| تعداد نشریات | 21 |
| تعداد شمارهها | 687 |
| تعداد مقالات | 9,985 |
| تعداد مشاهده مقاله | 70,957,913 |
| تعداد دریافت فایل اصل مقاله | 62,422,911 |
Geodesic exponentially preinvex functions on Riemannian manifolds | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 29 آذر 1404 اصل مقاله (372.36 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.34735.5193 | ||
| نویسنده | ||
| Najeeb Abdulaleem* 1، 2 | ||
| 1Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, S loneczna 54, Olsztyn 10-710, Poland | ||
| 2Department of Mathematics, Mahrah University, Al-Mahrah, Yemen | ||
| تاریخ دریافت: 23 تیر 1403، تاریخ بازنگری: 11 مهر 1403، تاریخ پذیرش: 01 دی 1403 | ||
| چکیده | ||
| In this paper, new concepts of geodesic exponentially preinvex and invex functions on Riemannian manifolds are introduced. Additionally, some properties of these functions are investigated. The class of generalized geodesic exponentially preinvex and invex functions is presented. Optimality results are then proved for an optimization problem involving geodesic exponentially invex functions. | ||
| کلیدواژهها | ||
| Riemannian manifold؛ geodesic invex set؛ geodesic preinvex function؛ geodesic invex function؛ geodesic generalized invex function؛ epigraph | ||
| مراجع | ||
|
[1] N. Abdulaleem, E-optimality conditions for E-differentiable E-invex multiobjective programming problems, WSEAS Trans. Math. 18 (2019), 14-27. [2] N. Abdulaleem, E-B-invexity in E-differentiable mathematical programming, Results Control Optim. 4 (2021), 100046. [3] N. Abdulaleem, V-E-invexity in E-differentiable multiobjective programming, Numer. Algebra Control Optim. 12 (2022), no. 2, 427-444. [4] N. Abdulaleem, Optimality conditions in a class of generalized convex optimization problems with the multiple interval-valued objective function, Syst. Soft Comput. 5 (2023), 200056. [5] N. Abdulaleem, E-univex sets, E-univex functions and E-differentiable E-univex programming, Results Math. 78 (2023), no. 1, 3. [6] I. Ahmad, M.A. Khan, and A.A. Ishan, Generalized geodesic convexity on Riemannian manifolds, Mathematics 7 (2019), no. 6, 547. [7] A. Barani and M.R. Pouryayevali, Invex sets and preinvex functions on Riemannian manifolds, J. Math. Anal. Appl. 328 (2007), 767-779. [8] M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), no. 2, 545-550. [9] A. Iqbal and I. Ahmad, Strong geodesic convex functions of order m, Numer. Funct. Anal. Optim. 40 (2019), no. 15, 1840-1846. [10] A. Iqbal, C.K. Mondal, and A.A. Shaikh, A note on pλ-convex sets in a complete Riemannian manifold, Bull. Transilv. Univ. Brasov Ser. III 11 (2018), no. 60, 119-124. [11] V. Jeyakumar and B. Mond, On generalised convex mathematical programming, ANZIAM J. 34 (1992), 43-53. [12] J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin, 2011. [13] A. Kilicman and W. Saleh, On geodesic strongly E-convex sets and geodesic strongly E-convex functions, J. Inequal. Appl. 2015 (2015), no. 1, 1-10. [14] B. Kumari and A. Jayswal, Some properties of geodesic E-preinvex function and geodesic semi E-preinvex function on Riemannian manifolds, Opsearch 55 (2018), no. 3, 807-822. [15] S. Mititelu, Generalized invexity and vector optimization on differentiable manifolds, Diff. Geom. Dyn. Syst. 3 (2001), 21-31. [16] D. Nie, S. Rashid, A.O. Akdemir, D. Baleanu, and J.B. Liu, On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications, Mathematics 7 (2019), no. 8, 727. [17] M.A. Noor and K.I. Noor, Some properties of exponentially preinvex functions, Facta Univ. Ser. Math. Inform. 34 (2019), no. 5, 855-864. [18] R. Pini, Convexity along curves and invexity, Optimization 29 (1994), 301-309. [19] T. Rapcsak, Smooth Nonlinear Optimization in Rn, Kluwer Academic Publishers, Dordrecht, 1997. [20] W. Saleh, New Hadamard-type inequality for new class of geodesic convex functions, J. Nonlinear Sci. Appl. 15 (2022), 276-283. [21] A.A. Shaikh, A. Iqbal, and C.K. Mondal, Some results on φ-convex functions and geodesic φ-convex functions, Differ. Geom. Dyn. Syst. 20 (2018), 159-170. [22] A.A. Shaikh, C.K. Mondal, and R.P. Agarwal, Some properties of geodesic (α,E)-preinvex functions on Riemannian manifolds, Khayyam J. Math. 7 (2021), no. 2, 201-210. [23] C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, Kluwer Academic Publishers, Dordrecht, 1994. [24] B.B. Upadhyay, A. Ghosh, P. Mishra, and S. Treanţă, Optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds using generalized geodesic convexity, RAIRO-Oper. Res. 56 (2022), 2037-2065. [25] B.B. Upadhyay, S.K. Mishra, and S.K. Porwal, Explicitly geodesic B-preinvex functions on Riemannian manifolds, Trans. Math. Program. Appl. 2 (2015), 1-14. [26] B.B. Upadhyay, I.M. Stancu-Minasian, P. Mishra, and R.N. Mohapatra, On generalized vector variational inequalities and nonsmooth vector optimization problems on Hadamard manifolds involving geodesic approximate convexity, Adv. Nonlinear Var. Inequal. 25 (2022), no. 2, 1-26. [27] B.B. Upadhyay, S. Treanţă, and P. Mishra, On Minty variational principle for nonsmooth multiobjective optimization problems on Hadamard manifolds, Optimization 72 (2022), no. 12, 3081-3100. | ||
|
آمار تعداد مشاهده مقاله: 47 تعداد دریافت فایل اصل مقاله: 71 |
||