 14.901 14.2656
0.3 | 62.9277 52.3509 48.7313 46.6532
111 131.923 109.75 102.161 97.8048
I 34.9294 29.0586 27.0494 25.8959
-0.3 | 119.221 99.1829 92.3252 88.388
111 251.333 209.09 194.633 186.333
I 31.6425 26.3241 24.504 23.459
-0.1 11 106.731 88.7919 82.6526 79.128
11 224.625 186.87 173.95 166.532
I 29.9777 24.9391 23.2148 22.2248
0.3 0 11 100.423 83.544 77.7676 74.4513
111 211.129 175.643 163.499 156.527
I 28.2948 23.5391 219115 20.9771
0.1 | 94.0612 78.2516 72.8411 69.7349
111 197.515 164.317 152.956 146.433
I 24.8562 20.6784 19.2487 18.4278
0.3 | 81.1247 67.4894 62.8231 60.144
111 169.81 141.269 131.501 125.894




Table-6: Frequency parameter () for Clamped-Free plate

el yi mode g=0 g=1 g=3 g=5
I 4.481 3.7278 3.47 33221
03 11 28.1917 23.4533 21.8317 20.9007
1 84.8977 70.6283 65.7449 62.9413
I 43138 3.5888 3.3406 3.1982
-0.1 11 26.2505 21.8384 203284 19.4616
1 77.6118 64.567 60.1027 57.5397
0.1 I 42373 3.5251 32814 3.1415
0 Il 252618 21.0159 19.5628 18.7286
1 73.9006 61.4796 57.2288 54.7883
I 41671 3.4667 3.2270 3.0894
0.1 11 24.2588 201814 18.786 17.9849
1 70.1342 583462 54.312 51.996
I 40521 33711 3.1380 3.00421
03 Il 22.2003 18.4689 17.192 16.4588
111 62.3938 51.9068 483178 46.2574

I 5.5666 4631 43108 4127
03 1 36.684 30.5182 28.4081 27.1967
11 109.625 91.1995 84.8937 81.2735
I 5.3046 4413 41078 3.9327
0.1 Il 33.7681 28.0925 26.1501 25.0349
1 99.3106 82.6187 76.9063 73.6267
I 5.181 43102 40122 3.8411

0.2 0 11 32.2912 26.8638 25.0064 23.94
1 94.0845 78271 72:8591 69.7521
I 5.0641 42129 3.9216 3.7544
0.1 Il 30.799 25,6224 23.8508 22.8337
1 88.8014 73.8759 68.768 65.8354
I 4.8572 4.0408 37614 3.6010
03 I 27.7576 23.0922 21.4955 20.5789
11 78.0168 64.9039 60.4163 57.8399
I 7.286 6.0614 5.6423 5.4017
03 1 49.2641 40.9839 38.1502 36.5233
1 145.899 121.376 112.984 108.166
I 6.8639 5.7102 53154 5.0887
0.1 Il 44.8439 37.3066 34.7272 33.2463
11 130.99 108.973 101.439 97.1128
I 6.6603 5.5409 5.1578 49378
0.3 0 I 42.6142 35.4517 33.0005 31.5932
1 123.466 102.714 95,6123 91.535
I 6.4634 5377 5.0052 47918
0.1 Il 40.3684 33.5833 31.2613 29.9282
1 115.885 96.4069 89.7412 85.9142
I 6.0971 5.0723 47216 45202
03 1 35.815 29.7953 27.7352 26.5524
11 100.493 83.6024 77.822 74.5033
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Figure-2: Frequency parameter ( versus VFI g for Clamped-Clamped plate
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Figure-3: Frequency parameter Q versus VFI g for Clamped-Simply Supported plate
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3 4 5
g "




I mode
55 = 160
ot -0 =00, 7=-03 ',’
] g, =03 . i
; “A=g=3y=-03 /'
| |=te=g=3,7=03

300

250

Q —>

40

1T mode

IT mode

-0 =g=(,y=-03
===, y=0.3 ¢
=B =g=3y=-03 ¢
"'A"g—%, = 0.3 /¢ 2

0.1

0.15 02 025 03

-0 =o=) 1=-03
==g=0,v=0.3

“A=g3y=-03] .

=03 =03 | *

S
¢
v
.
.
’
-

0.15 02
€

0.25 0.3
— >

Figure-5: Frequency parameter € versus radii ratio ¢ for Clamped-Clamped plate



I mode

o
h

a

0.y=403
0.,y=03
3.y=-03
3. =03

110 [

100

200

T IR0

III mode

- ® =g=0_y=-03
—_——o = y=023

Figure-6: Frequency parameter () versus radii ratio € for Clamped-Simply Supported plate




I mode 1T mode

7.5 T T 50 T T T

- @ =90=0,v=-0.3 » = =0, y==103 ".
| |—*—g=0,y=0.3 , —a— =0, v= 0.3 ¥
= A =-g=3,y=-03 i 45t |=B=g=3,v=-03 , i}
—t— =3 =03 ’ —t— =3 y=0.3 P
’
4

40 ’ b

=
(=]
J\
=
i
(=
o F
iV
=]
W

IIT mode
- ® —o=0,v—=-03
—_——o—0, v— 0.3

-A —-pg=3 v=-03
140 [ | =——o=3 +v= 0.3

120
s
T .
PR 4

< 100 s

160

80 | -

o
w

60

40 5 =
0.1 0.15 02

Figure-7: Frequency parameter () versus radii ratio € for Clamped-Free plate
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Figure-8: Frequency parameter () versus taper parameter y for Clamped-Clamped plate
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Figure-9: Frequency parameter () versus taper parameter y for Clamped-Simply Supported plate
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Figure-10: Frequency parameter () versus taper parameter y for Clamped-Free plate



First Mode Second Mode

Third Mode

Sy
Sy

Figure-

11: Teré;diiﬁensidﬁal_ﬁlode shapes for Clamped-Clamped plate

First Mode

Second Mode

Third Mode

N
W
T

&
R
N
.
aseat!

=
)

S
RO
50 i\ 1 S
%992 A W
i w“f‘“‘-‘ u ‘l) \\\}\\\‘\\‘}.l}“"!i
I t - |

H]’

First Mode

Second Mode

it

e
TR
IR
N

57

77

Z

i) iy

i e

W

Al

AN I,I/
%,
2%,

7%

i
////////
iy,

)

2,
7
7

iy
I

S
N

[

Figure-13: Three-dimensional mode shapes for Clamped-Free plate






