| تعداد نشریات | 21 |
| تعداد شمارهها | 675 |
| تعداد مقالات | 9,814 |
| تعداد مشاهده مقاله | 69,672,877 |
| تعداد دریافت فایل اصل مقاله | 49,025,771 |
Thermal Analysis of Coil-Crucible Configurations in Czochralski Growth of BGO Crystals | ||
| Progress in Physics of Applied Materials | ||
| دوره 6، شماره 2 - شماره پیاپی 11، بهمن 2026، صفحه 127-135 اصل مقاله (799.22 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22075/ppam.2025.38367.1157 | ||
| نویسندگان | ||
| Hossein Khodamoradi؛ M.H. Tavakoli* | ||
| Physics Department, Bu-Ali Sina University, Hamedan 65174, I.R. Iran | ||
| تاریخ دریافت: 01 مرداد 1404، تاریخ بازنگری: 16 آبان 1404، تاریخ پذیرش: 26 آبان 1404 | ||
| چکیده | ||
| This study presents a detailed numerical investigation into the influence of coil-crucible configurations on electromagnetic heating, thermal transport, and stress development during the Czochralski (Cz) growth of bismuth germanate (BGO) crystals. A two-dimensional steady-state finite element model is developed to simulate the coupled behavior of electromagnetic fields, fluid flow, heat conduction, and thermoelastic deformation in both the melt and solid domains. Three distinct coil-crucible arrangements are analyzed to evaluate their effects on the temperature field, melt convection patterns, and the morphology of the crystal-melt interface. The results reveal that strategic modifications in geometry can significantly enhance temperature uniformity while mitigating the magnitude and localization of thermally induced stress within the growing crystal-factors that are critical for reducing defect formation such as dislocations and cracks. Additionally, the study compares two thermal stress estimation approaches, providing a detailed assessment of the resulting stress fields. Validation against available experimental data and literature benchmarks confirms the reliability of the model and underscores the pivotal role of thermal system design in improving crystal quality. These insights provide a practical framework for optimizing coil-crucible configurations to achieve higher-quality oxide crystals in industrial Czochralski growth systems. | ||
| کلیدواژهها | ||
| Czochralski method؛ Bismuth germanate (BGO)؛ Induction heating؛ Thermal stress؛ Crystal-melt interface | ||
| مراجع | ||
|
[1] Kolesnikov, A.V., Galenin, E.P., Sidletskiy, O.T. and Kalaev, V.V., 2014. Optimization of heating conditions during Cz BGO crystal growth. Journal of crystal growth, 407, pp.42-47.
[2] Burachas, S.F., Timan, B.L., Kolotii, О.D., Bondar, V.G., Krivoshein, B.I. and Pirogov, Е.N., 1997. 5DGLDO LQVWDELOLW\RI ELVPXWK JHUPDQDWH FU\VWDO JURZWK SURFHVV E\&] RFKUDOVNL PHWKRG. Functional materials, 2(4), p.305.
[3] Voszka, R., Gévay, G., Földvári, I. and Keszthelyi-Lándori, S., 1982. Growth and characterization of Bi4Ge3O12 single crystals. Acta Physica Academiae Scientiarum Hungaricae, 53(1), pp.7-13.
[4] Omid, S. and Tavakoli, M.H., 2018. Effect of the ceramic tube shape on global heat transfer, thermal stress and crystallization front in low thermal gradient (LTG) Czochralski growth of scintillating BGO crystal. Materials Research Express, 5(10), p.105507.
[5] Tavakoli, M.H., Ojaghi, A., Mohammadi-Manesh, E. and Mansour, M., 2009. Influence of coil geometry on the induction heating process in crystal growth systems. Journal of crystal growth, 311(6), pp.1594-1599.
[6] Tavakoli, M.H., Mohammadi-Manesh, E. and Ojaghi, A., 2009. Influence of crucible geometry and position on the induction heating process in crystal growth systems. Journal of crystal growth, 311(17), pp.4281-4288.
[7] Khodamoradi, H., Tavakoli, M.H. and Mohammadi, K., 2015. Influence of crucible and coil geometry on the induction heating process in Czochralski crystal growth system. Journal of Crystal Growth, 421, pp.66-74.
[8] Hadidchi, S. and Tavakoli, M.H., 2023. Influence of Temperature Dependence of Electrical Conductivity of Graphite Crucible in Czochralski Crystal Growth: A Numerical Analysis. Progress in Physics of Applied Materials, 3(2), pp.131-139.
[9] Honarmandnia, M., Tavakoli, M.H. and Sadeghi, H., 2016. Global simulation of an RF Czochralski furnace during different stages of germanium single crystal growth. CrystEngComm, 18(21), pp.3942-3948.
[10] Mazaev, K., Kalaev, V., Galenin, E., Tkachenko, S. and Sidletskiy, O., 2009. Heat transfer and convection in Czochralski growth of large BGO Crystals. Journal of crystal growth, 311(15), pp.3933-3937.
[11] Takagi, K. and Fukazawa, T., 1986. Effect of growth conditions on the shape of Bi4Ge3O12 single crystals and on melt flow patterns. Journal of crystal growth, 76(2), pp.328-338.
[12] Honarmandnia, M., Tavakoli, M.H. and Sadeghi, H., 2017. Global simulation of an RF Czochralski furnace during different stages of germanium single crystal growth, part II: to investigate the effect of the crucible's relative position against the RF coil on the isotherms, flow fields and thermo-elastic stresses. CrystEngComm, 19(3), pp.576-583.
[13] S. Hadidchi and M. H. Tavakoli, "Impact of Fixed and Moving Crucible on the Ge Crystal Growth Process Numerical Analysis in an Inductively Czochralski Furnace ," CrystEngComm, vol. 27, p. 1986–1996, 2025.
[14] Evstratov, I.Y., Rukolaine, S., Yuferev, V.S., Vasiliev, M.G., Fogelson, A.B., Mamedov, V.M., Shlegel, V.N., Vasiliev, Y.V. and Makarov, Y.N., 2002. Global analysis of heat transfer in growing BGO crystals (Bi4Ge3O12) by low-gradient Czochralski method. Journal of crystal growth, 235(1-4), pp.371-376.
[15] Yuferev, V.S., Budenkova, O.N., Vasiliev, M.G., Rukolaine, S.A., Shlegel, V.N., Vasiliev, Y.V. and Zhmakin, A.I., 2003. Variations of solid–liquid interface in the BGO low thermal gradients Cz growth for diffuse and specular crystal side surface. Journal of crystal growth, 253(1-4), pp.383-397.
[16] Golyshev, V.D. and Gonik, M.A., 2004. Heat transfer in growing Bi4Ge3O12 crystals under weak convection: II—radiative–conductive heat transfer. Journal of crystal growth, 262(1-4), pp.212-224.
[17] Budenkova, O.N., Vasiliev, M.G., Shlegel, V.N., Ivannikova, N.V., Bragin, R.I. and Kalaev, V.V., 2005. Comparative analysis of the heat transfer processes during growth of Bi12GeO20 and Bi4Ge3O12 crystals by the low-thermal-gradient Czochralski technique. Crystallography reports, 50(Suppl 1), pp.S100-S105.
[18] Vasiliev, M.G., Mamedov, V.M., Rukolaine, S.A. and Yuferev, V.S., 2009. Heat source optimization in a multisection heater for the growth of bismuth germanate crystals by the low-gradient Czochralski method. Bulletin of the Russian Academy of Sciences: Physics, 73(10), pp.1406-1409.
[19] Mamedov, V.M. and Yuferev, V.S., 2009. Time-dependent model of the growth of oxide crystals from melt by the Czochralski method. Bulletin of the Russian Academy of Sciences: Physics, 73(10), pp.1402-1405.
[20] Li, Y.R., Zhang, L., Zhang, L. and Yu, J.J., 2018. Experimental study on Prandtl number dependence of thermocapillary-buoyancy convection in Czochralski configuration with different depths. International Journal of Thermal Sciences, 130, pp.168-182.
[21] B. K. P. V. a. D. M. Dhanaraj G, Springer Handbook of Crystal Growth, Berlin: Springer, 2010.
[22] Tavakoli, M.H. and Karbaschi, H., 2021. Numerical study of influences of the input current frequency on the induction heating process. Progress in Physics of Applied Materials, 1(1), pp.44-49.
[23] Guo, Z., Maruyama, S. and Tsukada, T., 1997. Radiative heat transfer in curved specular surfaces in Czochralski crystal growth furnace. Numerical Heat Transfer, Part A Applications, 32(6), pp.595-611.
[24] Tsukada, T., Kakinoki, K., Hozawa, M., Imaishi, N., Shimamura, K. and Fukuda, T., 1997. Numerical and experimental studies on crack formation in LiNbO3 single crystal. Journal of Crystal Growth, 180(3-4), pp.543-550.
[25] Miyazaki, N., Uchida, H., Tsukada, T. and Fukuda, T., 1996. Quantitative assessment for cracking in oxide bulk single crystals during Czochralski growth: development of a computer program for thermal stress analysis. Journal of crystal growth, 162(1-2), pp.83-88.
[26] Kobayashi, M., Tsukada, T. and Hozawa, M., 2002. Effect of internal radiation on thermal stress fields in CZ oxide crystals. Journal of crystal growth, 241(1-2), pp.241-248.
[27] Indenbom, V.L., 1979. Ein Beitrag zur Entstehung von Spannungen und Versetzungen beim Kristallwachstum. Crystal Research and Technology, 14(5), pp.493-507.
[28] Ofengeim, D.K. and Zhmakin, A.I., 2003, June. Industrial challenges for numerical simulation of crystal growth. In International Conference on Computational Science (pp. 3-12). Berlin, Heidelberg: Springer Berlin Heidelberg.
[29] Available: http://mumps.enseeiht.fr/.
[30] Kobayashi, N., 1981. Hydrodynamics in Czochralski growth-computer analysis and experiments. Journal of Crystal Growth, 52, pp.425-434.
[31] Tavakoli, M.H., Omid, S. and Mohammadi-Manesh, E., 2011. Influence of active afterheater on the fluid dynamics and heat transfer during Czochralski growth of oxide single crystals. CrystEngComm, 13(16), pp.5088-5093.
[32] Stelian, C., Sen, G. and Duffar, T., 2018. Comparison of thermal stress computations in Czochralski and Kyropoulos growth of sapphire crystals. Journal of Crystal Growth, 499, pp.77-84.
[33] Banerjee, J. and Muralidhar, K., 2006. Role of internal radiation during Czochralski growth of YAG and Nd: YAG crystals. International journal of thermal sciences, 45(2), pp.151-167.
[34] Taieb, K., Belkhir, N., Khennab, A., Rogers, E., Giusca, C. and Bizarri, G., 2025. High-precision machining behavior of the single crystal scintillator, bismuth germanate (Bi4Ge5O12). Materials Today Communications, p.112620. | ||
|
آمار تعداد مشاهده مقاله: 10 تعداد دریافت فایل اصل مقاله: 12 |
||