| تعداد نشریات | 21 |
| تعداد شمارهها | 677 |
| تعداد مقالات | 9,877 |
| تعداد مشاهده مقاله | 70,025,607 |
| تعداد دریافت فایل اصل مقاله | 49,301,137 |
Multiple solutions for a class of second order differential equations with nonlinear derivative dependence | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 16 آذر 1404 اصل مقاله (389.31 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.35770.5317 | ||
| نویسندگان | ||
| Ahmad Ghobadi1؛ Shapour Heidarkhani* 2؛ Mohammad Abolghasemi1 | ||
| 1Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran | ||
| 2Department of Mathematics, Faculty of sciences, Razi University, 67149 Kermanshah, Iran | ||
| تاریخ دریافت: 09 آبان 1403، تاریخ بازنگری: 24 آبان 1403، تاریخ پذیرش: 16 آذر 1403 | ||
| چکیده | ||
| In this paper, using variational methods and critical point theory, we prove the existence of multiple solutions for a class of second order differential equations with nonlinear derivative dependence involving a positive parameter. Some recent results are extended and improved. Some examples are presented to demonstrate the application of our main results. | ||
| کلیدواژهها | ||
| Dirichlet problem؛ Nonlinear derivative dependence؛ Variational methods | ||
| مراجع | ||
|
[1] G.A. Afrouzi and S. Heidarkhani, Three solutions for a quasilinear boundary value problem, Nonlinear Anal. TMA 69 (2008), 3330-3336. [2] D. Averna and G. Bonanno, Three solutions for quasilinear two-point boundary value problem involving the one-dimensional p-Laplacian, Proc. Edinb. Math. Soc. 47 (2004), 257-270. [3] G. Caristi, S. Heidarkhani, A. Salari, and S.A. Tersian, Multiple solutions for degenerate nonlocal problems, Appl. Math. Lett. 84 (2018), 26-33. [4] N.T. Chung and H.Q. Toan, Multiple solutions for a class of degenerate nonlocal problems involving sublinear nonlinearities, Matematiche (Catania) 69 (2014), 171-182. [5] C. Cowan and A. Razani, Singular solutions of a -Laplace equation involving the gradient, J. Differential Equations 269 (2020), 3914-3942. [6] G. D'Agui, S. Heidarkhani, and A. Sciammetta, Infinitely many solutions for a class of quasilinear two-point boundary value systems, Electron. J. Qual. Theory Differ. Equ. 8 (2015), 1-15. [7] J.R. Graef, S. Heidarkhani, and L. Kong, A critical points approach for the existence of multiple solutions of a Dirichlet quasilinear system, J. Math. Anal. Appl. 388 (2012), 1268-1278. [8] S. Heidarkhani, M. Ferrara, G.A. Afrouzi, G. Caristi, and S. Moradi, Existence of solutions for Dirichlet quasilinear systems including a nonlinear function of the derivative, Electronic J. Differ. Equ. 56 (2016), 1-12. [9] S. Heidarkhani and J. Henderson, Multiple solutions for a Dirichlet quasilinear system containing a parameter, Georgian Math. J. 21 (2014), 187-197. [10] S. Heidarkhani, J. Henderson, and A. Solimaninia, Existence results for a class of second order differential equations with nonlinear derivative dependence, J. Nonlinear Funct. Anal. 2018 (2018), Article ID 24, 1-18. [11] S. Heidarkhani and D. Motreanu, Multiplicity results for a two-point boundary value problem, Panamer. Math. J. 19 (2009), 69-78. [12] R. Livrea, Existence of three solutions for a quasilinear two point boundary value problem, Arch. Math. (Basel) 79 (2002), 288-298. [13] J. Mawhin, Some boundary value problems for Hartman-type perturbations of the ordinary vector p-Laplacian, Nonlinear Anal. TMA 40 (2000), 497-503. [14] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, Berlin, 1989. [15] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in: CBMS Regional Conf. Ser. Math., vol., 65, The American Mathematical Society, Providence, RI, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986. [16] M.A. Ragusa, A. Razani, and F. Safari, Existence of radial solutions for a -Laplacian Dirichlet problem, Adv. Difference Equations 2021 (2021), 215. [17] T. Soltani and A. Razani, Weak solutions for elliptic problems in weighted anisotropic Sobolev space, Filomat 37 (2023) 28, 9729-9740. [18] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. III. Springer, Berlin, 1985. [19] D. Zhang, Multiple solutions of nonlinear impulsive differential equations with Dirichlet boundary conditions via variational method, Results Math. 63 (2013), 611-628. [20] D. Zhang and B. Dai, Infinitely many solutions for a class of nonlinear impulsive differential equations with periodic boundary conditions, Comput. Math. Appl. 61 (2011), 3153-3160. | ||
|
آمار تعداد مشاهده مقاله: 38 تعداد دریافت فایل اصل مقاله: 70 |
||