| تعداد نشریات | 21 |
| تعداد شمارهها | 676 |
| تعداد مقالات | 9,854 |
| تعداد مشاهده مقاله | 69,947,428 |
| تعداد دریافت فایل اصل مقاله | 49,248,994 |
Influence of Semi-Rigid Connection Placement on the Static Stability of Steel Frames | ||
| Journal of Rehabilitation in Civil Engineering | ||
| دوره 14، شماره 3 - شماره پیاپی 43، آبان 2026 اصل مقاله (690.7 K) | ||
| نوع مقاله: Regular Paper | ||
| شناسه دیجیتال (DOI): 10.22075/jrce.2025.2393 | ||
| نویسنده | ||
| Hai Quang Nguyen* | ||
| Lecturer, Faculty of Mechanical-Automotive and Civil Engineering, Electric Power University, Ha Noi, VietNam | ||
| تاریخ دریافت: 31 تیر 1404، تاریخ بازنگری: 18 شهریور 1404، تاریخ پذیرش: 30 آبان 1404 | ||
| چکیده | ||
| In contemporary steel frame construction, semi-rigid joints are increasingly recognized for their ability to balance internal forces and limit stress concentrations. Most existing studies primarily focus on joints at beam–column intersections, while practical construction often introduces additional joints at mid-span when members are segmented and assembled on site. This research applies a finite element approach with geometric nonlinearity (P–Δ effect) to examine how the location of semi-rigid joints affects the static stability of planar steel frames. Both conventional end-joint configurations and alternative mid-span layouts are analyzed. The model, verified against benchmark results, is then used to explore variations in buckling load, deformation patterns, and moment distribution. The findings show that relocating joints to mid-span can enhance the critical load capacity by more than 230% in certain cases, emphasizing the structural significance of connection positioning. Based on these insights, practical recommendations are proposed for prefabricated steel structures with non-traditional connection arrangements. | ||
تازه های تحقیق | ||
| ||
| کلیدواژهها | ||
| nonlinear modeling؛ P–Delta effect؛ finite element method؛ SAP2000؛ Richard–Abbott model | ||
| مراجع | ||
|
[1] Zhao H, Liu X-G, Tao M-X. Component-based model of semi-rigid connections for nonlinear analysis of composite structures. Eng Struct 2022;266:114542. https://doi.org/10.1016/j.engstruct.2022.114542.
[2] Chan SL, Chui PPT. Non linear static and cyclic analysis of steel frames with semi rigid connections. Amsterdam: Elsevier; 2000.
[3] Kılıç M, Sagiroglu M, Maali M, Cüneyt A. Experimental and numerical investigation of semi-rigid behavior top and seat T-Section connections with different triangular designed stiffener thicknesses. Eng Struct 2023;289:116216. https://doi.org/10.1016/j.engstruct.2023.116216.
[4] Lu S, Wang Z, Pan J, Wang P. The Seismic Performance Analysis of Semi-rigid Spatial Steel Frames Based on Moment-Rotation Curves of End-plate Connection. Structures 2022;36:1032–49. https://doi.org/10.1016/j.istruc.2021.12.064.
[5] Fathizadeh SF, Dehghani S, Yang TY, Vosoughi AR, Noroozinejad Farsangi E, Hajirasouliha I. Seismic performance assessment of multi-story steel frames with curved dampers and semi-rigid connections. J Constr Steel Res 2021;182:106666. https://doi.org/10.1016/j.jcsr.2021.106666.
[6] Masoumi A, Preciado A. Experimental and analytical investigations of enhanced semi-rigid connections with dual pipe dampers. Structures 2021;33:3765–78. https://doi.org/10.1016/j.istruc.2021.06.106.
[7] Zhai X, Zha X, Wang K, Wang K, Wang H. Shake table tests of a full-scale two-story plate-type modular composite building with semi-rigid corner connections. Eng Struct 2023;289:116325. https://doi.org/10.1016/j.engstruct.2023.116325.
[8] Pirchio D, Pozo JD, Walsh KQ. Adhered web-lapped semi-rigid pultruded FRP beam-to-column framing connections: Part 1 – Experimental study. Compos Part B Eng 2025;292:112059. https://doi.org/10.1016/j.compositesb.2024.112059.
[9] Vu QA, Dung BT Le, Nguyen HQ. Shape Functions Development for Beam-Column Element with Semi-Rigid Connections in Second-Order Steel Frame Analysis. Civ Eng J 2025;11:369–92. https://doi.org/10.28991/CEJ-2025-011-01-021.
[10] Wang Q, Su M. Stability study on sway modular steel structures with semi-rigid connections. Thin-Walled Struct 2021;161:107529. https://doi.org/10.1016/j.tws.2021.107529.
[11] Vu QA, Nguyen HQ, Lê, Bao DLT. FEM-based prediction of elastic critical loads in steel frames with nonlinear semi-rigid connections. J Mater Constr 2025;15:38–44. https://doi.org/10.54772/jomc.v15i01.960.
[12] Ibrahimov K, Sabbagh AB, Jafarifar N, Davidson P. Experiments on cyclic behaviour of reusable side plate cold-formed steel semi-rigid moment-resisting connections. Eng Struct 2025;341:120797. https://doi.org/10.1016/j.engstruct.2025.120797.
[13] Zhai X, Zha X, Wang K, Wang H. Initial lateral stiffness of plate-type modular steel frame structure with semi-rigid corner connections. Structures 2023;56:105021. https://doi.org/10.1016/j.istruc.2023.105021.
[14] Wang X, Lu G, Liu Y, Chen Z, An Q, Wang X. Lateral stiffness of modular steel joint with semi-rigid bolted intra-module connection. J Build Eng 2024;97:110668. https://doi.org/10.1016/j.jobe.2024.110668.
[15] Du B, Jiang W, He Z, Qi Z, Zhang C. Development of a modified low-cycle fatigue model for semi-rigid connections in precast concrete frames. J Build Eng 2022;50:104232. https://doi.org/10.1016/j.jobe.2022.104232.
[16] Wu Z, Lu X, Bao H, Li L, Lu Z. Experimental response of semi-rigid reinforced concrete beam-column joints with bolted angle dissipating connections. J Build Eng 2024;90:109345. https://doi.org/10.1016/j.jobe.2024.109345.
[17] Moghaddam H, Sadrara A. Improving the mechanical characteristics of semi-rigid saddle connections. J Constr Steel Res 2021;186:106917. https://doi.org/10.1016/j.jcsr.2021.106917.
[18] Lee S, Lee J, Seo B, Kim D, Kim D, Jo Y. Stiffness evaluation of semi-rigid connection using steel clamps in plastic greenhouse structure. Biosyst Eng 2025;250:15–27. https://doi.org/10.1016/j.biosystemseng.2024.11.018.
[19] Kim S, Choi S. Practical advanced analysis for semi-rigid space frames. Int J Solids Struct 2001;38:9111–31. https://doi.org/10.1016/S0020-7683(01)00104-X.
[20] Bhatti HJD. Effects of connection stiffness and plasticity on the service load behavior of unbraced steel frames. Eng J 1995;32:21–33.
[21] Dhillon BS, O’Malley III JW. Interactive design of semirigid steel frames. J Struct Eng 1999;125:556–64.
[22] C. Y. Abolmaali. Nonlinear moment reversal behavior in steel frames. Korean Sci J 2004;5:3–15. | ||
|
آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 2 |
||