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 The present study investigates the bending characteristics of a two-dimensional functionally 
graded curved porous beam using unified shear deformation theory (USDT), incorporating 
shear functions and a modified power law. This approach integrates potential energy, the 
neutral surface concept, and equilibrium equations to enhance accuracy. Various boundary 
conditions, such as simply supported (SS), clamped-supported (CS), clamped-clamped (CC), 
and clamped-free (CF), are employed in the analysis. A metal-ceramic functionally graded 
beam with both even and uneven porosity is modelled. The symmetrical material gradation 
ensures that the physical neutral surface aligns with the geometrical neutral surface, which 
is considered in the formulation. A displacement-based formulation and energy principles 
are adopted, providing a more comprehensive and precise analysis of the beams. This 
method accounts for higher-order shear deformation effects, eliminates the need for shear 
correction factors, and effectively manages the continuous variation of material properties 
in FGMs. Consequently, it leads to improved predictions of structural behavior, making 
USDT particularly valuable for advanced material applications. The Hamilton method is 
employed to derive equilibrium equations for the beams, which are subsequently solved 
using the Kuhn-Tucker conditions. 
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1. Introduction 

Functionally Graded Materials (FGM) offer 
numerous benefits like enhanced stress 
distribution, high temperature tolerance, and 
strength, making them useful in various 
technical fields like aerospace, automotive, 
electrical, construction, and biomedical. 

Higher-order theory was used to examine the 
bending behavior of Functionally Graded (FG) 
curved Al/Al2O3 beams in elevation, considering 
shear deformation and thickness stretching 
effects, and examining sandwich beams with 

symmetric and asymmetric cores [1]. Lezgy-
Nazargah [2] adapted a global-local shear 
deformation theory for the behavior of Al/Al2O3 
thin and thick layered curved beams, 
considering depth and a locally refined shear 
stress function. Beg et al. [3] introduced a layer-
wise approach for analyzing static, free, and 
forced vibrations of circular Al/Al2O3curved 
beams with significant curvature, using the 
Hamiltonian technique for consistent dynamics 
and stress results. Sayyad and Avhad [4] 
analyzed the free vibration of curved sandwich 
beams in elevation using a fifth-order curved 
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beam theory, considering transverse shear and 
normal strains, and solving equations of motion 
using Navier's technique. Hadji et al. [5] 
examined the flexure and natural oscillation of 
Porous Functionally Graded Beams (PFG) 
supported by elastic foundations, focusing on 
their varying material features and foundation 
medium. Avcar et al. [6] explored the natural 
frequencies of P/IP-FGSBs, consisting of a 
porous core made of FGM with aluminum, 
alumina, and homogenous isotropic metal, and 
ceramic face sheets supported by elastic 
foundations. Sayyad et al. [7] examined the static 
deformation and free vibration of porous 
circular beams made of aluminum and alumina, 
considering both even and uneven porosities. 
The Navier-type closed-form solutions were 
derived from the higher-order hyperbolic 
circular beam theory to address transverse 
shear deformation and rotating inertia. Chami et 
al. [8] studied FGMs to enhance sandwich beam 
endurance and examined the impact of porosity 
on the fundamental natural frequencies of FG 
sandwich beams using advanced beam theory. 
Pham et al. [9] examined the hydro-thermal 
vibration of curved BDFGP beams supported by 
two-layer elastic foundations. Using GFEM, they 
analyzed the dynamic behavior of Winkler 
springs and shear springs, creating an enriched 
mathematical space. Ahmadi et al. [10] 
investigated the natural oscillation of a 2D-FG 
curved nano beam, functionally graded in two 
directions, using Hamilton's principle and first-
order shear deformation theory. The nonlocal 
elasticity hypothesis of Eringen accounts for the 
small-scale effect. Belarbi et al. [11] introduced 
an improved shear deformation beam theory for 
analyzing the bending characteristics of 
functionally graded sandwich curved beams, 
providing a parabolic variation in shear stress 
distribution along the thickness direction and 
eliminating shear correction components. 
Karamanli et al. [12] analyzed the flexural, free 
vibration, and buckling responses of 2D-FG 
curved beams using various shear deformation 
theories and a finite element model and 
compared the results to the literature [12]. 

Advancements in Shear Deformation 
Theories (SDTs) have recently allowed for 
thorough assessments of the mechanical 
behavior of Functionally Graded Beams (FGB), 
namely those made of aluminum and alumina, 
under different loading and boundary 
conditions. Hebbar et al. [13] used SDTs, namely 
two- and quasi-three-dimensional theories, to 
examine the behavior of FGB with aluminum and 
alumina Simply Supported (SS) beams under 
various circumstances, including vibration, 
buckling, and bending. In a situation with an SS-
FGB with aluminum and alumina and an evenly 

distributed load, Razouki et al. [14] established 
exact analytical solutions. Third-order shear 
deformation theory was used to formulate 
specific analytical formulas, which were then 
compared to both the conventional analytical 
formula and the currently available numerical 
data. Reddy et al. [15] investigated the bending 
response of 2D FGB using a shear strain shape 
function, examining the impact of gradient index, 
porosity volume fraction, and aspect ratios. 
Bridjesh et al. [16] studied the impact of aspect 
ratios, boundary conditions, and gradient 
indexes on the buckling responses of two 
directional FGB using polynomial forms and 
boundary conditions like SS, Clamped-clamped 
(CC), and Clamped-free (CF). The influence of 
porosity, boundary conditions, and gradient 
indexes on the buckling responses of 
functionally graded beams using a fifth-order 
shear deformation theory was investigated by 
Bridjesh et al. [17], and found that the boundary 
conditions play a significant role in the analysis 
of beams. In another study, Reddy et al. [18] 
examined the vibration behavior of a two-
directional functionally graded taper beam using 
Higher-order Shear Deformation Theory (HSDT), 
Lagrange equations, and admissible functions, 
providing a benchmark for beam theory 
assessment. 

Advancements in beam theory and 
computational approaches have greatly 
improved the design and analysis of micro- and 
nano-electromechanical systems, curved beams, 
and materials with varying properties in 
multiple directions. The Timoshenko beam 
theory was adapted to develop a computational 
approach for designing and optimizing device 
components in micro- and nano-
electromechanical systems by combining 
modified couple stress theory with an 
isogeometric analysis framework [19]. Pei et al. 
[20] discussed Navier's solution for curved 
beams with SS, but the case was mathematically 
indeterminate. The Timoshenko theory was 
used for governing differential equations. Wang 
et al. [21] introduced an extension of the 
quadrature element method to study the free 
vibration of 3D parallel pipes made of multi-
directional FGM, providing formulations for 
continuous variations in material characteristics. 

Recent studies have thoroughly investigated 
static bending, vibration, and buckling 
characteristics of functionally graded porous 
microplates and plates using modern plate 
theories and computational approaches. Using a 
third-order plate theory, Coskun et al. [22] 
examined static bending, free vibration, and 
buckling of FG porous microplates. The 
analytical solutions were derived through the 
application of Navier's technique. Kim et al. [23], 
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in their study, utilized classical and first-order 
shear deformation plate theories to analyze FG 
porous micro-plates made by aluminum and 
alumina buckling, vibration, and bending 
responses using the Navier solution technique 
and power-law distribution. Saad and Hadji [24] 
examined the thermal buckling analysis in 
porous, thick rectangular plates made of FGM 
using HSDT, considering material properties like 
Young's modulus and thermal expansion change 
in thickness direction. Hadji et al. [25] explored 
the influence of porosity distribution patterns on 
free vibration analysis in Functionally Graded 
Porous Plates (FGPP) under different boundary 
conditions, considering continuous material 
properties and porosities based on volume 
fraction. Madan et al. [26] explored the elastic 
limit of functionally graded porous rotating 
disks using a method that models their 
mechanical characteristics using four porosity 
models and Galerkin's error minimization 
theory. Yang et al. [27] presented a numerical 
investigation of the post-buckling behavior of 
multi-directional FGPPs with aluminum and 
alumina, combining NURBS-based IGA with FCM. 
Thai et al. [28] introduced a computational 
method for analyzing the bending and free 
vibration characteristics of Functionally Graded 
Plates (FGP) in three dimensions, considering 
heat conditions and using generalized heat 
transfer equations. 

Advanced theoretical and computational 
methods have been used to analyze the intricate 
behaviors of porous FG plates, with a focus on 
examining the plate's free vibration, bending, 
buckling, and thermal impacts. Chami et al. [29] 
examined free vibration on a sandwich plate 
with multi-directional porous FGM, using 
Hamilton's concept and Navier's approach. The 
plate was examined under two conditions, 
avoiding surface traction and using shear 
correction coefficients. Hadji et al. [30] 
examined the bending and buckling of a multi-
directional porous sandwich plate, considering 
two cases with FG skin and a homogeneous core, 
using Navier's approach to achieve a solution 
without shear correction factors. Adopting 
HSDT, Sidda Reddy et al. [31] developed a static 
analysis of FGP, demonstrating its accuracy and 
efficiency in predicting static responses. They 
developed analytical formulations for free 
vibration analysis of FGPs using HSDT, 
incorporating transverse extensibility, virtual 
work, and Navier's technique. The closed-form 
formulations of HSDT for analyzing FGP under 
thermo-mechanical load conditions confirm its 
exactness and consistency through numerical 
results [32, 33]. Sidda Reddy et al. [34] explored 
the flexural response of FGPs with porosities 
using an HSDT, demonstrating its accuracy and 

consistency through numerical results. Sidda 
Reddy et al. [35] presented a refined first-order 
shear deformation theory for studying the free 
vibration behavior of bidirectional functionally 
graded porous plates, evaluating its accuracy 
through numerical results and comparing it with 
other higher-order theories. Sidda Reddy et al. 
[36] optimized plate design by analyzing 
buckling in in-plane bidirectional functionally 
graded porous plates using higher-order theory, 
Lagrange equations, and Pascal's triangle. Sidda 
Reddy et al. [37] analyzed the bending of FGPs 
using a new shear strain shape function, 
revealing that the type of porosity distribution is 
crucial for the optimal design of porous 
FGPs.Sinusoidal beam theory was explored for 
the static behavior of FG sandwich curved 
beams,  considering transverse normal 
stress/strain. The beam consists of FG skins and 
an isotropic core. Material qualities are 
distributed throughout the thickness [38]. In 
their study, Karamanli and Vo [39] explored the 
free vibrations of curved zigzag nanobeams 
using sinusoidal beam theory and doublet 
mechanics formulation, developing a finite 
element doublet mechanics model and 
comparing results. 

Rezaiee-Pajand and Masoodi [40] conducted 
an extensive study of functionally graded 
tapering beam-columns, including second-order 
effects, coupling-extensional bending, and semi-
rigid connections using a generic stiffness matrix 
formulation. The suggested technique accurately 
assesses the stability and buckling behavior of 
2D frames, showcasing its efficacy and relevance 
via comparisons with established solutions. 

Rezaiee-Pajand et al. [41] developed a high-
performance curved beam element for 
geometrically nonlinear analysis of 
planar structures using mixed strain 
interpolation and finite rotation. The 
proposed element, incorporating FSDT 
and Green-Lagrange strain, effectively models 
tapered structures and demonstrates high 
accuracy with fewer elements. 

Ghandehari et al. [42] developed a model for 
a linked nanocomposite double beam system 
using carbon nanotubes, including temperature-
dependent material characteristics and diverse 
CNT distributions throughout the thickness.  
Employing first-order shear deformation theory 
and the GDQ technique, the fundamental 
frequencies are calculated to examine the 
influence of structural and thermal components 
on dynamic behavior. 

Mottaghi et al. [43] studied the 
vibrational behavior of CNT-reinforced curved 
composite beams using a multiscale FEM 
approach and evaluated the first 
natural frequency under various configurations. 
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A multilayer perceptron neural network, 
trained on FEM data, predicts the frequency with 
over 95% accuracy, demonstrating the 
model's reliability for dynamic analysis of 
composite structures. 

Masoodi et al. [44] examined the heat 
sensitivity of vibrational features in CNT-
reinforced coupled curved beams by using 
temperature-dependent material properties and 
first-order shear deformation theory.  A mesh-
free GDQ-based approach is used to calculate 
frequency responses, demonstrating the effects 
of curvature, boundary conditions, interfacial 
stiffness, and CNT dispersion on dynamic 
behavior. 

Ghandehari et al. [45] studied the 
dynamic response of tapered circular curved 
beams with honeycomb-shaped cross-sections 
using FSDT and GDQM, considering smart 
composite materials and structural 
parameters. The results show that the 
honeycomb geometry, CNT content, 
and boundary spring stiffness have a 
significant effect on natural frequencies, which 
indicates the improved vibrational 
performance of smart composites. 

Ghandehari and Masoodi [46] investigated 
the thermal vibration characteristics of linked 
porous curved beams constructed from diverse 
materials, including PMMA/SWCNT composites 
and steel foam, using the First-Order Shear 
Deformation Theory (FSDT) and the Generalized 
Differential Quadrature (GDQ) technique.  
Results indicate that system frequencies are 
markedly affected by porosity, material 
distribution, boundary conditions, and 
temperature, with increased porosity and 
temperature leading to a reduction in 
vibrational frequencies. 

A comprehensive literature review on the 
proposed research topic has been conducted and 
presented. Studies on structural analysis in the 
field of FG curved beam/straight beam /plate 
subjected to transverse loading are abundant in 
the literature. In most cases, the material 
properties of the beam vary continuously in the 
direction of thickness according to a power law. 
In a significant number of the reviewed works, 
geometric nonlinearity and the resulting large 
displacement are discussed. In certain instances, 
non-uniform geometry is considered in static 
and dynamic analysis. There are also works on 
Euler-Bernoulli beam theory available in the 
literature. Infrequently, nonlinear analysis is 
cited. In some instances, non-uniform geometry 
is also considered. 

This study introduces a novel approach by 
employing the Kuhn-Tucker (KT) condition 
solution method for bending analysis in FG 
porous structures, aiming to enhance existing 

methodologies and uncover the relationship 
between material classification and porosity 
distribution, potentially revealing unique 
phenomena. The research focuses on the flexural 
characteristics of curved beams with Two-
directional Functionally Graded Porous Beam 
(2DFGPCB) using Unified Shear Deformation 
Theory (USDT) to develop a comprehensive 
mathematical model, accounts for deflections 
and conducts a detailed bending analysis. The 
innovative methodology will be validated 
through a comparative analysis with established 
numerical methods. 

2. Mathematical Formulation 

According to HSDT, a beam is conceptualized 
as a slender structural component that exhibits 
shear and bending properties. The beam is 
considered to have a curved geometry with 
spatially varying material properties along its 
radial and axial directions, as characterized by a 
bi-directional functional gradation. Warping 
effects, which involve the twisting of the cross-
section, are not considered. Instead, it is 
assumed that the cross-sections, which were 
initially flat, remain flat following deformation. 
The assumption is made that the material 
properties remain consistent along the entire 
length of the beam, which allows for easier 
computations and analytical solutions. The 
current study used the coordinate system 
depicted in Fig. 1 for a 2DFGPCB. Both length 
and thickness dimensions exhibit continuous 
variation in the material properties. The 
thickness-dependent variation of ceramic and 
metallic phases symbolizes the FG curved beam. 
At z = -h/2, the lower section of the beam is 
constructed of metal, whereas at z = +h/2, the 
upper segment is composed of ceramic. 

 
Fig. 1. Beam characterized by functional grading and varying 

porosity 

2.1. Material Homogenization 

The fabrication of FGB is influenced by the 
volumetric composition of the constituent 
materials. A functional and structural 
relationship between the thickness and 
properties of the material is to be anticipated. 



 

5 

The power law distribution in x and z, 
represented as (Vf1), provides an accurate 
representation of the volume fraction of a single 
constituent, as illustrated in Eqs. (1) and (2) 
[12]. 

𝑉𝑓1(𝑥, 𝑧) = (
𝑧

ℎ
+

1

2
)

𝑃𝑧

(
𝑥

𝐿
+

1

2
)

𝑃𝑥

 (1) 

𝑉𝑓1(𝑥, 𝑧) + 𝑉𝑓2(𝑥, 𝑧) = 1 (2) 

Within this framework, the gradient indices 
Px and Pz denote the volume fraction's behavior 
along the entire length and thickness of the 
beam, respectively. Fig. 2 shows the variation of 
the volume fraction (Vf1) through a non-
dimensional axial coordinate (x/L) along the 
length (L) of the beam and a non-dimensional 
transverse coordinate (z/h) across the thickness 
of the beam. The functional properties of 
material P(x,z) consisting of uniformly 
distributed 2DFGPCB can be represented by Eq. 
(3) [15]. 

Fig. 2. Metal volume fractions in the direction of the non-
dimensional axial coordinate and the non-dimensional 

transverse coordinate 

𝑃(𝑥, 𝑧) = (𝑃𝑐 − 𝑃𝑚) (
𝑧

ℎ
+

1

2
)

𝑃𝑧
(

𝑥

𝐿
+

1

2
)

𝑃𝑥
+ 𝑃𝑚 −

𝛼

2
(𝑃𝑐 + 𝑃𝑚)           (3) 

The symbol ‘α’ represents the porosity index, 
which is a value between 0 and 0.3. The variable 
‘m’ indicates the presence of metal, while ‘c’ 
indicates the presence of ceramic. Modulus of 
elasticity (E) is used to evaluate material rigidity 
and moment of inertia in an evenly distributed 
2DFGPCB, and it may be mathematically 
represented as shown in Eq. (4) [16]. 

𝐸(𝑥, 𝑧) = (𝐸𝑐 − 𝐸𝑚) (
𝑥

𝐿
+

1

2
)

𝑃𝑥
(

𝑧

ℎ
+

1

2
)

𝑃𝑧
+ 𝐸𝑚 −

𝛼

2
(𝐸𝑐 + 𝐸𝑚)           (4) 

There is a little difference when utilizing 
Poisson's ratio compared to other attributes, 
which is considered unaffected because 

computations are performed using the mean 
value. Similarly, Eq. (5) [17] can be used to 
derive the impact characteristics of a distributed 
but even 2DFGPCB component. 

𝑃(𝑥, 𝑧) = (𝑃𝑐 − 𝑃𝑚) (
𝑧

ℎ
+

1

2
)

𝑃𝑧
(

𝑥

𝐿
+

1

2
)

𝑃𝑥
+ 𝑃𝑚 −

𝛼

2
(𝑃𝑐 + 𝑃𝑚) (1 −

2|𝑧|

ℎ
)          (5) 

The modulus of elasticity for unevenly 
distributed2DFGPCB can be approximated using 
Eq. (6) [18]. 

𝐸(𝑥, 𝑧) = (𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+

1

2
)

𝑃𝑧
(

𝑥

𝐿
+

1

2
)

𝑃𝑥
+ 𝐸𝑚 −

𝛼

2
(𝐸𝑐 + 𝐸𝑚) (1 −

2|𝑧|

ℎ
)          (6) 

FGP and FGB are crucial for static and 
dynamic structures, reducing manufacturing 
costs. Classic beam and plate theories often 
overestimate structural deflections, critical 
loads, and natural frequencies. Shear 
deformation and FGB theories enhance forecast 
precision. The 2DFGPCB Cartesian coordinate 
system, thickness, and porosity impact 
deformations and displacements. Constitutive 
equations determine the displacement field. 

𝑈(𝑥, 𝑧) = (1 +
𝑧

𝑅
) 𝑢0(𝑥, 𝑡) − 𝑧

𝜕𝑤0

𝜕𝑥
(𝑥, 𝑡) +

𝑓(𝑧) (∅(𝑥, 𝑡) +
𝜕𝑤0

𝜕𝑥
(𝑥, 𝑡))         (7) 

𝑊(𝑥, 𝑧) = 𝑤0(𝑥, 𝑡) (8) 

Axial displacement is represented by 𝑈(𝑥, 𝑧), 
whereas transverse displacement is represented 
by 𝑊(𝑥, 𝑧). At each certain location on the 
neutral axis, u0 represents the axial 
displacement and w0 represents the transverse 
displacement. The bending slope is represented 
by the partial derivative (∂w0)/∂x, while ∅ 
represents the shear slope. Use the shape 
function f(z) to figure out the transverse shear 
displacement, and Eqs. (7) and (8) can be used 
to find the mathematical equations that 
represent the non-zero stresses. 

𝜀𝑥 =
𝜕𝑈

𝜕𝑥
+

𝑊

𝑅
= (1 +

𝑧

𝑅
)

𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤0

𝜕𝑥2 +

𝑓(𝑧) (
𝜕∅

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2 ) +
𝑊0

𝑅
          (9) 

𝜀𝑧 =
𝜕𝑊

𝜕𝑍
= 0  (10) 

𝛾𝑥𝑧 =
𝜕𝑈

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
−

𝑢0

𝑅
 (11) 

𝛾𝑥𝑧 = 𝑓′𝑧 [∅ +
𝜕𝑤0

𝜕𝑥
] −

𝑢0

𝑅
 (12) 

𝑓(𝑧) = 𝑧 [
1

ℎ
− 𝑐𝑜𝑠

𝜋

3ℎ
] (13) 
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Through the utilization of Eqs. (9) and (11) in 
conjunction with Hooke's Law, the subsequent 
field equations can be formulated to represent 
stress: 

 

𝜎𝑥 = 𝐸(𝑥)𝜀𝑥 (14) 

𝜏𝑥𝑧 =
𝐸(𝑥)

2(1 + 𝜇)
𝛾𝑥𝑧 (15) 

2.2. Constitutive Equilibrium Equations 

Hamilton's principle is a crucial topic in the 
field of bending analysis. The derivation of the 
essential equations of elasticity and dynamics is 
as described in reference [11]. 

𝐵 = ∫(𝛿𝑈 + 𝛿𝑉)

𝑡2

t1

𝑑𝑡 = 0 (16) 

t1 and t2 represent time intervals. δU and δV 
represent variations in the potential energy of 
the strain, as well as the amount of work 
performed. The shift in strain energy that 
happens in a 2DFGPCB can be characterized. 

𝛿𝑈 =  
1

2
∫ ∫ (𝜎𝑥𝜀𝑥  + 𝜏𝑥𝑧𝛾𝑥𝑧)𝑑𝑧𝑑𝑥             

+
ℎ

2

−
ℎ

2

𝐿

0

 (17) 

𝛿𝑉 = −∫ 𝑞𝛿𝑤0 𝑑𝑥  
𝐿

0

 (18) 

Substituting equations. (9), (11), (14), and (15) 
into equation (16), strain energy could be 
deduced as, 

𝐵 = ∫ ∫ (𝜎𝑥𝜀𝑥  + 𝜏𝑥𝑧𝛾𝑥𝑧)𝑑𝑧𝑑𝑥
+

ℎ

2

−
ℎ

2

𝐿

0

− ∫ 𝑞𝛿𝑤0 𝑑𝑥 
𝐿

0

 

                                                                                      (19) 

=∫ ∫ (𝜎𝑥 (
𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤0

𝜕𝑥2 + 𝑓(𝑧) (
𝜕∅

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2 ) +
+

ℎ

2

−
ℎ

2

𝐿

0

𝑊0

𝑅
) + 𝜏𝑥𝑧 (𝑓′𝑧 [∅ +

𝜕𝑤0

𝜕𝑥
] −

𝑢0

𝑅
))𝑑𝑧𝑑𝑥 −

∫ 𝑞𝛿𝑤0 𝑑𝑥                                          
𝐿

0
      (20) 

=∫ ∫((𝑁𝑥
𝜕𝑢0

𝜕𝑥
− 𝑀𝑥

𝑏 𝜕2𝑤0

𝜕𝑥2 + 𝑀𝑥
𝑠 (

𝜕∅

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2 ) +
𝐿

0

𝑊0

𝑅
) + (𝑄𝑥 [∅ +

𝜕𝑤0

𝜕𝑥
] −

𝑢0

𝑅
))𝑑𝑧𝑑𝑥 −

∫ 𝑞𝛿𝑤0 𝑑𝑥                                          
𝐿

0
      (21) 

where Mx and Qx values for shear force and 
bending moment, respectively. Px and Rx 
represent the resultants of higher-order 
stresses. 

𝑁𝑥 = ∫ 𝜎𝑥𝑑𝑍
+

ℎ

2

−
ℎ

2

 (22) 

𝑀𝑥
𝑏 = ∫ 𝜎𝑥𝑧𝑑𝑍

+
ℎ

2

−
ℎ

2

 (23) 

𝑀𝑥
𝑠 = ∫ 𝜎𝑥𝑓(𝑧)𝑑𝑍

+
ℎ

2

−
ℎ

2

 (24) 

𝑄𝑥 = ∫ 𝜏𝑥𝑧𝑓′(𝑧)𝑑𝑍
+

ℎ

2

−
ℎ

2

 (25) 

2.3. Kuhn-Tucker Solution 

The present study expands the use of KT 
conditions beyond traditional optimization to 
limited variational mechanics. The bending 
study of functionally graded porous beams with 
bi-directional grading and spatial porosity 
distributions reveals inhomogeneous stiffness 
and compliance properties. These variations 
inherently lead to inequality constraints, such as 
limits on deflections, stress concentrations, or 
local stiffness ratios that must remain physically 
permissible (e.g., non-tensile stress in metallic 
phases or porosity-induced compliance not 
surpassing structural thresholds). 

The classical static beam formulation seeks 
to minimize the total potential energy functional, 
constituting an optimization issue.  Nonetheless, 
the incorporation of porosity and gradient-
index-dependent material inhomogeneity 
introduces limitations that conventional energy 
minimization fails to explicitly address.  
Consequently, KT criteria are used to represent 
these concealed inequality limitations, including: 

• Ensuring positive definiteness of stiffness as 
porosity increases (i.e., modulus never 
becomes negative), 

• Enforcing physical feasibility by preventing 
non-admissible deflection/stress states in 
graded porous regions, 

• Capturing boundary-limited behaviors like 
non-slippage or support constraints when 
ceramic-rich zones meet boundary walls. 

The optimization variables include the strain 
energy functional (via displacement fields 𝑢0, 
𝑤0, 𝜙), while the constraints pertain to gradient 
index limitations, porosity thresholds, and 
displacement compatibility at borders. The KT 
framework facilitates the integration of these 
physical constraints into the equilibrium 
formulation using Lagrange multipliers, 
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ensuring that all permissible requirements are 
met without the need for slack variables. 

This aligns with recent research using KT-
based variational formulations in FG structures 
for buckling Kannaiyan et al., [47] and vibration 
issues [48], whereby material heterogeneity and 
partial contact situations engender analogous 
constraint-driven behaviors. This research 
expands upon the existing framework to address 
the static deflection issue, showing its usefulness 
in modeling mechanically limited solutions 
inside multi-graded porous systems. 

If the function f0(x) achieves a local minimum 
at point x^0, subject to the set K=x/(fi(x))≤0 
(where i=1,2,3,….,m)), and fk(x) (where 
k=0,1,2,….., m) are all differentiable, then there 
exists a vector of Lagrange multiplier U0 that 

satisfies the following conditions [49]. 

𝜕𝑓0(𝑥0)

𝜕𝑥𝑗
+ ∑ 𝑈𝑖

0 𝜕𝑓0(𝑥0)

𝜕𝑥𝑗
= 0𝑚

𝑖=1  (𝑗 = 1, 2, 3, …… , 𝑛)  

                                                                                   (26) 

𝑓𝑖(𝑥
0) ≤ 0 (𝑖 = 1, 2, 3, … .𝑚) 

𝑢𝑖
0𝑓𝑖(𝑥

0) = 0 (𝑖 = 1, 2, 3, … . ,𝑚) 

𝑢𝑖
0  ≥ 0 (𝑖 = 1, 2, 3, … .𝑚) 

The conditions that are essential for a local 
minimum in optimization problems are referred 
to as the KT condition, while the non-negativity 
condition U0 ≤ 0 is crucial for maximization 
problems, as presented in Fig. 3. 

𝐿(𝑥, 𝑦, 𝑢) =  𝑓0(𝑥) + ∑ 𝑢𝑖(𝑓𝑖(𝑥) + 𝑦𝑖
2)

𝑚

𝑖=1

 
  

(27) 

The necessary condition for its local 
minimum is 

𝜕𝐿

𝜕𝑥𝑗

= 
𝜕𝑓0(𝑥

0)

𝜕𝑥𝑗

+ ∑𝑢𝑖
0
𝜕[𝑓𝑖(𝑥

0) + (𝑦𝑖
0)2]

𝜕𝑥𝑗

𝑚

𝑖=1

= 0 

    (28) 

𝜕𝐿

𝜕𝑦𝑖

= 2𝑢𝑖
0𝑦𝑖

0 = 0  (𝑗 = 1, 2, 3,… . 𝑛) (29) 

𝜕𝐿

𝜕𝑢𝑖

= 𝑓𝑖(𝑥
0) + (𝑦𝑖

0)2 = 0  (𝑖 = 1, 2, 3, … 𝑚) (30) 

𝜕𝑓0[𝑥
0(𝑏)]

𝜕𝑏𝑖

= −𝑢𝑖
0  (𝑖 = 1, 2, 3, … .𝑚) (31) 

 

 

 

 

 

 

 

 

 

Fig. 3. Kuhn-Tucker condition [48] 

Without slack variables, the mathematical 
problem, 

𝐿(𝑥, 𝑢) = 𝑓0(𝑥) + ∑ 𝑢𝑖𝑓𝑖(𝑥)
𝑚

𝑖=1
 (32) 

The KT condition can be rewritten as [43], 

𝜕𝐿(𝑥0, 𝑢0)

𝜕𝑥𝑗

= 0   (𝑗 = 1, 2, 3, … . . 𝑛) (33) 

𝜕𝐿(𝑥0, 𝑢0)

𝜕𝑢𝑖

≤ 0   (𝑖 = 1, 2, 3, … . .𝑚) (34) 

𝑢𝑖
0
𝜕𝐿(𝑥0, 𝑢0)

𝜕𝑢𝑖

= 0   (𝑖 = 1, 2, 3, … . .𝑚) (35) 

𝑢𝑖
0 ≥ 0 (𝑖 = 1, 2, 3, …𝑚) (36) 

When ui is positive, it indicates that the 
corresponding ith constraint is binding, 
indicating a boundary solution. The function 
u0(x, y), w0(x, y), and ∪0(x, y) can be 
mathematically represented as Lagrange 
equations when they are expressed as 
generalized coordinates. The KT condition, 
specified by the table values, can be expressed as 
follows. 

 

𝑢0(𝑥, 𝑦) = ∑𝑓𝑖(𝑥
0)𝜃𝑖𝑒

𝑖𝜆𝑦

𝑚

𝑖=1

 (37) 

𝑤0(𝑥, 𝑦) = ∑𝑓𝑖(𝑥
0)𝜑𝑖𝑒

𝑖𝜆𝑦

𝑚

𝑖=1

 (38) 

∅0(𝑥, 𝑦) = ∑ 𝑓𝑖(𝑥
0)𝜓𝑖𝑒

𝑖𝜆𝑦

𝑚

𝑖=1

 (39) 

where, 𝜃𝑖 , 𝜑𝑖 , and 𝜓𝑖are the three different 
boundary conditions and 𝜆 is the scalar. KT 
conditions are utilized for mathematical 
calculations as stated in Table 1. 
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[
 
 
 
 
𝑆11

𝑆21

𝑆31

𝑆12

𝑆22

𝑆32

𝑆13

𝑆23

𝑆33]
 
 
 
 

[
 
 
 
 
𝑢0

𝑤0

∅0]
 
 
 
 

   =    

[
 
 
 
 
0

𝑞

0]
 
 
 
 

 (40) 

𝑆11(𝑖, 𝑗) =
𝐸(𝑥, 𝑧)

1 − 𝜇2
∫ 𝑒𝜆𝑥(𝑥+1)

𝐿

0

𝜃𝑖,𝑥 , 𝜃𝑗,𝑥𝑑𝑥 (41) 

𝑆12(𝑖, 𝑗) =
𝐸(𝑥, 𝑧)

1 − 𝜇2
∫ 𝑒𝜆𝑥(𝑥+1)

𝐿

0

𝜃𝑖,𝑥 , 𝜑𝑗,𝑥𝑑𝑥 (42) 

𝑆13(𝑖, 𝑗) =
𝐸(𝑥, 𝑧)

1 − 𝜇2
∫ 𝑒𝜆(𝑥+1)

𝐿

0

𝜃𝑖,𝑥 , 𝜓𝑖,𝑥𝑑𝑥 (43) 

𝑆22(𝑖, 𝑗) =
𝐸(𝑥, 𝑧)

1 − 𝜇2
∫ 𝑒𝜆𝑥(𝑥+1)

𝐿

0

𝜑𝑖,𝑥𝑥 , 𝜑𝑗,𝑥𝑥𝑑𝑥 (44) 

𝑆23(𝑖, 𝑗) =
𝐸(𝑥, 𝑧)

1 − 𝜇2
∫ 𝑒𝜆𝑥(𝑥+1)

𝐿

0

𝜑𝑖,𝑥𝑥 , 𝜓𝑗,𝑥𝑥𝑑𝑥 (45) 

𝑆33(𝑖, 𝑗) =
𝐸(𝑥, 𝑧)

1 − 𝜇2
∫ 𝑒𝜆𝑥(𝑥+1)

𝐿

0

𝜓𝑖,𝑥𝑥𝜓𝑗,𝑥𝑥𝑑𝑥 (46) 

where, 𝑖, 𝑗 = 1, 2, 3, … …𝑛 

3. Application- Result and Discussion 

The numerical investigations based on USDT 
are carried out to predict the static analysis of 
FG porous beam with various conditions at the 
boundary like SS and CC as shown in Table 1. 

Numerical findings are derived based on 
Navier's solutions. The FG porous beam consists 
of Aluminum metal with a modulus of elasticity 
(Em) of 70 GPa, a Poisson's ratio (μm) of 0.3, and 
a density (ρm) of 2702 kg/m^3. It also includes 
Alumina ceramic with a modulus (Ec) of 380 
GPa, a Poisson's ratio (μc) of 0.3, and a density 
(ρc) of 3960 kg/m^3. According to the power-
law distribution, the properties of 2DFGPCB are 
changing in both the thickness and length 
directions. 

Table 1. Boundary conditions based on the KT conditions 
solution method 

Boundary 
Condition 

𝑥 = 0 𝑥 = 𝐿 

SS 𝑢 = 0, 𝑤 = 0 𝑤 = 0 

CC 𝑢 = 0, 𝑤 = 0,  
∅ = 0, 𝑤′ = 0 

𝑢 = 0, 𝑤 = 0, ∅ = 0, 
𝑤′ = 0 

CS u = 0, ∅ = 0, w = 0, 
w′ = 0  

u = 0, w = 0 

CF 𝑢 = 0,𝑤 = 0,
∅ = 0,  

-- 

For the representation of results, the following 
dimensionless forms are used. Transverse 
displacement (w), 

𝑤 =
𝑤100𝐸𝑚ℎ3

𝑞0𝐿
4

 (47) 

  

Table 2. Evaluation of dimensionless transverse deflection 𝑤 values of SS 2DFGPCB using different theories at different aspect 
ratios (L/h=5, L/h=20) and gradient index. 

Method Theory εz P=0 P=1 P=2 P=5 P=10 

L/h=5, R/L= 5 

[12] Q3D =0 3.1619 6.3264 8.1795 9.9816 11.0796 

[12] FSDT =0 3.1437 6.2839 8.0803 9.6852 10.7148 

Present USDT =0 3.1598 6.3163 8.1609 9.9786 11.0684 

L/h=20, R/L= 5 

[12] Q3D =0 2.9672 5.9599 7.6597 9.1351 10.0549 

[12] FSDT =0 2.9623 5.9507 7.6380 9.0648 9.9663 

Present USDT =0 2.9664 5.9574 7.6579 9.1337 10.0478 
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Table 3. The dimensionless transverse deflection 𝑤 values of a SS 2DFGPCB with both even and uneven porosity, an aspect ratio of 
L/h=5, and gradient index are being considered. 

Px & 
Pz 

L/h=5           Even porosity Px & 
Pz 

L/h=5          Uneven porosity 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 3.1598 3.4131 3.7029 4.0464 0 3.1598 3.2297 3.2967 3.3667 

1 7.38280 7.9595 8.6353 9.4364 1 7.3828 7.5318 7.6880 7.8513 

2 10.0844 10.8721 11.7952 12.8894 2 10.0844 10.2879 10.5013 10.7243 

5 13.6706 14.7384 15.9899 17.4732 5 13.6706 13.9465 14.2358 14.5381 

10 16.0113 17.2620 18.7277 20.4650 10 16.0113 16.3344 16.6733 17.0273 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)         (b) 

Fig.4. The dimensionless transverse deflection 𝑤 values of a SS 2DFGPCB with (a) even and (b) unequal porosity, at aspect ratio of 

L/h=5, and gradient index. 

Table 4. Evaluation of dimensionless transverse deflection 𝑤 values of CC 2DFGPCB using different theories for different aspect 
ratios (L/h=5, L/h=20) and gradient index. 

Method Theory εz P=0 P=1 P=2 P=5 P=10 

L/h=5, R/L= 5 

[12] Q3D =0 0.4496 0.8591 1.1253 1.4788 1.6953 

[12] HOBT =0 0.4437 0.8472 1.1090 1.4602 1.6761 

Present HSDT =0 0.4458 0.8549 1.1162 1.4489 1.6901 

L/h=20, R/L= 5 

[12] Q3D =0 0.2511 0.4834 0.6224 0.7736 0.8732 

[12] HOBT =0 0.2527 0.4863 0.6263 0.7785 0.8787 

Present HSDT =0 0.2496 0.4752 0.6119 0.7689 0.8701 
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Table 5. The dimensionless transverse deflection 𝑤 values of CC 2DFGPCB with both uniform and uneven porosity, an aspect ratio 
of L/h=5, and gradient index are considered. 

Px & Pz L/h=5       Porosity index (Even distribution)  Px & 
Pz 

L/h=5 Porosity index (Uneven distribution) 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 0.4458 0.5111 0.5876 0.6782 0 0.4458 0.4641 0.4836 0.5043 

1 1.4982 1.6419 1.8145 2.0189 1 1.4946 1.5826 1.6266 1.6727 

 2 2.1644 2.3686 2.6077 2.8910 2 2.2211 2.2783 2.3393 2.4040 

5 3.1418 3.4224 3.7511 4.1404 5 3.1985 3.2771 3.3609 3.4499 

10 3.5831 3.8982 4.2674 4.7046 10 3.6398 3.7281 3.8222 3.9221 

 

(a)                                                                                                                             (b) 

Fig. 5. The dimensionless transverse deflections w values of CC 2DFGPCB with both (a) even and (b) uneven porosity, an aspect ratio 
of L/h=5, and gradient index

Table 6. Evaluation of dimensionless transverse deflection 𝑤 values of CS 2DFGPCB using different theories for different aspect 
ratios (L/h=5, L/h=20) and gradient index. 

Method Theory εz P=0 P=1 P=2 P=5 P=10 

L/h=5, R/L= 5 

[12] Q3D =0 0.7974 1.5573 2.0279 2.5811 2.9180 

[12] HOBT =0 0.8057 1.5716 2.0469 2.6008 2.9376 

Present HSDT =0 0.7913 1.5512 2.0236 2.5791 2.9119 

L/h=20, R/L= 5 

[12] Q3D =0 0.6365 1.2762 1.6381 1.9489 2.1444 

[12] HOBT =0 0.6389 1.2810 1.6446 1.9567 2.1526 

Present HSDT =0 0.6313 1.2707 1.6325 1.9436 2.1382 
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Table 7. Dimensionless transverse deflections 𝑤 values of CS 2DFGPCB with uneven and even porosity, aspect ratio (L/h=5), and 
gradient index. 

Px & Pz L/h=5     Porosity index (Even distribution) Px & Pz L/h=5 Porosity index (Uneven distribution) 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 0.7913 0.9046 1.0374 1.1948 0 0.7913 0.8635 0.9438 1.0335 

1 2.5962 2.8509 3.1491 3.5024 1 2.5962 2.7587 2.9389 3.1403 

2 3.7803 4.1276 4.5343 5.0161 2 3.7803 4.0019 4.2477 4.5224 

5 5.3233 5.7913 6.3394 6.9887 5 5.3233 5.6221 5.9534 6.3235 

10 6.1657 6.6997 7.3249 8.2656 10 6.1659 6.5066 6.8846 7.3067 

 

 

 

 
 

(a)                                                                                                         (b) 

Fig. 6. Dimensionless Transverse deflections 𝑤̅ values of CS 2DFGPCB with (a) even (b) uneven porosity, aspect ratio (L/h=5), and 
gradient index. 

Table 8. Evaluation of dimensionless transverse deflection 𝑤 values of CF 2DFGPCB using different theories for different aspect 
ratios (L/h=5, L/h=20) and gradient index. 

Method Theory εz P=0 P=1 P=2 P=5 P=10 

L/h=5, R/L= 5 

[12] Q3D =0 5.6999 11.3650 14.6559 17.7827 19.7180 

[12] HOBT =0 5.7439 11.4787 14.8198 17.9847 19.9221 

Present HSDT =0 5.6873 11.3586 14.6472 17.7786 19.6982 

L/h=20, R/L= 5 

[12] Q3D =0 5.3760 10.7879 13.8567 16.4993 18.1554 

[12] HOBT =0 5.4083 10.8630 13.9586 16.6249 18.2859 

Present HSDT =0 5.3683 10.7797 13.8481 16.4876 18.1489 
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Table 9. Dimensionless transverse deflections 𝑤 values of CF 2DFGPCB with uneven and even porosity, aspect ratio (L/h=5), and 
gradient index. 

Px & 
Pz 

Porosity index (Even distribution) Px & 
Pz 

Porosity index (Uneven distribution) 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 5.6873 7.8109 10.2951 13.2402 0 5.6873 6.3269 7.0421 7.7717 

1 36.7957 41.3538 46.6860 53.0076 1 36.7957 38.1684 39.6326 41.1987 

2 60.0257 66.4018 73.8622 82.7037 2 60.0257 61.9460 63.9940 66.1849 

5 81.9994 90.0952 99.5658 110.7938 5 81.9994 84.4022 87.0387 89.8204 

10 97.8456 107.1816 118.1029 131.0508 10 97.8456 100.6573 103.6562 106.8640 

 
 

  

(a)                                                                                                                        (b) 

Fig. 7. Dimensionless Transverse deflections 𝑤̅ values of CF 2DFGPCB porous beam with (a) even (b) uneven porosity, aspect 
ratio (L/h=5), and gradient index.

4. Discussion 

Analyzed 2-directional 2DFGPCB with porous 
material under UDL at various conditions at the 
boundary (SS, CC, CS, and CF), aspect ratios 
(L/h=5 & 20), and gradient index (Px = Pz=0, 1, 2, 
5, and 10) and porosity index (α= 0, 0.1, 0.2, and 
0.3) for finding dimensionless transverse 
deflections. Numerical values of transverse 
deflection are shown in Tables 2, 4, 6, and 8. The 
modulus of elasticity of a beam decreases as the 
value of its gradient index increases; hence, the 
transverse deflection increases as the gradient 
index increases in the x and z directions. In other 
words, its dimensionless transverse deflection 
values increase as the value of the power law 
exponent increases. Because a change in the 
conditions of the boundary indicates a change in 
the stiffness of the beam, the values of the non-
dimensional maximum deflection for the CF FGM 
beam are larger than those for the remaining 
boundary conditions (SS, CC, and CS) [36]. 

Tables 2, 4, 6, and 8 show the decrease in 
dimensionless transverse deflections, which is 
explained by the influence of the length of the 

beam, i.e., aspect ratio increases, which means 
the length is increased, leading to a decrease in 
dimensionless transverse deflections. It shows 
that as beams are scaled down in size, their 
bending stiffness improves since there is less 
material to bend. Transverse deflection values as 
a function of porosity index are tabulated in 
Tables 3, 5, 7, and 9. Since the flexural rigidity of 
the FG beam decreases with increasing porosity, 
transverse deflection increases in all boundary 
conditions as the porosity index rises (Figs. 4, 5, 
6, and 7) [25]. 

The transverse deflection values of SS beams 
with uniform porosity experience a substantial 
increase as the porosity index rises. At a 
gradient index of 0, the deflection increases from 
3.1598 to 4.0464 as the porosity index 
increases from 0 to 0.3, resulting in a 28.07% 
increase. At higher gradient indices, the 
following percentages are observed: 27.83% for 
Px & Pz = 1, 27.85% for Px & Pz = 2, 27.85% for Px 
& Pz = 5, and 27.86% for Px & Pz = 10. 
Conversely, beams that have unequal porosity 
show a less significant rise in transverse 
deflection values as the porosity index increases 
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[35]. With a gradient index of 0, the deflection 
rises from 3.1598 to 3.3667, indicating a 6.55% 
growth as the porosity index climbs from 0 to 
0.3. The percentage increases for additional 
gradient indices are as follows: 6.34% for Px & Pz 
= 1, 6.35% for Px & Pz = 2, 6.35% for Px & Pz = 5, 
and 6.35% for Px & Pz = 10. 

The transverse deflection values of CC beams 
with uniform porosity exhibit a substantial 
increase as the porosity index rises. At a 
gradient index of 0, the deflection increases from 
0.4458 to 0.6782 as the porosity index goes from 
0 to 0.3, resulting in a 52.16% increase. Higher 
gradient indices exhibit similar patterns: 
34.75% for Px & Pz = 1, 33.52% for Px & Pz = 2, 
31.82% for Px & Pz = 5, and 31.32% for Px & Pz = 
10. Conversely, beams that have unequal 
porosity show a less significant rise in 
transverse deflection values as the porosity 
index increases [26]. At a gradient index of 0, the 
deflection increases from 0.4458 to 0.5043, 
indicating a 13.12% increment as the porosity 
index rises from 0 to 0.3. The percentage 
increases for various gradient indices are as 
follows: 11.92% for Px & Pz = 1, 8.23% for Px & Pz 
= 2, 7.85% for Px & Pz = 5, and 7.75% for Px & Pz 

= 10. The transverse deflection is much higher 
for uniform porosity than for uneven porosity 
across all gradient indices. When the porosity is 
uniform, the deflection increases by around 31-
52%. However, when the porosity is uneven, the 
increase ranges from approximately 8-13% 
across the investigated gradient indices. 

The transverse deflection values of CS beams 
with uniform porosity experience a substantial 
increase as the porosity index rises. At a 
gradient index of 0, the deflection increases from 
0.7913 to 1.1948 as the porosity index goes from 
0 to 0.3, resulting in a 51.00% increase. Higher 
gradient indices exhibit comparable trends: 
32.58% for Px & Pz = 1, 32.79% for Px & Pz = 2, 
31.27% for Px & Pz = 5, and 34.06% for Px & Pz = 
10. Conversely, beams that have unequal 
porosity show a less significant rise in 
transverse deflection values as the porosity 
index increases. With a gradient index of 0, the 
deflection increases from 0.7913 to 1.0335, 
indicating a 30.59% growth as the porosity 
index rises from 0 to 0.3. The percentage 
increases for various gradient indices are as 
follows: 20.94% for Px & Pz = 1, 19.64% for Px & 
Pz = 2, 18.82% for Px & Pz = 5, and 18.47% for Px 
& Pz = 10. The transverse deflection is much 
higher for uniform porosity than for uneven 
porosity across all gradient indices [37]. When 
the porosity is uniform, the deflection increases 
by around 31-51%. However, when the porosity 
is uneven, the increase in deflection ranges from 
approximately 18-31% across the investigated 
gradient indices. 

The transverse deflection values of CF beams 
with uniform porosity experience a substantial 
increase as the porosity index rises. With a 
gradient index of 0, the deflection rises from 
5.6873 to 13.2402 as the porosity index climbs 
from 0 to 0.3, resulting in a 132.78% increase. At 
higher gradient indices, the following 
percentages are observed: 44.11% for Px & Pz = 
1, 37.66% for Px & Pz = 2, 35.07% for Px & Pz = 5, 
and 33.84% for Px & Pz = 10. Conversely, beams 
that have unequal porosity show a less 
significant rise in transverse deflection values as 
the porosity index increases. At a gradient index 
of 0, the deflection increases from 5.6873 to 
7.7717, indicating a 36.63% increase when the 
porosity index rises from 0 to 0.3. The 
percentage increases for various gradient 
indices are as follows: 11.97% for Px & Pz = 1, 
10.27% for Px & Pz = 2, 9.53% for Px & Pz = 5, and 
9.22% for Px & Pz = 10. The transverse deflection 
for a uniform porosity distribution exhibits 
much greater percentage increases across all 
gradient indices compared to the non-uniform 
porosity distribution. When the porosity is 
uniform, the deflection increases by around 33-
133%. However, when the porosity is uneven, 
the increase varies from approximately 9-37% 
across the investigated gradient indices. 

5. Conclusions 

2DFGPCB was analyzed for the behaviour of 
bending, subjected to various conditions at the 
boundary (SS, CC, CS, and CF). Considering these 
conditions at the boundary with different aspect 
ratios and gradient index in x and z directions. 
An analysis of bending was performed with both 
uniform and non-uniform porosity distributions 
using the USDT. Implementing the power law, 
the effective properties of 2DFGPCB were 
determined. Several numerical examples 
demonstrated the impact of boundary 
conditions, porosity distribution, aspect ratios, 
and the gradient index in bending analysis. 
Dimensionless bending was examined, and the 
computed results were compared to those from 
previous studies. Results from the calculations 
were found to correlate highly with those from 
the past. It was investigated how the bending of 
2DFGPCB is affected by aspect ratios, gradient 
indexes, and boundary conditions. The following 
are the most important results pertaining to 
nonporous FGBs: 
• Gradient indexes in x and z increase 

transverse deflection. Which is explained by 
material stiffness: increasing the gradient 
index decreases the beam modulus of 
elasticity. 

• Mid-plane axial stress is zero, but these 
values are not zero at the FGM beam mid-
plane for other values of the gradient index. 
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Due to the modulus of elasticity variation 
through the beam thickness, the neutral 
plane moves toward the top of the FGM 
beam. 

• Conditions at the boundary affect beam 
rigidity; the non-dimensional maximum 
deflection with CF 2DFGPCB is higher than 
with the other conditions at the boundary 
(SS, CC, and CS) 

• By choosing appropriate gradient indices, the 
bending of 2DFGPCB may be regulated to 
match the design requirements. 

• Transverse deflection increases in all BCs as 
the porosity index rises, and this effect is 
more pronounced at high porosity values 
(from 10% to 51% of the porosity rate across 
all boundary conditions) due to a decrease in 
the flexural rigidity of the FGB at high 
porosity rates. 

The present study provides a flexible and 

expandable method for studying next-generation 

FG structures that find use in high-performance 

engineering applications. The research should 

focus on developing the formulation to include 

thermal and dynamic loading conditions. The 

model's applicability in aerospace and high-

temperature structural systems would increase 

through the addition of temperature-dependent 

material properties and time-dependent creep 

effects. The model will be tested through 

finite element simulations and experimental 

validation to verify predicted deflection 

profiles and stress distributions and to evaluate 

its performance under realistic loading and 

support conditions. 

Nomenclature 

2DFGPCB 2 Directional Functionally Graded 
Porous curved beam 

CC Clamped-Clamped 

CF Clamped-Free 

FG Functionally Graded 

FGB Functionally Graded Beam 

FGM Functionally Graded Material 

FGMP Functionally Graded Material Plates 

FGMB Functionally Graded Material 
Beams 
 
 

USDT Unified Shear Deformation Theory 

HOBT Higher Order Beam Theory 

FGP Functionally Graded Plate 

SDT Shear Deformation Theory 

HSDT Higher Order Shear Deformation 
Theory 

SS Simply Supported  

2D Two Dimensional 

3D Three Dimensional 

c Ceramic 

E Modulus of elasticity [GPa] 

f(z) Shear shape function 

h Height [m] 

K Shear correction factor 

L Length [m] 

m Metal 

𝑀𝑏 Resultant bending moment 

𝑀𝑠 Resultant moment due to shear 
deformation 

𝑁𝑥  Axial resultant force 

p Gradient index 

px Gradient index in the length 
direction 
 
 

Pz Gradient index in the thickness 
direction 

q Transverse Load 

𝑄𝑥𝑧  Resultant shear forces 

x, y, z Different coordinates along the 
length, width, and thickness 
directions of the beam 
 
 

𝜕𝑤0

𝜕𝑥
 

Bending slope 
 ϕ Shear slope. 

Vf Volume fraction 

μ Poisson’s ratio 

ρ Mass density [Kg/m3] 

α Porosity index 

[Ski] Stiffness matrix 

δU Variation of Strain Energy 

δV Variation of work done 
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