| تعداد نشریات | 21 |
| تعداد شمارهها | 678 |
| تعداد مقالات | 9,892 |
| تعداد مشاهده مقاله | 70,061,695 |
| تعداد دریافت فایل اصل مقاله | 49,338,267 |
High-Fidelity Optical CNOT Gates Enabled by Rydberg-Mediated Phase Control | ||
| Journal of Modeling and Simulation in Electrical and Electronics Engineering | ||
| دوره 5، شماره 4 - شماره پیاپی 22، اسفند 2025، صفحه 45-57 اصل مقاله (975.53 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22075/mseee.2025.39558.1237 | ||
| نویسندگان | ||
| Ali Farmani* ؛ Anis Omidniaei | ||
| Department of Nanoelectronics Engineering, Lorestan University, Khoramabad, Iran. | ||
| تاریخ دریافت: 09 آبان 1404، تاریخ بازنگری: 15 آذر 1404، تاریخ پذیرش: 06 دی 1404 | ||
| چکیده | ||
| In this paper, we first design a photonic crystal laserchamber based on indium phosphide gallium arsenide and zincoxide quantum dots due to the large energy gap of about 3.37 eVfor laser beam propagation in terahertz applications. ZnO iseasily grown in the form of nanorods, nanowires, and thin filmsand therefore can perform well in confined modes of photoniccrystals. The results are obtained by examining the qualityfactor criteria of the dispersion temperature effect and theconstant radius to lattice ratio to enhance spontaneous emissionfor improving optical pumping. In these materials, the qualityfactors for indium arsenide and aluminum oxide are 227.98 and131.95, respectively, for the hybrid gain medium includinggallium arsenide, aluminum oxide, and zinc oxide. Finally, thephotonic crystal laser beam is driven to quantum logic gatesresulting in angle and rotation changes, and its probabilityfunction for quantum laser application are measured. | ||
| کلیدواژهها | ||
| Photonic Crystal؛ Quantum Dots؛ Gain Medium؛ CNOT gate؛ Quantum Laser | ||
| مراجع | ||
|
1.Zhang, Qing, et al. "Halide perovskite semiconductorlasers: materials, cavity design, and low threshold." NanoLetters 21.5 (2021): 1903-1914.
2.Jiao, Yuqing, et al. "InP membrane integrated photonicsresearch." Semiconductor Science and Technology 36.1(2020): 013001.
3.Takeda, Koji, et al. "Optical links on silicon photonicchips using ultralow-power consumption photonic-crystallasers." Optics Express 29.16 (2021): 26082-26092.
4.Tomiyasu, Takahiro, et al. "20-Gbit/s direct modulationof GaInAsP/InP membrane distributed-reflector laser withenergy cost of less than 100 fJ/bit." Applied PhysicsExpress 11.1 (2017): 012704.
5.Aihara, Takuma, et al. "Heterogeneously integratedwidely tunable laser using lattice filter and ring resonatoron Si photonics platform." Optics Express 30.10 (2022):15820-15829.
6.Wang, Ziye, et al. "Continuous-wave operation of 1550nm low-threshold triple-lattice photonic-crystal surface-emitting lasers." Light: Science & Applications 13.1(2024): 44.
7.Lee, Tae-Yun, Hansol Lee, and Heonsu Jeon."Colloidal-quantum-dot nanolaser oscillating at a bound-state-in-the-continuum with planar surface topography fora high Q-factor." Nanophotonics 14.10 (2025): 1645-1652.
8.Wang, Yilan, et al. "Large-angle twisted photonic crystalsemiconductor nanolasers with ultra-low thresholdsoperating in the C-band." arXiv preprintarXiv:2411.14772 (2024).
9.Dimopoulos, Evangelos, et al. "Electrically‐DrivenPhotonic Crystal Lasers with Ultra‐low Threshold." Laser& Photonics Reviews 16.11 (2022): 2200109.
10.Dhingra, Pankul, et al. "Low-threshold visible InPquantum dot and InGaP quantum well lasers grown bymolecular beam epitaxy." Journal of AppliedPhysics 133.10 (2023).
11.Jia, Hui, et al. "Low threshold InAs/InP quantum dotlasers on Si." 2025 IEEE Silicon Photonics Conference(SiPhotonics). IEEE, 2025.
12.Wang, Pinyao, et al. "Room temperature CW operationof 1.3 μm quantum dot triple-lattice photonic crystalsurface-emitting lasers with buried structure." OpticsExpress 33.13 (2025): 27429-27437.
13.Taghipour, Nima, et al. "Low‐threshold, highly stablecolloidal quantum dot short‐wave infrared laser enabled bysuppression of trap‐assisted augerrecombination." Advanced Materials 34.3 (2022):2107532.
14.Yun, Ling, et al. "Low threshold and high power fiberlaser passively mode-locked based on PbSe quantumdots." IEEE Photonics Technology Letters 36.4 (2024):247-250.
15.Tan, Yangzhi, et al. "Low-threshold surface-emittingcolloidal quantum-dot circular Bragg laser array." Light:Science & Applications 14.1 (2025): 36.1
6.Zhong, Hancheng, et al. "Ultra-low thresholdcontinuous-wave quantum dot mini-BIC lasers." Light:Science & Applications 12.1 (2023): 100.
17.Liu, Jin, et al. "Single self-assembled InAs/GaAsquantum dots in photonic nanostructures: the role ofnanofabrication." Physical review applied 9.6 (2018):064019.
18.Shih, Ching‐Wen, et al. "Self‐Aligned Photonic DefectMicrocavity Lasers with Site‐Controlled Quantum Dots."Laser & Photonics Reviews 18.7 (2024): 2301242.1
9.Yoshida, Masahiro, et al. "High-brightness scalablecontinuous-wave single-mode photonic-crystallaser." Nature 618.7966 (2023): 727-732.
20.Yan, Sai, et al. "Cavity quantum electrodynamics withmoiré photonic crystal nanocavity." NatureCommunications 16.1 (2025): 1-8.
21. Rodt, Sven, and Stephan Reitzenstein. "Integratednanophotonics for the development of fully functionalquantum circuits based on on-demand single-photonemitters. (2021)." APL Photonics 6.1.
22.Shang, Chen, et al. "Perspectives on advances inquantum dot lasers and integration with Si photonicintegrated circuits." ACS photonics 8.9 (2021): 2555-2566.
23. Phillips, C.L., Brash, A.J., Godsland, M., Martin, N.J.,Foster, A., Tomlinson, A., Dost, R., Babazadeh, N., Sala,E.M., Wilson, L. and Heffernan, J., 2024. Purcell-enhanced single photons at telecom wavelengths from aquantum dot in a photonic crystal cavity. ScientificReports, 14(1), p.4450.
24. Mozaffari, M.H. and Farmani, A., 2019. On-chipsingle-mode optofluidic microresonator dye lasersensor. IEEE sensors Journal, 20(7), pp.3556-3563.
25. Heydari, M., Zali, A.R., Gildeh, R.E. and Farmani, A.,2022. Fully Integrated, 80 GHz Bandwidth, 1.3μ mInAs/InGaAs CW-PW Quantum Dot Passively Colliding-Pulse Mode-Locked (CPM) Lasers for IR SensingApplication. IEEE sensors journal, 22(7), pp.6528-6535.
26. Farmani, A., Farhang, M. and Sheikhi, M.H., 2017.High performance polarization-independent quantum dotsemiconductor optical amplifier with 22 dB fiber to fibergain using mode propagation tuning without additionalpolarization controller. Optics & Laser Technology, 93,pp.127-132. | ||
|
آمار تعداد مشاهده مقاله: 15 تعداد دریافت فایل اصل مقاله: 2 |
||