| تعداد نشریات | 21 |
| تعداد شمارهها | 679 |
| تعداد مقالات | 9,900 |
| تعداد مشاهده مقاله | 70,083,398 |
| تعداد دریافت فایل اصل مقاله | 49,381,337 |
Subclasses of bi-univalent functions connected to the normalized error function | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 12 دی 1404 اصل مقاله (380.79 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2025.34251.5111 | ||
| نویسندگان | ||
| Aya Adel Al-romi؛ Basem Aref Frasin* | ||
| Department of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq, Jordan | ||
| تاریخ دریافت: 06 خرداد 1403، تاریخ بازنگری: 09 بهمن 1403، تاریخ پذیرش: 25 اسفند 1403 | ||
| چکیده | ||
| In this paper, we introduce two new subclasses of the function class $\Sigma$ of bi-univalent functions connected to the normalized error function. Also, we find estimates on the coefficients $|a_{2}|$ and $|a_{3}|$ for functions in these new subclasses. Furthermore, the Fekete-Szeg\"{o} problem for these subclasses is solved. A number of new results are shown to follow upon specializing the parameters involved in our main results. | ||
| کلیدواژهها | ||
| Analytic and univalent functions؛ bi-univalent functions؛ starlike and convex functions؛ error function؛ coefficients bounds | ||
| مراجع | ||
|
[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications Inc., New York, 1965. [2] I. Aldawish, T. Al-Hawary, and B.A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Mathematics 8 (2020), no. 5, 783. [3] I. Aktas, On partial sums of normalized error functions, GÜFBED/GUSTIJ 9 (2019), no. 3, 501-504. [4] A. Amourah, T. Al-Hawary, and B.A. Frasin, Application of Chebyshev polynomials to certain class of bi-Bazilevic functions of order α+iβ, Afr. Mat. 32 (2021), no. 5, 1059-1066. [5] A. Amourah, B. A. Frasin, G. Murugusundaramoorthy, and T. Al-Hawary, Bi-Bazilevic functions of order ϑ+iδ associated with (p,q)−Lucas polynomials, AIMS Math. 6 (2021), no. 5, 4296-4305. [6] S.H. Boroujeni and Sh. Najafzadeh, Error function and certain subclasses of analytic univalent functions, Sahand Commun. Math. Anal. 20 (2023), no. 3, 107-117 [7] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proc. Ser., vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53–60; see also Studia Univ. Babes-Bolyai Math. 31 (1986), no. 2, 70–77. [8] D.A. Brannan and J.G. Clunie, Aspects of Contemporary Complex Analysis, Academic Press, 1980. [9] J. Dziok, A general solution of the Fekete-Szego problem, Bound Value Probl. 2013 (2013), no. 1, 98. [10] M.Fekete and G. Szego, Eine bemerkung uber ungerade schlichte funktionen, J. Lond. Math. Soc. 8 (1933), 85–89. [11] B.A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat. 43 (2014), no. 3, 383–389. [12] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), no. 9, 1569–1573. [13] B.A. Frasin, S.R. Swamy, and J. Nirmala, Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function, Afr. Mat. 32 (2021), no. 3, 631–643. [14] T. Al-Hawary, A. Amourah, and A.B. Frasin, Fekete-Szego inequality for bi-univalent functions by means of Horadam polynomials, Bol. Soc. Mat. Mex. 27 (2021), no. 3, 79. [15] S. Kanas, A unified approach to the Fekete-Szego problem, Appl. Math. Comput. 218 (2012), 8453–8461. [16] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68. [17] G. Murugusundaramoorthy, N. Magesh, and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abst. Appl. Anal. 2013 (2013), Article ID 573017, 3 pages. [18] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1, Arch. Rational Mech. Anal. 32 (1969), 100–112. [19] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975. [20] C. Ramachandran, L. Vanitha, and S. Kanas, Certain results on q starlike and q-convex error functions, Math. Slovaca. 68 (2018), 361–368. [21] H.M. Srivastava, A.K. Mishra and P. Gochnayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188–1192. [22] H.M. Srivastava, A.K. Wanas, and G. Murugusundaramoorthy, A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials, Surv. Math. Appl. 16 (2021), 193–205. [23] T.S. Taha, Topics in univalent function theory, Ph.D. Thesis, University of London, 1981. [24] A. K. Wanas and J. Sokol, Applications Poisson distribution and Ruscheweyh derivative operator for bi-univalent functions, Kragujevac J. Math. 48 (2024), no. 1, 89–97. [25] Q. Xu, Y. Gui, and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990–994. [26] F. Yousef, T. Al-Hawary, and G. Murugusundaramoorthy, Fekete-Szego functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator, Afr. Mat. 30 (2019), no. 3, 495–503. [27] F. Yousef, S. Alroud, and M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Bol. Soc. Mat. Mex. 26 (2020), no. 2, 329–339. [28] F. Yousef, S. Alroud, and M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, Anal. Math. Phys. 11 (2021), no. 58. [29] F. Yousef, B.A. Frasin, and T. Al-Hawary, Fekete-Szego inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials, Filomat 32 (2018), no. 9, 3229–3236. | ||
|
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 4 |
||