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The present study investigates the bending characteristics of a two-dimensional functionally
graded curved porous beam using unified shear deformation theory (USDT), incorporating
shear functions and a modified power law. This approach integrates potential energy, the
neutral surface concept, and equilibrium equations to enhance accuracy. Various boundary
conditions, such as simply supported (SS), clamped-supported (CS), clamped-clamped (CC),
and clamped-free (CF), are employed in the analysis. A metal-ceramic functionally graded
beam with both even and uneven porosity is modelled. The symmetrical material gradation
ensures that the physical neutral surface aligns with the geometrical neutral surface, which
is considered in the formulation. A displacement-based formulation and energy principles
are adopted, providing a more comprehensive and precise analysis of the beams. This
method accounts for higher-order shear deformation effects, eliminates the need for shear
correction factors, and effectively manages the continuous variation of material properties
in FGMs. Consequently, it leads to improved predictions of structural behavior, making
USDT particularly valuable for advanced material applications. The Hamilton method is
employed to derive equilibrium equations for the beams, which are subsequently solved
using the Kuhn-Tucker conditions.
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1. Introduction

symmetric and asymmetric cores [1]. Lezgy-

Functionally Graded Materials (FGM) offer
numerous benefits like enhanced stress
distribution, high temperature tolerance, and
strength, making them useful @ in various
technical fields like aerospace, automotive,
electrical, construction, and biomedical.

Higher-order theory was used to examine the
bending behavior of Functionally Graded (FG)
curved Al/Al.O; beams in elevation, considering
shear deformation and thickness stretching
effects, and examining sandwich beams with
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Nazargah [2] adapted a global-local shear
deformation theory for the behavior of Al/Al.O;
thin- and thick layered curved beams,
considering depth and a locally refined shear
stress function. Beg et al. [3] introduced a layer-
wise approach for analyzing static, free, and
forced vibrations of circular Al/Al.Oscurved
beams with significant curvature, using the
Hamiltonian technique for consistent dynamics
and stress results. Sayyad and Avhad [4]
analyzed the free vibration of curved sandwich
beams in elevation using a fifth-order curved
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beam theory, considering transverse shear and
normal strains, and solving equations of motion
using Navier's technique. Hadji et al. [5]
examined the flexure and natural oscillation of
Porous Functionally Graded Beams (PFG)
supported by elastic foundations, focusing on
their varying material features and foundation
medium. Avcar et al. [6] explored the natural
frequencies of P/IP-FGSBs, consisting of a
porous core made of FGM with aluminum,
alumina, and homogenous isotropic metal, and
ceramic face sheets supported by elastic
foundations. Sayyad et al. [7] examined the static
deformation and free vibration of porous
circular beams made of aluminum and alumina,
considering both even and uneven. porosities.
The Navier-type closed-form solutions were
derived from the higher-order = hyperbolic
circular beam theory to address transverse
shear deformation and rotating inertia. Chami et
al. [8] studied FGMs to enhance sandwich beam
endurance and examined the impact of porosity
on the fundamental natural frequencies of FG
sandwich beams using advanced beam theory.
Pham et al. [9] examined the hydro-thermal
vibration of curved BDFGP beams supported by
two-layer elastic foundations. Using GFEM, they
analyzed the dynamic behavior of Winkler
springs and shear springs, creating an enriched
mathematical space. Ahmadi et al. [10]
investigated the natural oscillation of a-2D-FG
curved nano beam, functionally graded in two
directions, using Hamilton's principle and first-
order shear deformation theory. The nonlocal
elasticity hypothesis of Eringen accounts for the
small-scale effect. Belarbi et al. [11] introduced
an improved shear deformation beam theory for
analyzing the bending characteristics of
functionally graded sandwich curved beams,
providing a parabolic variation in shear stress
distribution along the thickness direction and
eliminating shear correction components.
Karamanli et al. [12] analyzed the flexural, free
vibration, and buckling responses of 2D-FG
curved beams using various shear deformation
theories and a finite element model and
compared the results to the literature [12].
Advancements in  Shear - 'Deformation
Theories (SDTs) have recently allowed for
thorough assessments = of 'the mechanical
behavior of Functionally Graded Beams (FGB),
namely those made of aluminum and alumina,
under' -different loading and boundary
conditions. Hebbar et al. [13] used SDTs, namely
two- and quasi-three-dimensional theories, to
examine the behavior of FGB with aluminum and
alumina Simply Supported (SS) beams under
various circumstances, including vibration,
buckling, and bending. In a situation with an SS-
FGB with aluminum and alumina and an evenly

distributed load, Razouki et al. [14] established
exact analytical solutions. Third-order shear
deformation theory was used to formulate
specific analytical formulas, which were then
compared to both the conventional analytical
formula and the currently available numerical
data. Reddy et al. [15] investigated the bending
response of 2D FGB using a shear strain shape
function, examining the impact of gradient index,
porosity volume fraction, and aspect ratios.
Bridjesh et al. [16] studied the impact of aspect
ratios, boundary conditions, and gradient
indexes on the buckling responses of two
directional FGB using polynomial forms and
boundary conditions like SS, Clamped-clamped
(CC), and Clamped-free (CF). The influence of
porosity, boundary conditions, and gradient
indexes on the buckling responses of
functionally graded beams using a fifth-order
shear deformation theory was investigated by
Bridjesh et al. [17], and found that the boundary
conditions play a significant role in the analysis
of beams. In another study, Reddy et al. [18]
examined the vibration behavior of a two-
directional functionally graded taper beam using
Higher-order Shear Deformation Theory (HSDT),
Lagrange equations, and admissible functions,
providing a benchmark for beam theory
assessment.

Advancements in beam theory and
computational approaches have greatly
improved the design and analysis of micro- and
nano-electromechanical systems, curved beams,
and materials with varying properties in
multiple directions. The Timoshenko beam
theory was adapted to develop a computational
approach for designing and optimizing device
components in micro- and nano-
electromechanical systems by _combining
modified couple stress theory = with an
isogeometric analysis framework [19]. Pei et al.
[20] discussed -Navier's solution for curved
beams with SS, but the case was mathematically
indeterminate. The Timoshenko theory was
used for governing differential equations. Wang
et al. [21] introduced an extension of the
quadrature element method to study the free
vibration of 3D parallel pipes made of multi-
directional FGM, providing formulations for
continuous variations in material characteristics.

Recent studies have thoroughly investigated
static bending, vibration, and buckling
characteristics of functionally graded porous
microplates and plates using modern plate
theories and computational approaches. Using a
third-order plate theory, Coskun et al. [22]
examined static bending, free vibration, and
buckling of FG porous microplates. The
analytical solutions were derived through the
application of Navier's technique. Kim et al. [23],



in their study, utilized classical and first-order
shear deformation plate theories to analyze FG
porous micro-plates made by aluminum and
alumina buckling, vibration, and bending
responses using the Navier solution technique
and power-law distribution. Saad and Hadji [24]
examined the thermal buckling analysis in
porous, thick rectangular plates made of FGM
using HSDT, considering material properties like
Young's modulus and thermal expansion change
in thickness direction. Hadji et al. [25] explored
the influence of porosity distribution patterns on
free vibration analysis in Functionally Graded
Porous Plates (FGPP) under different boundary
conditions, considering continuous material
properties and porosities based on . volume
fraction. Madan et al. [26] explored the elastic
limit of functionally graded porous rotating
disks using a method that models their
mechanical ‘characteristics using four porosity
models. and @ Galerkin's error minimization
theory. Yang et al. [27] presented a numerical
investigation of the post-buckling behavior of
multi-directional FGPPs with aluminum and
alumina, combining NURBS-based IGA with FCM.
Thai et al. [28] introduced a computational
method for analyzing the bending and free
vibration characteristics of Functionally Graded
Plates (FGP) in three dimensions, considering
heat conditions and using generalized heat
transfer equations.

Advanced theoretical and computational
methods have been used to analyze the intricate
behaviors of porous-FG plates, with a focus on
examining the:plate's free vibration, bending,
buckling, and thermal impacts. Chami et al. [29]
examined free vibration on a sandwich plate
with multi-directional porous FGM, using
Hamilton's concept and Navier's approach. The
plate was examined under two conditions,
avoiding surface traction and using shear
correction coefficients. Hadji et al. [30]
examined the bending and buckling of a multi-
directional porous sandwich plate, considering
two cases with FG skin and a homogeneous core,
using Navier's approach to achieve a solution
without shear correction factors. Adopting
HSDT, Sidda Reddy et al. [31] developed a static
analysis of FGP, demonstrating its accuracy and
efficiency in predicting static responses. They
developed -analytical ' formulations for free
vibration' analysis of FGPs wusing HSDT,
incorporating transverse extensibility, virtual
work, and Navier's technique. The closed-form
formulations of HSDT for analyzing FGP under
thermo-mechanical load conditions confirm its
exactness and consistency through numerical
results [32, 33]. Sidda Reddy et al. [34] explored
the flexural response of FGPs with porosities
using an HSDT, demonstrating its accuracy and

consistency through numerical results. Sidda
Reddy et al. [35] presented a refined first-order
shear deformation theory for studying the free
vibration behavior of bidirectional functionally
graded porous plates, evaluating its accuracy
through numerical results and comparing it with
other higher-order theories. Sidda Reddy et al.
[36] optimized plate design by  analyzing
buckling in in-plane bidirectional functionally
graded porous plates using higher-order theory,
Lagrange equations, and Pascal's triangle. Sidda
Reddy et al. [37] analyzed the bending of FGPs
using a new' shear strain shape function,
revealing that the type of porosity distribution is
crucial for the optimal design of porous
FGPs.Sinusoidal beam theory was explored for
the static behavior of FG sandwich curved
beams, considering transverse normal
stress/strain. The beam consists of FG skins and
an isotropic core. Material qualities are
distributed throughout the thickness [38]. In
their study, Karamanli and Vo [39] explored the
free vibrations of curved zigzag nanobeams
using sinusoidal beam theory -and ‘doublet
mechanics formulation, ~developing a finite
element doublet  mechanics - model and
comparing results.

Rezaiee-Pajand and Masoodi [40] conducted
an extensive study of functionally graded
tapering beam-columns, including second-order
effects, coupling-extensional bending, and semi-
rigid connections using a generic stiffness matrix
formulation. The suggested technique accurately
assesses the stability and buckling behavior of
2D frames, showcasing its efficacy and relevance
via comparisons with established solutions.

Rezaiee-Pajand et al. [41] developed a high-
performance curved  beam  element for

geometrically nonlinear analysis of
planar structures using mixed strain
interpolation and finite rotation. The
proposed element, incorporating FSDT

and Green-Lagrange strain, effectively models
tapered  structuresand demonstrates high
accuracy with fewer elements.

Ghandehari et al. [42] developed a model for
a linked nanocomposite double beam system
using carbon nanotubes, including temperature-
dependent material characteristics and diverse
CNT distributions throughout the thickness.
Employing first-order shear deformation theory
and the GDQ technique, the fundamental
frequencies are calculated to examine the
influence of structural and thermal components
on dynamic behavior.

Mottaghi et al. [43] studied the
vibrational behavior of CNT-reinforced curved
composite beamsusing a multiscale FEM
approach and evaluated the first
natural frequency under various configurations.



A multilayer perceptronneural network,
trained on FEM data, predicts the frequency with
over 95%  accuracy,demonstrating  the
model'sreliability for dynamicanalysis of
composite structures.

Masoodi et al. [44] examined the heat
sensitivity of vibrational features in CNT-
reinforced coupled curved beams by using
temperature-dependent material properties and
first-order shear deformation theory. A mesh-
free GDQ-based approach is used to calculate
frequency responses, demonstrating the effects
of curvature, boundary conditions, interfacial
stiffness, and CNT dispersion on dynamic
behavior.

Ghandehari et al. [45]studied - the
dynamicresponse of taperedcircular curved
beams with honeycomb-shaped cross-sections
using FSDT and GDQM, considering smart

composite materials and structural
parameters. The results show that the
honeycomb geometry, CNT content,

and boundary  spring stiffness have a
significant effect on natural frequencies, which
indicates the improved vibrational
performance of smart composites.

Ghandehari and Masoodi [46] investigated
the thermal vibration characteristics of linked
porous curved beams constructed from diverse
materials, including PMMA/SWCNT composites
and steel foam, using the First-Order-Shear
Deformation Theory (FSDT) and the Generalized
Differential Quadrature _ (GDQ) = technique.
Results indicate that system frequencies are
markedly affected by = porosity, material
distribution, boundary conditions, and
temperature, ' with increased porosity and
temperature leading to a reduction in
vibrational frequencies.

A comprehensive literature review on the
proposed research topic has been conducted and
presented. Studies on structural analysis in the
field of FG curved beam/straight beam /plate
subjected to transverse loading are abundant in
the literature. In most cases, the material
properties of the beam vary continuously in the
direction of thickness according to a power law.
In a significant number of the reviewed works,
geometric nonlinearity and the resulting large
displacement are discussed. In'certain instances,
non-uniform geometry is considered in static
and dynamic analysis. There are also works on
Euler-Bernoulli beam theory available in the
literature. Infrequently, nonlinear analysis is
cited. In some instances, non-uniform geometry
is also considered.

This study introduces a novel approach by
employing the Kuhn-Tucker (KT) condition
solution method for bending analysis in FG
porous structures, aiming to enhance existing

methodologies and uncover the relationship
between material classification and porosity
distribution, potentially revealing unique
phenomena. The research focuses on the flexural
characteristics of curved beams with Two-
directional Functionally Graded Porous Beam
(2DFGPCB) using Unified Shear Deformation
Theory (USDT) to develop a comprehensive
mathematical model, accounts for deflections
and conducts a detailed bending analysis. The
innovative methodology ~will be validated
through a comparative analysis with established
numerical methods.

2. Mathematical Formulation

According to HSDT, a beam is conceptualized
as a slender structural component that exhibits
shear and bending properties. The beam is
considered to have a curved geometry with
spatially varying material properties along its
radial and axial directions, as characterized by a
bi-directional functional gradation. Warping
effects, which involve the twisting of the cross-
section, are not considered. Instead, it is
assumed that the cross-sections, which were
initially flat, remain flat following deformation.
The assumption is made that the material
properties 'remain consistent along the entire
length ‘of the beam, which allows for easier
computations and analytical solutions. The
current study used the coordinate system
depicted in Fig. 1 for a 2DFGPCB. Both length
and thickness dimensions exhibit continuous
variation in the material properties. The
thickness-dependent variation of ceramic and
metallic phases symbolizes the FG curved beam.
At z = -h/2, the lower section of the beam is
constructed of metal, whereas at z = +h/2, the
upper segment is composed of ceramic.

TZT
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Fig. 1. Beam characterized by functional grading and varying
porosity

2.1.Material Homogenization

The fabrication of FGB is influenced by the
volumetric composition of the constituent
materials. A  functional and structural
relationship between the thickness and
properties of the material is to be anticipated.



The power law distribution in x and 2z
represented as (Vfi), provides an accurate
representation of the volume fraction of a single
constituent, as illustrated in Egs. (1) and (2)
[12].

1\/= 1\~
o) =(+3) ([+3) W
Vfl(x, Z) + sz (x, Z) =1 (2)

Within this framework, the gradient indices
Px and P denote the volume fraction's behavior
along the entire length and thickness of the
beam, respectively. Fig. 2 shows the variation of
the volume fraction (Vm) through  a  non-
dimensional axial coordinate (x/L) along the
length (L) of the beam and a non-dimensional
transverse coordinate (z/h) across the thickness
of the beam. The functional properties of
material |\ P(x,z) consisting of uniformly
distributed 2DFGPCB can be represented by Eq.

(3) [15].

] —0

Z/h e :
05 .05 */L

Fig. 2. Metal volume fractions in the direction of the non-
dimensional axial coordinate and the non-dimensional
transverse coordinate

P(x,2) = (B — By) (24 %)P (F+ %)P + P, —

(P + By 3)

The symbol ‘a’ represents the porosity index,
which is a value between 0 and 0.3. The variable
‘m’ indicates the presence of metal, while ‘c’
indicates the presence of ceramic. Modulus of
elasticity (E) is used to evaluate material rigidity
and moment of inertia'in an evenly distributed
2DFGPCB, and ‘it may be mathematically
represented as shown in Eq. (4) [16].

1

E(x,2) = (E. — En) (3 + %)Px (Z+ ;)Pz +E, —

~(Ec + Ep) (4)

There is a little difference when utilizing
Poisson's ratio compared to other attributes,
which is considered wunaffected because

computations are performed using the mean
value. Similarly, Eq. (5) [17] can be used to
derive the impact characteristics of a distributed
but even 2DFGPCB component.

1

P(x,2) = (P — Py) (24 %)P (F+ E)P" + P, -

2P+ By (1-22) (5)

The modulus of elasticity for wunevenly
distributed2DFGPCB can be approximated using

Eq. (6) [18].

EGez) = (B — En) (2 + %)P G+ —)P" +E, —

S(E +Ep) (1-22) (6)

FGP and FGB are crucial for static and
dynamic structures, reducing manufacturing
costs. Classic beam and plate theories often
overestimate structural deflections, critical
loads, and natural frequencies. Shear
deformation and FGB theories enhance forecast
precision. The 2DFGPCB Cartesian coordinate
system, thickness, and porosity ' impact
deformations and displacements. Constitutive
equations determine the displacement field.

U(x,z)= (1 + %)u(,(x, t) — z%(x, t) +

f@ (06D + 32 (x1)) (7)
W(x,2) = wo(x,t) ®

Axial displacement is represented by U(x, z),
whereas transverse displacement is represented
by W(x,z). At each certain location on the
neutral axis, uo represents the axial
displacement and wo represents the transverse
displacement. The bending slope is represented
by the partial derivative (dwo)/dx, while @
represents the shear slope.  Use the shape
function f(z) to figure-out the transverse shear
displacement, and Egs. (7) and (8) can be used
to find  the mathematical equations that
represent the non-zero stresses.

==+ %+

£ (G5 + 5) + 2 9)
%:%gzo (10)
sz=g—lzj+aa—2’—% (11
Vaz =f’2[®+% —% (12)
F@ =2y~ cos2 1)



Through the utilization of Egs. (9) and (11) in
conjunction with Hooke's Law, the subsequent
field equations can be formulated to represent
stress:

oy = E(x)e, (14)

T __E®x (15)
XZ 2(1 +#) yxz

2.2.Constitutive Equilibrium Equations

Hamilton's principle is a crucial topic in the
field of bending analysis. The derivation of the
essential equations of elasticity and dynamics ‘is
as described in reference [11].

= f(au FoV)dt=0 (16)

t1 and t2 represent time intervals. U and 6V
represent variations in the potential energy of
the strain, as well as the amount of work
performed. The shift in strain energy that
happens in a 2DFGPCB can be characterized.

1tz

U = Ef fh (O &y + TxgVoz)dzdx (17)
0 —_—
2

L
6V = —f qéwy dx (18)
0

Substituting equations. (9), (11), (14), and (15)
into equation (16), strain energy could be
deduced as,

L +§ L
=f fh (0x&x +szyxz)dzdx—f qéw, dx
o /-3 0

(19)

gy (e (G 2 0 (B4 220) 4
) oro 1ol 1)

fo qéw, dx (20)

[ f(( N, 22 Mx”aaw;’+Mx5 (%+a;f§°)+

) + (0efo + %2] - %) ) azax -

fOL qéw, dx (21)

where My and Qx values for shear force and
bending moment, respectively. Px and R«
represent the resultants of higher-order
stresses.

N, = f :o'de (22)
M = f :o'xde (23)
o
e = [ o @iz (24)
N
&=, raf @iz (25)

2.3.Kuhn-Tucker Solution

The present study expands the use of KT
conditions beyond traditional optimization to
limited variational mechanics. The bending
study of functionally graded porous beams with
bi-directional grading and spatial porosity
distributions reveals inhomogeneous stiffness
and compliance properties. These variations
inherently lead to inequality constraints, such as
limits on deflections, stress concentrations, or
local stiffness ratios that must remain physically
permissible (e.g., non-tensile stress in metallic
phases or porosity-induced compliance not
surpassing structural thresholds).

The classical static beam formulation seeks
to minimize the total potential energy functional,
constituting an optimization issue. Nonetheless,
the incorporation of porosity and gradient-
index-dependent = material inhomogeneity
introduces limitations that conventional energy
minimization fails to explicitly  address.
Consequently, KT criteria are used to represent
these concealed inequality limitations, including:

e Ensuring positive definiteness of stiffness as
porosity increases (i.e, modulus never
becomes negative),

o Enforcing physical feasibility by preventing
non-admissible deflection/stress states in
graded porous regions,

e Capturing boundary-limited behaviors like
non-slippage or support constraints when
ceramic-rich zones meet boundary walls.

The optimization variables include the strain
energy functional (via displacement fields u0,
w0, ¢), while the constraints pertain to gradient
index limitations, porosity thresholds, and
displacement compatibility at borders. The KT
framework facilitates the integration of these
physical constraints into the equilibrium
formulation using Lagrange  multipliers,



ensuring that all permissible requirements are
met without the need for slack variables.

This aligns with recent research using KT-
based variational formulations in FG structures
for buckling Kannaiyan et al., [47] and vibration
issues [48], whereby material heterogeneity and
partial contact situations engender analogous
constraint-driven behaviors. This research
expands upon the existing framework to address
the static deflection issue, showing its usefulness
in modeling mechanically limited solutions
inside multi-graded porous systems.

If the function fo(x) achieves a local minimum
at point x"0, subject to the set K=x/(fi(x))<0
(where i=1,2,3,...,m)), and fi(x) @ (where
k=0,1,2,...., m) are all differentiable, then there
exists a vector of Lagrange multiplier U° that

satisfies the following conditions [49].
fo(x%) m 370 0fo(x®) _ .
ox; + 21U Tox, T 0(G=123,....,n)
fi(x)<0(@(=123,...m)
W) =0(@=123,..,m)
uw >03G(=123..m)

The conditions that are essential for alocal
minimum in optimization problems are referred
to as the KT condition, while .the non-negativity
condition U% < 0 is_crucial for maximization
problems, as presented in Fig. 3.

Ly )= i)+ ) wi@+yD)

The necessary condition for its local
minimum is

m
aL  fo(x®) Z 0 LAi(x%) + (v)?]
S =+ ul. = O
an ax] = ax]

(28)
daL 0.0 )
—=2u;y;, =0 (j=1,2,3,...n) (29)
dy;

L =f-(x0)+( .0)2=O (i=1,273,.m) (30)
S \ % ,2,3, ...

folx°(b)]

T —u (i=1,2,3,...m) (31)

f5(x)=0

Fig. 3. Kuhn-Tucker condition [48]

Without slack variables, the mathematical
problem,

m

LG = oG + ) uifi®) (32)

i=

The KT condition can be rewritten as [43],

OLELY) _ =1,23 33
6%, =0 (j=1,23,....n) (33)

OL(x% u®)

——< i=1,2,3,.... 34
o <0 (i=1,273 m) (34)
OL(x% u®)

0~ =0 (i=123,.... 35

WSS =0 (=123,.m) (39)

u>0(=123.m) (36)

When u; is positive, it indicates that the
corresponding ith constraint is binding,
indicating a boundary solution. The function
w(x, y), wo(x, y), and Uo(x, y) can be
mathematically represented as _Lagrange
equations when they are -expressed as
generalized coordinates. The KT ' condition,
specified by the table values, can be expressed as
follows.

wol,y) = ) fix")0e (37)
wo(ey) = ) fixpie™ (38)
00Cy) = ) file e (39)

where, 0;, ¢;, and Y;are the three different
boundary conditions and A is the scalar. KT
conditions are utilized for mathematical
calculations as stated in Table 1.



11515157t 0 Numerical findings are derived based on
Navier's solutions. The FG porous beam consists

of Aluminum metal with a modulus of elasticity
(Em) of 70 GPa, a Poisson's ratio (um) of 0.3, and
s..s..5.. Lo 0 a density (pm) of 2702 kg/m"3. It also includes
319329337770 Alumina ceramic with a modulus (Ec) of 380
E(x,2) (- GPa, a Poisson's ratio (pc) of 0.3, and a density

’ ZJ- et g, 1,0, dx (41) (po) of 3960 kg/m”3. According to the power-
1=u2lo law distribution, the properties of 2DFGPCB are
changing in both the /thickness and length

E(x,z) [~ . .
S12(6,)) = 1(_—#2)‘1‘ et g, L@ dx (42) directions.
0

Table 1. Boundary conditions based on the KT conditions

821822523 [|Wo| = |q (40)

511(1',]) =

E(x Z) L solution method
S13(i,)) = ——5 f AV g, dx  (43) Boundary %= 0 x=1
1-u 0 Condition
E( ) L SS u=0w=0 w=0
.« ‘x’Z = = = = =
SZZ([’]) - 1 - llz fo eax(x-'—l) (pi’xx' (pj_xxdx (44) « 1(2 = 8:‘/\;’ =06 V\‘L:’ =0' v 0’ (Z) 0'
CS u=0,0=0,w=0, u=0,w=0
A NEED ™ CF yz_o,w =0,
523(1'1) = e /,12 € Dixx lzbj,xxdx (45) ®=0,
0
E(x,z) [ For the representation of results, the following
S33(,)) = 1= f eM O 4y i edx  (46) dimensionless forms are . used. ' Transverse
K=o displacement (w),
where, i,j =1,2,3,...... n B W100Emh3
w = 7 (47)
3. Application- Result and Discussion o

The numerical investigations based on USDT
are carried out to predict the static analysis of
FG porous beam with various conditions at the
boundary like SS and CC as shown in Table 1.

Table 2. Evaluation of dimensionless transverse deflection W values of SS 2DFGPCB using different theories at different aspect
ratios (L/h=5, L/h=20) and gradient index.

Method Theory & P=0 P=1 P=2 P=5 P=10
L/h=5R/L=5

[12] Q3D =0 3.1619 6.3264 8.1795 9.9816 11.0796
[12] FSDT =0 3.1437 6.2839 8.0803 9.6852 10.7148
Present USDT =0 3.1598 6:3163 8.1609 9.9786 11.0684
L/h=20,R/L=5

[12] Q3D =0 2.9672 5.9599 7.6597 9.1351 10.0549
[12] ESDT =0 2.9623 5.9507 7.6380 9.0648 9.9663
Present USDT =0 2.9664 5.9574 7.6579 9.1337 10.0478




Table 3. The dimensionless transverse deflection W values of a SS 2DFGPCB with both even and uneven porosity, an aspect ratio of
L/h=5, and gradient index are being considered.

Px& L/h=5 Even porosity Px& L/h=5 Uneven porosity

> 0 0.1 0.2 0.3 > 0 0.1 0.2 0.3

0 3.1598 34131 3.7029 4.0464 0 3.1598 3.2297 3.2967 3.3667
1 7.38280 7.9595 8.6353 9.4364 1 7.3828 7.5318 7.6880 7.8513
2 10.0844 10.8721 11.7952 12.8894 2 10.0844 10.2879 10.5013 10.7243
5 13.6706 14.7384 15.9899 17.4732 5 13.6706 ' 13.9465 14.2358 14.5381

10 16.0113 17.2620 18.7277 20.4650 10 16.0113 16.3344 16.6733 17.0273

Porosity Index Porosity Index
o oo
B c-o =01
jowo2 a-02

oo B o-03

Transverse Deflection-W
(g
=)

Transverse Deflection-W

4

on e“‘-? *

0 2 ) d\c‘\"v A

C-rl“"w“
(a) (b)

Fig.4. The dimensionless transverse deflection W values of a SS 2DFGPCB with (a) even and (b) unequal porosity, at aspect ratio of

L/h=5, and gradient index.

Table 4. Evaluation of dimensionless transverse deflection W values of CC 2DFGPCB using different theories for different aspect
ratios (L/h=5, L/h=20) and gradient index.

Method Theory & P=0 P=1 P=2 P=5 P=10
L/h=5,R/L=5

[12] Q3D =0 0.4496 0.8591 1.1253 1.4788 1.6953
[12] HOBT =0 0.4437 0.8472 1.1090 1.4602 1.6761
Present HSDT =0 0.4458 0.8549 1.1162 1.4489 1.6901
L/h=20,R/L=5

[12] Q3D =0 0.2511 0.4834 0.6224 0.7736 0.8732
[12] HOBT =0 0.2527 0.4863 0.6263 0.7785 0.8787
Present HSDT =0 0.2496 0.4752 0.6119 0.7689 0.8701




Table 5. The dimensionless transverse deflection W values of CC 2DFGPCB with both uniform and uneven porosity, an aspect ratio
of L/h=5, and gradient index are considered.

Px&P: L/h=5  Porosity index (Even distribution) Px&  L/h=5 Porosity index (Uneven distribution)
0 0.1 0.2 0.3 . 0 0.1 0.2 0.3
0 0.4458 0.5111 0.5876 0.6782 0 0.4458 0.4641 0.4836 0.5043
1 1.4982 1.6419 1.8145 2.0189 1 1.4946 1.5826 1.6266 1.6727
2 2.1644 2.3686 2.6077 2.8910 2 2.2211 2.2783 2.3393 2.4040
5 3.1418 3.4224 3.7511 4.1404 5 3.1985 3.2771 3.3609 3.4499
10 3.5831 3.8982 42674 4.7046 10 3.6398 3.7281 3.8222 3.9221

Porosity Index

Porosity Index|

B —

Transverse Deflection-W
Transverse Deflections-W

(a) (b)
Fig. 5. The dimensionless transverse deflections w values of CC 2DFGPCB with both (a) even and (b) uneven porosity, an aspect ratio

of L/h=5, and gradient index

Table 6. Evaluation of dimensionless transverse deflection w values of CS 2DFGPCB using different theories for different aspect
ratios (L/h=5, L/h=20) and gradient index.

Method Theory € P=0 P=1 pP=2 P=5 P=10
L/h=5R/L=5

[12] Q3D =0 0.7974 1.5573 2.0279 2.5811 2.9180
[12] HOBT =0 0.8057 1.5716 2.0469 2.6008 2.9376
Present HSDT =0 0.7913 1.5512 2.0236 2.5791 29119
L/h=20,R/L=5

[12] Q3D =0  0.6365 1.2762 1.6381 1.9489 2.1444
[12] HOBT =0 0.6389 1.2810 1.6446 1.9567 2.1526
Present HSDT =0 0.6313 1.2707 1.6325 1.9436 2.1382
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Table 7. Dimensionless transverse deflections w values of CS 2DFGPCB with uneven and even porosity, aspect ratio (L/h=5), and
gradient index.

Px& P: L/h=5 Porosity index (Even distribution) Px& P: L/h=>5 Porosity index (Uneven distribution)
0 0.1 0.2 0.3 0 0.1 0.2 0.3

0 0.7913 0.9046 1.0374 1.1948 0 0.7913 0.8635 0.9438 1.0335

1 2.5962 2.8509 3.1491 3.5024 1 2.5962 2.7587 2.9389 3.1403

2 3.7803 4.1276 4.5343 5.0161 2 3.7803 4.0019 4.2477 4.5224

5 5.3233 5.7913 6.3394 6.9887 5 5.3233 5.6221 5.9534 6.3235

10 6.1657 6.6997 7.3249 8.2656 10 6.1659 6.5066 6.8846 7.3067

8.5

75

6.5

5.5

4.5

TransverseDeflections-W

(a)

[Porosity Inde:

| C—Ja=0
[ o=0.1
Eo=0.2

| I =03

P ]
wn o wun n

Transverse Deflections-W
w
@

1.5

(b)

Porosity Index

Fig. 6. Dimensionless Transverse deflections w values of CS 2DFGPCB with (a) even (b) uneven porosity, aspect ratio (L/h=5), and
gradient index.

Table 8. Evaluation of dimensionless transverse deflection w values of CF 2DFGPCB using different theories for different aspect
ratios (L/h=5, L/h=20) and gradient index.

Method Theory € P=0 P=1 P=2 P=5 P=10
L/h=5,R/L=5

[12] Q3D =0 5.6999 11.3650 14.6559 17.7827 19.7180
[12] HOBT =0 5.7439 11.4787 14.8198 17.9847 19.9221
Present HSDT =0 5.6873 11.3586 14.6472 17.7786 19.6982
L/h=20,R/L=5

[12] Q3D =0 5.3760 10.7879 13.8567 16.4993 18.1554
[12] HOBT =0 5.4083 10.8630 13.9586 16.6249 18.2859
Present HSDT =0 5.3683 10.7797 13.8481 16.4876 18.1489
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Table 9. Dimensionless transverse deflections w values of CF 2DFGPCB with uneven and even porosity, aspect ratio (L/h=5), and
gradient index.

Px&  Porosity index (Even distribution)

Px& Porosity index (Uneven distribution)

P, P;

0 0.1 0.2 0.3 0 0.1 0.2 0.3
0 5.6873 7.8109 10.2951 13.2402 0 5.6873 6.3269 7.0421 7.7717
1 36.7957 41.3538 46.6860 53.0076 1 36.7957 38.1684 39.6326 41.1987
2 60.0257 66.4018 73.8622 82.7037 2 60.0257 61.9460 63.9940 66.1849
5 81.9994 90.0952 99.5658 110.7938 5 81.9994 84.4022 87.0387 89.8204
10 97.8456 107.1816  118.1029 131.0508 10 97.8456 100.6573 103.6562  106.8640

Porosity Index

[—Ja=0

I o-0.1
[ e=02
. o-0.3

Transverse Deflection-W

(@)

Porosity Index
C_Ja=0
I o-0.1
[ e=0.2
. -0.3

60

40

Transverse Deflection-W

20

(b)

Fig. 7. Dimensionless Transverse deflections w values of CF 2DFGPCB porous beam with (a) even (b) uneven porosity, aspect
ratio (L/h=5), and gradient index.

4. Discussion

Analyzed 2-directional 2DFGPCB with porous
material under UDL at various conditions at the
boundary (SS, CC, CS, and CF), aspect ratios
(L/h=5 & 20), and gradient index (Px= P.=0, 1, 2,
5, and 10) and porosity index (a= 0, 0.1, 0.2, and
0.3) for finding dimensionless transverse
deflections. Numerical values of transverse
deflection are shown in Tables 2, 4, 6, and 8. The
modulus of elasticity of a beam decreases as-the
value of its gradient index increases; hence, the
transverse deflection increases as the gradient
index increases in the x and z directions. In other
words, its dimensionless transverse deflection
values increase as the value of the power law
exponent increases. Because a change in the
conditions of the boundary indicates a change in
the stiffness of the beam, the values of the non-
dimensional maximum deflection for the CF FGM
beam are larger than those for the remaining
boundary conditions (SS, CC, and CS) [36].

Tables 2, 4, 6, and 8 show the decrease in
dimensionless transverse deflections, which is
explained by the influence of the length of the
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beam, i.e., aspect ratio increases, which means
the length is increased, leading to a decrease in
dimensionless transverse deflections. It shows
that as beams are scaled down in size, their
bending stiffness improves since there is less
material to bend. Transverse deflection values as
a function of porosity index are tabulated in
Tables 3, 5, 7, and 9. Since the flexural rigidity of
the FG beam decreases with increasing porosity,
transverse deflection increases in all boundary
conditions as the porosity index rises (Figs. 4, 5,
6,and 7) [25].

The transverse deflection values of SS beams
with uniform porosity experience a substantial
increase as the porosity index rises. At a
gradient index of 0, the deflection increases from
3.1598 to 4.0464 as the porosity index
increases from 0 to 0.3, resulting in a 28.07%
increase. At higher gradient indices, the
following percentages are observed: 27.83% for
Px&P.=1,27.85% for Px & P, =2, 27.85% for Px
& P, = 5, and 27.86% for Px & P, = 10.
Conversely, beams that have unequal porosity
show a less significant rise in transverse
deflection values as the porosity index increases
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[35]. With a gradient index of 0, the deflection
rises from 3.1598 to 3.3667, indicating a 6.55%
growth as the porosity index climbs from 0 to
0.3. The percentage increases for additional
gradient indices are as follows: 6.34% for Px & P
=1, 6.35% for Px & P, = 2, 6.35% for Px & P, =5,
and 6.35% for Px & P, = 10.

The transverse deflection values of CC beams
with uniform porosity exhibit a substantial
increase as the porosity index rises. At a
gradient index of 0, the deflection increases from
0.4458 to 0.6782 as the porosity index goes from
0 to 0.3, resulting in a 52.16% increase. Higher
gradient indices exhibit similar patterns:
34.75% for Px & P, = 1, 33.52% for Px & P, = 2,
31.82% for Px & P, =5, and 31.32% for Px & P, =
10. Conversely, beams that have unequal
porosity show a less significant rise in
transverse deflection values ‘as the porosity
index increases [26].-At a gradient index of 0, the
deflection increases from 0.4458 to 0.5043,
indicating a 13.12% increment as the porosity
index rises from 0 to 0.3. The percentage
increases for various gradient indices are as
follows: 11.92% for Px & P. =1, 8.23% for Px & P,
=2,7.85% for Px & P, =5, and 7.75% for Px & P,
= 10. The transverse deflection is much higher
for uniform porosity than for uneven porosity
across all gradient indices. When the porosity is
uniform, the deflection increases by around 31-
52%. However, when the porosity is uneven, the
increase ranges from approximately 8-13%
across the investigated gradient indices.

The transverse deflection values of CS beams
with uniform porosity experience a substantial
increase ' as the porosity index rises. At a
gradient index of 0, the deflection increases from
0.7913 to 1.1948 as the porosity index goes from
0 to 0.3, resulting in a 51.00% increase. Higher
gradient indices exhibit comparable trends:
32.58% for Px & P, = 1, 32.79% for Px & P. = 2,
31.27% for Px & P, = 5, and 34.06% for Px & P, =
10. Conversely, beams that have unequal
porosity show a less significant rise in
transverse deflection values as the porosity
index increases. With a gradient index of 0, the
deflection increases from 0.7913 to 1.0335,
indicating a 30.59% growth as the porosity
index rises from 0 to-0.3. The percentage
increases for various gradient indices are as
follows: 20.94% for Px & P, =1, 19.64% for Px &
P.=2,18.82% for Px & P, =5, and 18.47% for Px
& P; = 10. The transverse deflection is much
higher for uniform porosity than for uneven
porosity across all gradient indices [37]. When
the porosity is uniform, the deflection increases
by around 31-51%. However, when the porosity
is uneven, the increase in deflection ranges from
approximately 18-31% across the investigated
gradient indices.
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The transverse deflection values of CF beams
with uniform porosity experience a substantial
increase as the porosity index rises. With a
gradient index of 0, the deflection rises from
5.6873 to 13.2402 as the porosity index climbs
from 0 to 0.3, resulting in a 132.78% increase. At
higher gradient indices, the following
percentages are observed: 44.11% for Px & P, =
1, 37.66% for Px & P. =2, 35.07% for Px & P. =5,
and 33.84% for Px & P, = 10. Conversely, beams
that have unequal porosity show a less
significant rise in transverse deflection values as
the porosity index increases. At a gradient index
of 0, the deflection increases from 5.6873 to
7.7717, indicating a 36.63% increase when the
porosity index rises from 0 to 0.3. The
percentage increases for various gradient
indices are as follows: 11.97% for Px & P, = 1,
10.27% for Px & P, =2,9.53% for Px & P. =5, and
9.22% for Px & P, = 10. The transverse deflection
for a uniform porosity distribution exhibits
much greater percentage increases across all
gradient indices compared to the non-uniform
porosity distribution. When the porosity is
uniform, the deflection increases by around 33-
133%. However, when the porosity is uneven,
the increase varies from approximately 9-37%
across the investigated gradient indices.

5. Conclusions

2DFGPCB was analyzed for the behaviour of

bending, subjected to various conditions at the
boundary (SS, CC, CS, and CF). Considering these
conditions at the boundary with different aspect
ratios and gradient index in x and z directions.
An analysis of bending was performed with both
uniform and non-uniform porosity distributions
using the USDT. Implementing the power law,
the effective properties of 2DFGPCB were
determined. Several numerical = examples
demonstrated the - impact of boundary
conditions, porosity distribution, aspect ratios,
and the gradient index in bending analysis.
Dimensionless bending was examined, and the
computed results were compared to those from
previous studies. Results from the calculations
were found to correlate highly with those from
the past. It was investigated how the bending of
2DFGPCB is affected by aspect ratios, gradient
indexes, and boundary conditions. The following
are the most important results pertaining to
nonporous FGBs:

e Gradient indexes in x and z increase
transverse deflection. Which is explained by
material stiffness: increasing the gradient
index decreases the beam modulus of
elasticity.

e Mid-plane axial stress is zero, but these
values are not zero at the FGM beam mid-
plane for other values of the gradient index.
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Due to the modulus of elasticity variation
through the beam thickness, the neutral
plane moves toward the top of the FGM
beam.

e Conditions at the boundary affect beam
rigidity; the non-dimensional maximum
deflection with CF 2DFGPCB is higher than
with the other conditions at the boundary
(SS, CC, and CS)

e By choosing appropriate gradient indices, the
bending of 2DFGPCB may be regulated to
match the design requirements.

e Transverse deflection increases in all BCs as
the porosity index rises, and this effect is
more pronounced at high porosity values
(from 10% to 51% of the porosity rate across
all boundary conditions) due to a decrease in
the flexural rigidity of the FGB at high
porosity rates.

The present study provides aflexible and
expandable method for studying next-generation
FG structures thatfind use inhigh-performance
engineering applications. Theresearch should
focuson developing the formulation to include
thermaland dynamic loadingconditions. The
model's applicabilityin aerospace and high-
temperature structural systemswould increase
through the addition of temperature-dependent
material properties and time-dependent creep
effects. The model willbe tested through
finite element simulations ' andexperimental
validation  to- /verify predicted deflection
profiles and stress distributions and to evaluate
itsperformance under realisticloading and
support conditions.

Nomenclature

2DFGPCB 2 Directional Functionally Graded
Porous curved beam

cc Clamped-Clamped

CF Clamped-Free

FG Functionally Graded

FGB Functionally Graded Beam

FGM Functionally Graded Material

FGMP Functionally Graded Material Plates

FGMB Functionally Graded Material
Beams

USDT Unified Shear Deformation Theory

HOBT Higher Order Beam Theory

FGP Functionally Graded Plate

SDT Shear Deformation Theory

HSDT Higher Order Shear Deformation

Theory

SS Simply Supported

2D Two Dimensional

3D Three Dimensional

c Ceramic

E Modulus of elasticity [GPa]

f(z) Shear shape function

h Height [m]

K Shear correction factor

L Length [m]

m Metal

M, Resultant bending moment

M Resultant moment due to shear
deformation

N, Axial resultant force

p Gradient index

px Gradient index in the length
direction

P, Gradient index in the thickness
direction

q Transverse Load

Qy Resultant shear forces

X,V,Z Different coordinates along the

length, width, and thickness
directions of the beam

Iw, Bending slope

(I; Shear slope.

Vi Volume fraction

1! Poisson’s ratio

p Mass density [Kg/m?3]

a Porosity index

[Ski] Stiffness matrix

6U Variation of Strain Energy
oV Variation of work done
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