| تعداد نشریات | 21 |
| تعداد شمارهها | 675 |
| تعداد مقالات | 9,814 |
| تعداد مشاهده مقاله | 69,672,874 |
| تعداد دریافت فایل اصل مقاله | 49,025,761 |
Regression-Prediction Model for Low-subcooled Film Boiling on a Vertical Flat Plate | ||
| Journal of Heat and Mass Transfer Research | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 08 آذر 1404 | ||
| نوع مقاله: Full Length Research Article | ||
| شناسه دیجیتال (DOI): 10.22075/jhmtr.2025.38906.1823 | ||
| نویسندگان | ||
| Dipak Chandra Das* 1؛ Aman Kumar Singh2؛ Prakhar Verma2؛ Debleena Roy2؛ Dhruba Bhattacharya2؛ Bidyut Baran Saha3 | ||
| 1Mechanical Engineering Department, National Institute of Technology Agartala | ||
| 2National Institute of Technology Agartala | ||
| 32International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395, Japan | ||
| تاریخ دریافت: 11 شهریور 1404، تاریخ بازنگری: 05 آبان 1404، تاریخ پذیرش: 08 آذر 1404 | ||
| چکیده | ||
| This study presents a prediction model for a vertical flat plate under conditions of high wall superheat and low water subcooling in mixed-convection film boiling, utilizing Linear, AdaBoost, Random Forest, and Gradient Boosting regression models integrated with machine learning approaches. The analysis of saturated and low subcooled film boiling has been conducted from heat and mass transmission perspectives and relevant vaporization criteria using heat ratio. Predictions for the Nusselt number have been formulated for several flow configurations, encompassing wall superheat ranging from 260 to 1200°C, liquid subcooling from 0 to 10°C, and flow velocities from 0 to 2.65 m/s. The Gradient-boosting regression model precisely predicted Nu across diverse flow conditions with an error margin of less than ±1%, indicating as an effective instrument for predicting the thermal performance of high wall superheat, low water subcooling mixed-convection film boiling, outperforming the predictive abilities of Linear, AdaBoost, and Random Forest regression models when compared with experimental data. | ||
| کلیدواژهها | ||
| gradient-boosting regression؛ high wall superheat؛ low water subcooling؛ mixed convection film boiling | ||
|
آمار تعداد مشاهده مقاله: 19 |
||