| تعداد نشریات | 21 |
| تعداد شمارهها | 675 |
| تعداد مقالات | 9,814 |
| تعداد مشاهده مقاله | 69,672,874 |
| تعداد دریافت فایل اصل مقاله | 49,025,761 |
A comparison between the ARIMA model and neural networks average death in Iraq for the period (1980-2028) | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 06 آذر 1404 اصل مقاله (641.57 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2023.29599.4202 | ||
| نویسندگان | ||
| Ashraf Mohamed Shareef* 1؛ Sarmad Jaafar Naser1؛ Ahmad M. Hashim2 | ||
| 1Faculty of Nursing, National University of Science and Technology, Thi-Qar, Iraq | ||
| 2Mazaya University College, Nasiriyah, Iraq | ||
| تاریخ دریافت: 23 دی 1401، تاریخ پذیرش: 22 بهمن 1401 | ||
| چکیده | ||
| In this research, the (Box-Jenkins) methodology and artificial neural networks in predicting theoretical and practical levels were identified and clarified by constructing time series models and artificial networks to predict the mortality rate of Iraq and the data represented by the mortality rate for the time period (1980-2028). It was obtained from the Central Statistical Organization where the data were analyzed using time series according to the Box-Jenkins method and artificial neural networks using the program (Eviws.v9, SPSS, Zaitun.TS) and the most important conclusions and recommendations were reached, the most important of which proved the time series model using residues and values The ARMA model has its advantage over the neural network model for predicting Iraqi mortality. So we recommend using this form. | ||
| کلیدواژهها | ||
| ARIMA model؛ neural networks؛ death in Iraq | ||
| مراجع | ||
|
[1] K.K.S. Al-Satori and B.M.A. Al-Hiti, Using ARIMA models to predict the money supply for Qatar, Anbar Univ. J. Econ. Administrat. Sci. 35 (2010), 58–83. [2] M. Hajji, International trade in technology, J. Econ. 5 (1975), no. 57. [3] H.B.A.-A. Mazouzi and A. Al-Mu’tar, Prediction of the use of artificial neural networks, Doctoral diss. Ahmed Deraya-Adrar University, 2018. [4] S.M.A. Mustafa, Using ARIMA models and artificial neural networks in predicting the Egyptian stock exchange index EGX30, J. Financ. Commercial Res. 18 (2017), no. 1, 392–416. [5] S.A.-K. Tumo, Using time series download for predicting people with malignant diseases in Anbar governorate, Anbar Univ. J. Econ. Sci. (2012), no. 8. | ||
|
آمار تعداد مشاهده مقاله: 12 تعداد دریافت فایل اصل مقاله: 14 |
||