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 The present article depicts the influence of linear thickness variation on the free 

axisymmetric vibration of functionally graded material annular plates. For this, three 

different types of boundary conditions have been taken into consideration. An ordinary 

differential equation of fourth order has been formulated using classical plate theory and 

Hamilton's principle. The differential transform method has been developed for the 

numerical solution of such a differential equation along with three boundary conditions. The 

obtained numerical results are reported and then analyzed by varying the various 

parameters, like volume fraction index of plate materials, radius ratio, and taper parameter. 

The comparative study has also been made to validate the obtained numerical results as well 

as the technique. It has been observed that natural frequencies drop as the volume fraction 

index rises. The frequency parameter usually increases with a smaller radius ratio. A decrease 

in the natural frequency value has been seen when the plate thickness increases. Moreover, 

the 3-D mode shapes for all the plates are also presented. 

  

Keywords :  

FGM; 

variable thickness; 

 annular plate; 

 axisymmetric vibration; 

DTM. 

 

 

© 2025 The Author(s). Mechanics of Advanced Composite Structures published by Semnan University Press. 

This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/) 

List of Abbreviations: 

GDQM  Generalized Differential Quadrature Method 

FSDT  First Order Shear Deformation Plate Theory 
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1. Introduction 

Several structural components are made in 

the form of annular plates, and these components 

have been widely used in static and dynamic 

systems. In many practical applications, for the 

requirement of different designs, different 

materials for the top and bottom surfaces of the 

plate are being used. For this situation, FGM is the 

best component, which is the advancement of the 

composite materials having continuous and 

smooth variation of mechanical properties 

defined in one or more directions, which is 

formed by using a combination of different types 

of metals and ceramics. FGM was developed in 

1984 by Japanese researchers for their aerospace 

project. 

Due to various advantages of FGM over 

conventional composite materials, the plates 
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made of these materials are widely used not only 

in aerospace engineering but also in various 

other engineering applications. The free 

vibration of multi-directional FG annular and 

circular plates has been studied by Kermani et al. 

(2012) using DQM. Asemi et al. (2014) have 

analysed three-dimensional biaxial buckling of 

an FG annular sector plate, which is fully or 

partially supported on a Winkler elastic 

foundation. Later, Asemi et al. (2015) studied the 

shear buckling of FGM annular sector plates. 

Wang et al. (2016) developed a method for the 

unified solution of the vibration of FGM sector, 

annular, and circular plates with general 

boundary conditions. The effect of hydrostatic in-

plane force on the radially symmetric vibrations 

of two-directional functionally graded circular 

plates has been presented by Lal and Ahlawat 

(2017). The analysis of the vibration of FGM 

annular plates, which are elastically supported, 

has been done by Ż ur (2018) via the Quasi-

Green’s function method. Civalek et al. (2018) 

have analysed the vibration of a carbon nanotube 

reinforced composite annular sector plate by 

using the discrete singular convolution method. 

Żhang et al. (2019) presented a vast review of the 

work that was done on stability analysis, 

buckling, and free vibration of FGM plates. The 

finite annular prism method has been used by Wu 

and Yu (2019) to analyse the vibration of two-

directional FGM plates. Tash and Neya (2020) 

presented a solution for the bending of 

transversely isotropic thick rectangular plates 

with variable thickness. Eshraghi and Dag (2020) 

analysed the forced vibration of FG circular and 

annular plates by using the domain-boundary 

element method. The analysis on the vibration of 

an FG annular plate having edge supports and 

resting on a Winkler foundation has been done by 

Hashemi et al. (2021). Javani et al. (2021) 

presented thermally induced vibrations of an 

FGM annular sector plate using GDQM.  Arefi et al. 

(2021) have analysed the graphene nanoplatelets 

reinforced cylindrical shell subjected to thermo-

mechanical loads based on shear deformation 

theory. The thermal post-buckling analysis of 

functionally graded annular sector plates 

exposed to uniform temperature rise has been 

presented by Shahsavari et al. (2021) for the first 

time. The hygrothermal influence on the natural 

frequencies of functionally graded circular plates 

with piezo-magneto-electro-elastic layers sitting 

on a Pasternak elastic foundation has been 

studied by Kiarasi et al. (2022). Sobhani et al. 

(2022) have analysed the vibrational behaviour 

of coupled hemispherical-conical-conical shells 

structures made of composite materials 

reinforced with nanofillers. Vasara et al. (2022) 

have used DQM to analyse the vibration of FG 

annular and circular plates. Huang and Chung 

(2023) presented an analytical solution based on 

three-dimensional elasticity for the vibrations of 

an FGM rectangular plate with two simply 

supported opposite faces. Shariati et al. (2023) 

presented the vibrational characteristics of an 

annular FGM nano-plate using FSDT. 

Khatoonabadi et al. (2023) have examined the 

shear buckling of a functionally graded porous 

annular sector plate reinforced with graphene 

nanoplatelets. Recently, Sharma and Ahlawat 

(2024) have studied the axisymmetric vibration 

of FGM annular plates using DTM. Bridjesh et al. 

(2024) have analysed the buckling of a two-

directional porous FG beam using higher-order 

shear deformation theory. 

Moreover, the plates with varying thickness 

gained a lot of popularity as these types of plates 

fulfil the practical requirements of the structural 

components more effectively. Such plates are 

highly preferred these days due to their 

affordability and lightness, especially in modern 

structures and aerospace technology. Lal and 

Sharma (2004) used the Chebyshev collocation 

method to study the vibrations of non-

homogeneous polar orthotropic annular plates 

with variable thickness. Alipour et al. (2010) 

analysed the vibration of a two-directional FGM 

circular plate resting on an elastic foundation 

with varying thickness. Hosseini et al. (2010) 

analysed the vibration of tapered FG circular and 

annular sectorial thin plates resting on a 

Pasternak elastic foundation. DTM has been used 

by Lal and Ahlawat (2015) to study the vibration 

and buckling of an FGM circular plate with linear 

thickness resting on a Winkler foundation. Lal 

and Rani (2016) studied the axisymmetric 

vibration of circular sandwich plates of linearly 

varying thickness using DQM. Gupta et al. (2018) 

have analysed the effect of non-uniform thickness 

on the vibration of partially cracked isotropic and 

FGM micro-plates. The vibration of an FGM 

circular plate, which depends on temperature 

with nonlinear thickness, has been analysed by 

Lal and Saini (2019). Ahlawat and Lal (2020) 

have studied the radially symmetric vibration of 

an FGM circular plate with linearly varying 

thickness resting on a Winkler foundation 

subjected to a uniform tensile in-plane force. 

Using the hyperbolic shear deformation theory, 

Talebitouti et al. (2019) determined the FG 

plate's acoustic transmission. Lal and Saini 

(2020) have analysed the vibration of an FG 

circular plate of variable thickness under a 

thermal environment by GDQM. The vibration of 

a tapered circular poroelastic plate has been 

studied by Jalali and Heshmati (2020) by using 



 

 

the pseudo-spectral method. Tran and Thai 

(2023) presented an isogeometric analysis to 

study the dynamic behaviour of multi-directional 

FG plates with variable thickness. The study of 

vibration of multidirectional FG sector, elliptical, 

and circular plates with variable thickness has 

been presented by Żhong et al. (2020). Hashemi 

et al. (2021) analysed the vibration of an FG 

rectangular non-linear plate using FSDT. Kumar 

et al. (2021) have used Galerkin-Vlasov’s method 

to study of vibration of an FGM plate with linearly 

varying thickness. Minh et al. (2021) studied the 

vibration of a cracked FGM plate resting on an 

elastic foundation along with thickness variation. 

Żarastvand et al. (2021) provide a review study 

that was created to compile, categorize, and 

arrange all of the earlier studies on the sound-

isolating properties of plate structures. A 

systematic overview of all the previous studies on 

sound transmission across multilayered plate 

constructions is presented by Żarastvand et al. 

(2022). In their investigation of the behaviour of 

sound propagation in three-dimensional (3D) 

sandwich panels, Ghafouri et al. (2022) highlight 

the function of 3D Re-Entrant Auxetic Cellular 

Structures (RACSs) in the panel core. Kumar et al. 

(2023) have analysed the vibration of a tapered 

porous FGM plate resting on an elastic 

foundation. Saini et al. (2023) have analysed the 

effect of temperature variation on FGM rings with 

linearly varying thickness.  Hadji et al.  (2024) 

analysed the buckling and vibration of multi-

directional functionally graded sandwich plates 

subjected to various boundary conditions. Islam 

and Kedar (2024) investigated the buckling 

behavior of a thin rectangular FGM plate with 

variable thickness under hygrothermal loads. 

The effect of non-linear thickness variation on 

radially symmetric vibration of bi-directional 

FGM circular plates resting on Winkler's 

foundation has been investigated by Ahlawat and 

Saini (2024). Recently, the free vibration 

properties of rotating pre-twisted porous 

sigmoid functionally graded material plates with 

bi-directional thickness variation were examined 

by Mandal et al. (2025). The vibration properties 

of composite shells with a cylindrical-

hemispherical geometry made of functionally 

graded porous materials in different thicknesses 

have been studied by Jafari and Shaterzadeh 

(2025). 

Keeping the above work in view, the effect of 

linearly varying thickness on the axisymmetric 

vibrations of annular FGM plates has not been 

collectively explored yet. Hence, in the present 

work, a semi-analytical technique called DTM 

[Żhou (1986)] has been used to analyse this 

effect, in which the obtained ordinary differential 

equation of fourth order is reduced to frequency 

equations that have been derived for the three 

sets of boundary conditions, namely clamped-

clamped, clamped-simply supported, and 

clamped-free. In this method, recurrence 

relations are obtained from the governing 

differential equation and the boundary 

conditions. These relations are then solved using 

MATLAB, and the values of the frequency 

parameter are obtained by varying the values of 

different parameters. The comparative study has 

also been made to verify the obtained numerical 

results as well as the technique.  

 

 

 

Fig. 1. Thickness variation of the annular FGM plate 

 

2. Mathematical Formulation 

The annular FGM plate (Fig. 1) has been 

taken with outer and inner radius as 𝑏 and 𝑎, 

respectively. The plate thickness is assumed as ℎ 

and the material density as 𝑑. A cylindrical polar 

coordinate system (𝑅, 𝜃, 𝑧) has been taken as a 

reference for the present plate, where 𝑧 = 0 is the 

middle plane, 𝑅 = 0 is the axis, 𝑧 = ℎ/2 is the 

upper surface and 𝑧 = −ℎ/2 is the lower surface 

of the plate. 



 

 

The governing fourth-order differential 

equation of motion, which represents the 

axisymmetric vibration of the FGM annular plate 

(Fig. 1), is given by [Leissa (1969)] 
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where D is the flexural rigidity and 𝑥 is the 

transverse deflection. 

 

The deflection 𝑥 can be expressed for the 

harmonic vibrations as [Sharma and Ahlawat 

(2024)] 

( , ) ( ) i tx t R X R e =                                                   (2) 

Here, 𝜔 represents the frequency in radians.  

From Eqs (1) and (2), we get 
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   We consider here that the lower surface of the 
FGM plate is made from metal and the upper 
surface is made from ceramic. The mechanical 
properties, i.e., density 𝑑(𝑧) and Young's 
modulus 𝑌(𝑧)  which are varying in z-direction, 
have been written as [Dong (2008)] 
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where 𝑌1, 𝑌2 represents the Young’s modulus and 

 𝑑1,  𝑑2  represents the density of metal and 

ceramic constituents, respectively. 

Now, the volume fraction of ceramic 

𝑉2(𝑧) has been taken as 
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where g represents the VFI of the ceramic. 

Here, taking the mathematical 

expressions for 𝐷 and 𝑑 as given below [Lal and 

Ahlawat, (2015)] 
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In order to make the variables non-dimensional, 

we are using 
𝑅

𝑏
= 𝑟,

𝑋

𝑏
= 𝑝,

ℎ

𝑏
= ℎ̅ in Eq. (3), we 

get 
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Using ℎ̅ = ℎ0(1 − 𝛾𝑟) for linear variation in the 

thickness, where ℎ0 is the dimensionless 

thickness at the inner boundary of the plate and 

𝛾 is the taper parameter of the plate. 

Substituting the values obtained in Eqs. (9-10) 

into Eq. (11), we get 
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Taking the centre at 𝑟0 = 𝑏, the power series 

expressions for different terms present in Eq. 

(12) are as follows [Shariyat and Alipour (2014)] 
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From Eq. (12), we have 
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The accurate solution of Eq. (13) is not possible 

as it is a differential equation with variable 

coefficients; therefore, we are using DTM to 

obtain the numerical solution for suitable 

boundary conditions. 

3. Boundary Conditions  

We consider three types of boundary conditions 

on the plate as follows: 

(3.1). Clamped-Clamped: i.e., clamped at inner 

and outer boundaries 

( ) 0, 0

( ) 0, 0

r a

r b

dp
p a

dr

dp
p b

dr

=

=


= =


 = =


      (14-17)

  

(3.2). Clamped-Simply supported: i.e., inner 
boundary is clamped and outer boundary is 

simply supported 

2

2

( ) 0, 0

( ) 0,

0

r a

r r b

r b

dp
p a

dr

p b

d p dp
M D

dr r dr



=

=

=


= =


 =

    

= − + =   
    

 

(18-21) 



 

 

where 𝑀𝑟 is representing the bending moment in 

the radial direction. 

(3.3). Clamped-Free: i.e., inner boundary is 
clamped and outer boundary is free 
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4. Method of Solution 

Following [Lal and Ahlawat (2015)], let 𝑝(𝑟) be a 

function which is analytic in the domain and in 

that domain 𝑟 = 𝑟0  is any point. Then the 

differential transformation of 𝑛𝑡ℎ derivative of 

𝑝(𝑟) will be 

0

1 ( )
at

!

n

n n

d p r
P r r

n dr

 
= = 

 

  (26) 

and   
0

0

( ) ( )n

n

n

p r r r P


=

= −    (27) 

where 𝑃𝑛 represents the transformed function 

and 𝑝(𝑟) represents the original function. 

Combining Eq. (26) and (27) for a finite value of 

𝑚, we get, 

0

0

0

( ) ( )
( )

!

at

n nm

n
n

r r d p r
p r

n dr

r r

=

 −
=  

 

=

   (28) 

The convergence of the frequency parameter will 

decide the number of terms 𝑚. 

Table 1: Basic transformation rules are given as: 

Original functions Transformed functions 

𝑝(𝑗) = 𝑔(𝑗) ± 𝑙(𝑗) 𝑃𝑛 = 𝐺𝑛 ± 𝐿𝑛 

𝑝(𝑗) = 𝜆𝑔(𝑗) 𝑃𝑛 = 𝜆𝐺𝑛 
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4.1.  Transformation of the Differential 

Equation 

Now, employing Table 1 on Eq. (13), we get 
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Replacing 𝑛 by (𝑛 − 4) in the above equation, the 

frequency equation is given by 
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          (30) 

where 𝑛 = 0, 1, 2, … … … , 𝑚 

4.2.  Transformation of Boundary 

Conditions 

Now, employing Table 1 on the boundary 

conditions, we get 

(4.2.1). Clamped-Clamped: 

The transformed forms of Eqs. (14-15) at 𝑟 = 𝑎 

are  
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    (31-32)  

and that of the Eqs. (16-17) at 𝑟 = 𝑏 are 

0 10, 0P P= =   (33-34) 

(4.2.2). Clamped-Simply supported: 

The transformed forms of Eqs. (18-19) at 𝑟 = 𝑎 

are  
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and that of the Eqs. (20-21) at 𝑟 = 𝑏 are 

( )( )

( )

0

2

11

1

0

0,

2 1

1
1

m

im

m i

i

P

m m P

m i P
b



+

++

+ −

=

=

+ +

 
= − + − 

 


 

     

    (37-38) 

(4.2.3). Clamped-Free: 

The transformed forms of Eqs. (22-23) at 𝑟 = 𝑎 

are  
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and that of the Eqs. (24-25) at 𝑟 = 𝑏 are 
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    (41-42) 

5. Frequency Equations 

Now, using the Eqs. (31-34) into Eq. (30) and 

putting 𝑛 = 4  for the non-negative subscripts of 

the P-terms, we get recurrence relations in terms 

of 𝑃2 and 𝑃3 which is a system of homogeneous 

equations as follows: 

1 2 2 3

3 2 4 3

0

0

U P U P

U P U P

+ =

+ =
       (43) 

where 
1 2 3 4, , ,U U U U are 𝑚𝑡ℎ degree 

polynomials in Ω.  

Representing Eq. (43) in matrix form as: 

1 2 2

3 4 3

0

0

U U P

U U P

     
=     
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     (44) 

The value of the determinant must be zero for the 

non-zero solution, so we have  

1 2

3 4

0
U U

U U
=         (45) 

Similarly, the frequency equations for the two 

other boundary conditions can be obtained. 



 

 

6. Numerical Results and 
Discussion 

The frequency equations obtained for the 

three boundary conditions are solved using a 

MATLAB program, and values of the frequency 

parameter are obtained. Only the first three 

roots, i.e., the first three modes of these frequency 

equations, are reported and analyzed by varying 

the values of all the parameters, i.e. taper 

parameter. 𝛾, radius ratio 𝜀 and VFI g. Here, we 

have chosen alumina as a ceramic and aluminium 

as a metal constituent, and for these two, the 

values of the parameters are taken from [Lal and 

Ahlawat (2015)] as given below: 

For aluminium 

density 𝑑1 = 2702 𝐾𝑔/𝑚3  

and Young’s modulus 𝑌1  = 70 𝐺𝑃𝑎, 

For alumina 

density 𝑑2 = 3800 𝐾𝑔/𝑚3  

and Young’s modulus  𝑌2  = 380 𝐺𝑃𝑎 

Poisson’s ratio 𝜈 = 0.3,  

Taper parameter 𝛾 = 0,  ± 0.1,  ± 0.3 

radii ratio 𝜀 =
𝑎

𝑏
= 0.1, 0.2, 0.3  

and VFI g = 0, 1, 2, 3, 4, 5. 

In order to fix the value of 𝑚, a MATLAB 

program was made and run, taking different 

values of all the parameters for all three 

boundary conditions, taking the value of 𝑚 =

17, 18, 19, 20, … The value of 𝑚 = 20 has been 

fixed as the difference between two successive 

values of  Ω is smaller than 5 × 10−5 for all three 

boundary conditions and all three modes (Table 

3). 

Table 2 is the comparison table of the 

values of the frequency parameter. Ω in which the 

results were compared with those obtained by 

Sharma et al. (2010) and Soni and Rao (1975) by 

using the Chebyshev collocation technique for an 

isotropic FGM annular plate. We observe that the 

present results are very close for all three 

boundary conditions and all three modes, which 

represent the adaptability of the present method. 

The numerical results are presented in 

Tables 4-6 and Figs. 2-10. We observe that the 

values of the frequency parameter Ω are lowest 

for the clamped-free boundary condition and 

highest for the same set of values of the 

parameter for the clamped-clamped boundary 

condition. 

In Fig. 2-10, the behaviour of the 

frequency parameter Ω with varying values of the 

taper parameter 𝛾 = 0, ±0.1, ±0.3, VFI g =

0,1,2,3,4,5 and radii ratio ε = 0.1, 0.2, 0.3 for all 

three boundary conditions, and all three modes 

have been presented. Figs. 2-4 show the effect of 

VFI g on the frequency parameter on the three 

plates. It can be depicted that the value of the 

frequency parameter Ω keeps changing from 

higher to smaller as the behaviour of the plate 

varies from isotropic (fully ceramic) to composite 

(FGM), i.e., with the increment in the values of VFI 

g. We also observe that this rate of change in the 

frequency parameter is more prominent when 

VFI g ≤ 2 in comparison to g ≥ 3 for all three 

modes and for all the plates. The frequency 

parameter values of an isotropic plate are larger 

than those of the comparable FGM plate, i.e., the 

frequency parameter falls with increasing metal 

constituent contribution. 

The graphs between radii ratio 𝜀 and 

frequency parameter Ω are represented in Figs. 

5-7 for a different set of values of VFI g and taper 

parameter 𝛾. As the radius ratio 𝜀 (=
𝑎

𝑏
) is the 

ratio of the inner radius 𝑎 and outer radius 𝑏 of 

the annular plate, respectively, so the plate 

becomes lighter when the annulus area of the 

plate is reduced. Here we are fixing the outer 

radius and varying the inner radius of the plate. 

From the graphs, we can observe that the value of 

the frequency parameter Ω increases whenever 

the value of the radius ratio 𝜀 increases. Hence, 

for all three boundary conditions, the frequency 

parameter likewise increases or decreases in 

proportion to the change in the radius ratio, or 

the hole size of the annular plate. 

The graphs of the frequency parameter Ω 

and the taper parameter 𝛾 for the different sets of 

values of VFI g and radius ratio 𝜀 for all three 

modes and for all the plates, have been shown in 

Figs. 8-10. These graphs depict that the frequency 

parameter Ω decreases with increasing values of 

the taper parameter 𝛾 from -0.3 to 0.3 for the 

different sets of values of VFI g and radius ratio 𝜀. 

So, as the taper parameter's values rise, the 

frequency parameter also rises. 

Figs. 11-13 show the three-dimensional view 

of the three modes of the vibrations for all three 

boundary conditions, taking 𝜀 =  0.1, g =

3 and 𝛾 = 0.1.   

7. Conclusions 

In the present article, the effects of linearly 

varying thickness, VFI, and radius ratio have been 

examined on the axisymmetric vibrations of 

annular FGM plates for all three boundary 



 

 

conditions using DTM. The obtained results have 

been verified with the results found in the 

literature and also analysed by graphs. 

From the tabular and graphical data, the 

following conclusions have been observed: 

1. The decrement in the variation of the 

constraints, which is applied only on the 

outer boundary of the plate by fixing the 

inner boundary as clamped, is the 

frequency parameter Ω shows a 

decrease in the following order Ω𝐶𝐶 >

Ω𝐶𝑆 > Ω𝐶𝐹 . 

2. In order to get less impact of vibrations 

on the structural components, the 

contribution of the metallic constituent 

to the ceramic one is more valuable than 

a fully ceramic plate because the 

frequency parameter shows less impact 

on the structure for a composite (i.e., 

FGM plate taking VFI g > 0) than an 

isotropic (i.e., fully ceramic plate taking 

VFI g = 0). 

3. The increasing pattern in the values of 

the frequency parameter can be seen as 

the annulus region of the plate increases, 

i.e., as the value of the radius ratio 

increases. 

4. The decreasing pattern in the values of 

the frequency parameter has been 

observed when the plate becomes 

thicker (i.e., taper parameter 𝛾 changes 

from negative to positive). 
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C-S 

Present 

Sharma et al. (2010) 
Soni and Rao (1975) 

21.2689    67.7557      141.144 

21.2689    67.7557      141.1443 

21.2590    68.0115          --- 

 

C-F 

Present 

Sharma et al. (2010) 
Soni and Rao (1975) 

5.7907     31.147         84.6509 

    ---            ---                 --- 

5.7713    31.0899             --- 

 

 

 

Table-3: Convergence of frequency parameter Ω taking at 𝜖 = 0.3, g = 3, 𝛾 = 0.3 

Boundary 

Conditions 

m I mode II mode III mode 

 

C-C 

19 

20 

21 

27.9681 

27.9681 

27.9681 

77.5461 

77.5461 

77.5461 

152.491 

152.49 

152.49 

 

C-S 

17 

18 

19 

20 

20.6784 

20.6784 

20.6784 

20.6784 

67.4891 

67.4893 

67.4894 

67.4894 

141.263 

141.269 

141.269 

141.269 

 

C-F 

18 

19 

20 

4.72161 

4.72161 
4.72161 

27.7351 

27.7352 

27.7352 

77.8219 

77.822 

77.822 

 

  



 

 

 

 

Table-4: Frequency parameter Ω for Clamped-Clamped plate 

𝜀 ↓ 𝛾 ↓  mode g =0 g =1  g =3  g =5  

 

 

 

 
 

 

 

0.1 

 

-0.3 

I 
II 
III 

31.9442 

87.9571  

172.63 

26.5751 

73.1735 

143.615 

24.7376 

68.1141 

133.685 

23.6827 

65.2095 

127.984 

 

-0.1 

I 
II 
III 

28.8538 

79.6206  

156.47 

24.0041 

66.2381 

130.171 

22.3444 

61.6582  

121.17 

21.3915 

59.0289 

116.003 

 

0 

I 
II 
III 

27.2805 

75.3662 

148.214 

22.6953 

62.6989 

123.302 

21.1261 

58.3637 

114.777 

20.2252 

55.8749 

109.882 

 

0.1 

I 
II 
III 

25.6842 

71.0413 

139.814 

21.3672 

59.1008 

116.314 

19.8898 

55.0144 

108.272 

19.0417 

52.6684 

103.655 

 

0.3 

I 
II 
III 

22.4021 

62.1208 

122.463 

18.6368 

51.6797 

101.879 

17.3482 

48.1064 

94.8352 

16.6084  

46.055  

90.791 

 

 

 

 

 

0.2 

 

-0.3 

I 
II 
III 

41.005 

 113.102 
221.926 

34.113 

 94.092 
184.625 

31.7544 

87.5863 
171.86 

30.4002 

83.8512 
164.531 

 

-0.1 

I 
II 
III 

36.7603 

101.585 

199.525 

30.5817 

84.5112 

165.989 

28.4672 

78.6679 

154.512 

27.2532 

75.3132 

147.923 

 

0 

I 
II 
III 

34.6093 

95.7407 

188.149 

28.7922 

79.6489 

156.525 

26.8015 

74.1418 

145.703 

25.6585 

70.9801 

139.489 

 
0.1 

I 
II 
III 

32.4343 

89.8239 
176.627 

26.9828 

74.7265 
 146.94 

25.1171 

69.5598 
136.78 

24.046 

66.5934 
130.947 

 
0.3 

I 
II 
III 

27.9901 
77.7081 

153.012 

23.2856 
64.6471 

127.294 

21.6756 
60.1773 

118.493 

20.7512 
57.6111 

113.44 

 

 

 

 
 

 

 

0.3 

 

-0.3 

I 
II 
III 

54.3459 

149.904 

294.025 

45.2116 

124.708 

244.606 

42.0855 

116.086 

227.693 

40.2908 

111.135 

217.984 

 

-0.1 

I 
II 
III 

48.3654  

133.6  

262.229 

40.2363 

111.145 

218.154 

37.4543 

103.46  

203.07 

35.8571 

99.0481 

194.411 

 

0 

I 
II 
III 

45.3462 

125.362 
246.157 

37.7245 

104.292 
204.784 

35.1162 

97.0806 
190.625 

33.6187 

92.9407 
182.496 

 
0.1 

I 
II 
III 

42.3023 
117.051 

229.939 

35.1923 
97.3774 

191.291 

32.759 
90.6445 

178.065 

31.362 
86.7791 

170.471 

 

0.3 

I 
II 
III 

36.1158 

100.137 

196.914 

30.0455 

83.3061 

163.817 

27.9681 

77.5461 

152.49 

26.7754 

74.2392 

145.988 

 



 

 

Table-5: Frequency parameter Ω for Clamped-Simply Supported plate 

ε ↓ γ ↓  mode g =0 g =1  g =3  g =5  

 

 

 

 
 

 

 

0.1 

 

-0.3 

I 
II 
III 

20.0179 

69.5216 

147.127 

16.6533 

57.8365 

122.398 

15.5019 

53.8376 

113.935 

14.8408 

51.5418 

109.077 

 

-0.1 

I 
II 
III 

18.5462 

63.3115 

133.724 

15.429 

52.6702 

111.248 

14.3622 

49.0285 

103.556 

13.7498 

46.9377 

 99.14 

 

0 

I 
II 
III 

17.7894 

60.1441 
126.881 

14.7994 

50.0352 
105.555 

13.7761 

46.5756 
98.2564 

13.1886 

44.5895 
94.0664 

 
0.1 

I 
II 
III 

17.0151 
56.9256 

119.921 

14.1552 
47.3577 

99.7649 

13.1765 
44.0832 

92.8669 

12.6146 
42.2034 

88.9067 

 

0.3 

I 
II 
III 

15.3994 

50.293 

105.559 

12.8111 

41.8399 

87.8166 

11.9253 

38.947 

81.7448 

11.4168 

37.2861 

78.2589 

 

 

 

 
 

 

 

0.2 

 

-0.3 

I 
II 
III 

26.0214 

89.6712 

189.427 

21.6477 

74.5995 

157.588 

20.151 

69.4415 

146.692 

19.2917 

66.4803 

140.437 

 

-0.1 

I 
II 
III 

23.8309 

80.9615 

170.719 

19.8254 

67.3536 

142.025 

18.4547 

62.6967 

132.205 

17.6677 

60.023 

126.568 

 

0 

I 
II 
III 

22.7144 

76.5436 
161.224 

18.8966 

63.6783 
134.126 

17.5901 

59.2755 
124.852 

16.84  

56.7477 
119.528 

 
0.1 

I 
II 
III 

21.5802 
72.0733 

151.611 

17.9531 
59.9594 

126.128 

16.7118 
55.8137 

117.407 

15.9991 
53.4335 

112.401 

 

0.3 

I 
II 
III 

19.242 

62.9277 

131.923 

16.0078 

52.3509 

109.75 

14.901 

48.7313 

102.161 

14.2656 

46.6532 

97.8048 

 

 

 

 
 

 

 

0.3 

 

-0.3 

I 
II 
III 

34.9294 

119.221 

251.333 

29.0586 

99.1829 

209.09 

27.0494 

92.3252 

194.633 

25.8959 

88.388 

186.333 

 

-0.1 

I 
II 
III 

31.6425 

106.731 

224.625 

26.3241 

88.7919 

186.87 

24.504 

82.6526 

173.95 

23.459  

79.128 

166.532 

 

0 

I 
II 
III 

29.9777 

100.423 
211.129 

24.9391 

83.544 
175.643 

23.2148 

77.7676 
163.499 

22.2248 

74.4513 
156.527 

 

0.1 

I 
II 
III 

28.2948 

94.0612 

197.515 

23.5391 

78.2516 

164.317 

21.9115 

72.8411 

152.956 

20.9771 

69.7349 

146.433 

 

0.3 

I 
II 
III 

24.8562 

81.1247 

169.81 

20.6784 

67.4894 

141.269 

19.2487 

62.8231 

131.501 

18.4278 

60.144 

125.894 

 

  



 

 

Table-6: Frequency parameter Ω for Clamped-Free plate 

ε ↓ γ ↓  mode g =0 g =1  g =3  g =5  

 
 

 

 

 

 
 

0.1 

 
-0.3 

I 
II 
III 

4.481  
28.1917 

84.8977 

3.7278 
23.4533 

70.6283 

3.47  
21.8317 

65.7449 

3.3221 
20.9007 

62.9413 

 

-0.1 

I 
II 
III 

4.3138 

26.2505 

77.6118 

3.5888 

21.8384 

64.567 

3.3406 

20.3284 

60.1027 

3.1982 

19.4616 

57.5397 

 

0 

I 
II 
III 

4.2373 

25.2618 

73.9006 

3.5251 

21.0159 

61.4796 

3.2814 

19.5628 

57.2288 

3.1415 

18.7286 

54.7883 

 

0.1 

I 
II 
III 

4.1671 

24.2588 
70.1342 

3.4667 

20.1814 
58.3462 

3.2270  

18.786  
54.312 

3.0894 

17.9849 
51.996 

 

0.3 

I 
II 
III 

4.0521 

22.2003 

62.3938 

3.3711 

18.4689 

51.9068 

3.1380 

 17.192 

48.3178 

3.00421 

16.4588 

46.2574 

 

 

 
 

 

 

 

0.2 

 

-0.3 

I 
II 
III 

5.5666  

36.684 

109.625 

4.631  

30.5182 

91.1995 

4.3108 

28.4081 

84.8937 

4.127  

27.1967 

81.2735 

 
-0.1 

I 
II 
III 

5.3046 
33.7681 

99.3106 

4.413  
28.0925 

82.6187 

4.1078 
26.1501 

76.9063 

3.9327 
25.0349 

73.6267 

 

0 

I 
II 
III 

5.181  

32.2912 

94.0845 

4.3102 

26.8638 

78.271 

4.0122 

25.0064 

72.8591 

3.8411  

23.94  

69.7521 

 

0.1 

I 
II 
III 

5.0641  

30.799 
88.8014 

4.2129 

25.6224 
73.8759 

3.9216 

23.8508 
68.768 

3.7544 

22.8337 
65.8354 

 

0.3 

I 
II 
III 

4.8572 

27.7576 

78.0168 

4.0408 

23.0922 

64.9039 

3.7614 

21.4955 

60.4163 

3.6010 

20.5789 

57.8399 

 

 
 

 

 

 

 
0.3 

 

-0.3 

I 
II 
III 

7.286  

49.2641 
145.899 

6.0614 

40.9839 
121.376 

5.6423 

38.1502 
112.984 

5.4017 

36.5233 
108.166 

 

-0.1 

I 
II 
III 

6.8639 

44.8439 

130.99 

5.7102 

37.3066 

108.973 

5.3154 

34.7272 

101.439 

5.0887 

33.2463 

97.1128 

 

0 

I 
II 
III 

6.6603 

42.6142 

123.466 

5.5409 

35.4517 

102.714 

5.1578 

33.0005 

95.6123 

4.9378 

31.5932 

91.535 

 
0.1 

I 
II 
III 

6.4634 
40.3684 

115.885 

5.377  
33.5833 

96.4069 

5.0052 
31.2613 

89.7412 

4.7918 
29.9282 

85.9142 

 

0.3 

I 
II 
III 

6.0971  

35.815 

100.493 

5.0723 

29.7953 

83.6024 

4.7216 

27.7352 

77.822 

4.5202 

26.5524 

74.5033 

 

  



 

 

 

Figure-2: Frequency parameter Ω versus VFI g for Clamped-Clamped plate 

  



 

 

 

Figure-3: Frequency parameter Ω versus VFI g for Clamped-Simply Supported plate 

  



 

 

 

Figure-4: Frequency parameter Ω versus VFI g for Clamped-Free plate   



 

 

 

 

Figure-5: Frequency parameter Ω versus radii ratio 𝜀 for Clamped-Clamped plate 

 

 

 

  



 

 

 

 

Figure-6: Frequency parameter Ω versus radii ratio 𝜀 for Clamped-Simply Supported plate 

 

 

  



 

 

 

 

Figure-7: Frequency parameter Ω versus radii ratio 𝜀 for Clamped-Free plate 

  



 

 

 

Figure-8: Frequency parameter Ω versus taper parameter 𝛾 for Clamped-Clamped plate 

  



 

 

 

 

 

Figure-9: Frequency parameter Ω versus taper parameter 𝛾 for Clamped-Simply Supported plate 

 

 

  



 

 

 

 

 

Figure-10: Frequency parameter Ω versus taper parameter 𝛾 for Clamped-Free plate 

 

 

 

 

 

 



 

 

 

 
Figure-11: Three-dimensional mode shapes for Clamped-Clamped plate 

 

 

Figure-12: Three-dimensional mode shapes for Clamped-Simply Supported plate 

 

 

 

Figure-13: Three-dimensional mode shapes for Clamped-Free plate 



 

 

 


