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Abstract

In this paper, we obtain some fixed point theorems of mappings satisfying a generalized rational type weak contractive
condition in partially ordered metric spaces. The presented results generalize and extend various fixed point theorems
of the literature. We also provide an example which supports our new results, but it contradicts the previously
established results. Furthermore, we discuss the application of these results to the existence and uniqueness of
solutions for first-order periodic boundary value problems arising in ordinary differential equations.
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1 Introduction

The Banach contraction principle is one of the most pivotal results in the study of nonlinear analysis. Due to
its applicability, this principle has been generalized and extended in different directions by various researchers in the
literature. In 1997, the concept of weak contraction was introduced by Alber and Guerre-Delabriere [1] in Hilbert
spaces and proved the corresponding fixed point result. Later, this result is also valid in complete metric spaces,
as proved by Rhoades [16]. Furthermore, in this direction, Dutta and Choudhary [6] proved a generalized result by
defining (ψ, ϕ)-weak contraction in complete metric spaces. However, in 2009, Zhang and Song [17] introduced a proper
extension of ϕ-weak contraction, namely, generalized ϕ-weak contraction. Thereafter, Doric [5] extended the result of
Zhang and Song [17] by defining a more generalized (ψ, ϕ)-weak contraction and proved some fixed point theorems.
Also, the existence of fixed points in partially ordered metric spaces was first investigated by Ran and Reurings [15] in
2004, and subsequently Nieto et al. [11] extended their results for non-decreasing mappings and found the solution of
first order ordinary differential equation with periodic boundary conditions. Moreover, results on weakly contractive
mappings in partially ordered metric spaces were obtained by Harjani and Sadarangani [8] and also extended the result
of Dutta and Choudhary [6] with application to differential equations (see [9]). There are many other researchers who
have contributed some fixed point theorems for weakly contractive mappings in partially ordered metric spaces (see
[2], [7], [10], [12], [13], [14], and references therein).

In 1975, Dass and Gupta [4] proved the following fixed point theorem.
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Theorem 1.1. Let (U,ϱ) be a comlplete metric space and Q : U −→ U be a self mapping such that their exist β1, β2 ≥
0 with β1 + β2 < 1 satisfying

ϱ(Qµ,Qν) ≤ β1
ϱ(ν,Qν)[1 + ϱ(µ,Qµ)]

1 + ϱ(µ, ν)
+ β2ϱ(µ, ν)

for all µ, ν ∈ U. Then Q has a fixed point.

Also, Cabrera et al. [3] extended the result of Dass and Gupta [4] and proved the following fixed point theorem in
partially ordered metric spaces.

Theorem 1.2. Let (U,≤) be a partially ordered set and suppose that there exist a metric ϱ in U such that (U,ϱ) is
a complete metric space. Let Q : U → U be a continuous and non-decreasing mapping such that there exist β1, β2 ≥
0 with β1 + β2 < 1 satisfying

ϱ(Qµ,Qν) ≤ β1
ϱ(ν,Qν)[1 + ϱ(µ,Qµ)]

1 + ϱ(µ, ν)
+ β2ϱ(µ, ν)

for all µ, ν ∈ U with µ ≤ ν. If there exist µ0 ∈ U such that µ0 ≤ Qµ0 then Q has a fixed point.

Now, the motive of this paper is to establish the fixed point results for generalized weak contraction mapping
satisfying a rational type expression in partially ordered metric spaces, which generalizes the result due to Cabrera
et al. [3]. To illustrate the applicability of our results, there is a proper example which supports our results, but not
that of Cabrera et al. [3]. Additionally, we demonstrate how our results can be applied to prove the existence and
uniqueness of a solution for first order periodic boundary value problem that arises in ordinary differential equations.

2 Preliminaries

Throughout the discussion of the paper, the following definitions will be necessary.

Definition 2.1. The triple (U, ϱ,≤) is called a partially ordered metric space, if (U,≤) is a partially ordered set
together with (U, ϱ) is a metric space

Definition 2.2. If (U, ϱ) is a complete metric space, then the triple (U, ϱ,≤) is called a partially ordered complete
metric space.

Definition 2.3. Let (U,≤) be a partially ordered set. A self-mapping Q : U → U is said to be strictly increasing,
if Q(µ) < Q(ν), for all µ, ν ∈ U with µ < ν and is also said to be strictly decreasing, if Q(µ) > Q(ν), for all µ, ν ∈
U with µ < ν.

Definition 2.4. Suppose (U,≤) be a partially ordered set and let Q : U → U be a self mapping. Q is said to be
monotone non-decreasing mapping if for all µ, ν ∈ U ,

µ ≤ ν implies Qµ ≤ Qν.

and Q is said to be monotone non-increasing mapping if for all µ, ν ∈ U,

µ ≤ ν implies Qµ ≥ Qν.

Definition 2.5. Let (U,≤) be a partially ordered set and let Q : U −→ U be a self mapping. Then

(1) Element µ, ν ∈ U are comparable, if µ ≤ ν or ν ≤ µ holds.

(2) A non-empty set U is called well ordered set. If two elements of it are comparable.

Definition 2.6. A partially ordered metric space (U, ϱ,≤) is called an ordered complete, if for each convergent
sequence {µn}∞n=0 ⊆ U , one of the following condition holds
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(i) if {µn} is a non-decreasing sequence in U such that µn → µ implies µn ≤ µ, for all n ∈ N that is, µ = sup{µn}
or

(ii) if {µn} is a non-increasing sequence in U such that µn → µ implies µ ≤ µn, for all n ∈ N that is, µ = inf{µn}.

Definition 2.7. Let (U, ϱ) be a metric space and Q : U → U is said to be a ϕ - weak contraction if it satisfies the
condition

ϱ(Qµ,Qν) ≤ ϱ(µ, ν)− ϕ(ϱ(µ, ν))

for all µ, ν ∈ U , where ϕ : [0,∞) → [0,∞) is a continuous and non-decreasing function with ϕ(t) = 0 if and only if
t = 0.

3 Main Results

Theorem 3.1. Let (U,≤) be a partially ordered set and suppose that there exist a metric ϱ in U such that (U,ϱ) is
a complete metric space. Let Q is a continuous self mapping on U, Q is monotone non-decreasing mapping satisfying
the following inequality

ϱ(Qµ,Qν) ≤M(µ, ν)− ϕ(M(µ, ν)), for all µ, ν ∈ Uwith µ ≤ ν, (3.1)

where ϕ : [0,∞) −→ [0,∞) is a lower semi-continuous function with ϕ(t) = 0 if and only if t = 0, and

M(µ, ν) = max

{
ϱ(ν,Qν)[1 + ϱ(µ,Qµ)]

1 + ϱ(µ, ν)
, ϱ(µ, ν)

}
.

If there exist µ0 ∈ U such that µ0 ≤ Qµ0, then Q has a fixed point.

Proof . If Qµ0 = µ0, then the theorem is proved. So, suppose that µ0 < Qµ0. Since, Q is monotone non-decreasing
mapping. Therefore, by using mathematical induction, we get

µ0 < Qµ0 ≤ Q2µ0 ≤ . . . ≤ Qnµ0 ≤ Qn+1µ0 ≤ . . . .

This gives a sequence {µn} in U such that µn+1 = Qµn for every n ≥ 0. Since, Q is monotone non-decreasing
mapping, we have

µ0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µn ≤ µn+1 ≤ . . . .

If there exist n ≥ 1 such that µn+1 = Qµn = µn, µn is a fixed point, and the proof is finished. So, we suppose that
µn+1 ̸= µn for all n ≥ 0. Since, µn ≤ µn+1 for any n ∈ N , for n ≥ 1 and using contractive condition 3.1, we get

ϱ(µn, µn+1) = ϱ(Qµn−1, Qµn)

≤ max

{
ϱ(µn, Qµn)[1 + ϱ(µn−1, Qµn−1)]

1 + ϱ(µn−1, µn)
, ϱ(µn−1, µn)

}
−ϕ

(
max

{
ϱ(µn, Qµn)[1 + ϱ(µn−1, Qµn−1)]

1 + ϱ(µn−1, µn)
, ϱ(µn−1, µn

})
= max {ϱ(µn, µn+1), ϱ(µn−1, µn)} − ϕ (max {ϱ(µn, µn+1), ϱ(µn−1, µn)}) . (3.2)

Suppose that their exists m0 such that ϱ(µm0 , µm0+1) > ϱ(µm0−1, µm0), then from 3.2 we have

ϱ(µm0
, µm0+1) ≤ max {ϱ(µm0

, µm0+1), ϱ(µm0−1, µm0
)} − ϕ (max {ϱ(µm0

, µm0+1), ϱ(µm0−1, µm0
)})

= ϱ(µm0
, µm0+1)− ϕ(ϱ(µm0

, µm0+1))

< ϱ(µm0
, µm0+1)

which is a contradiction. Hence, ϱ(µn, µn+1) ≤ ϱ(µn−1, µn) for all n ≥ 1.Since, ϱ(µn, µn+1) is a non-increasing
sequence of postive real numbers, there exists α ≥ 0 such that

lim
n→∞

ϱ(µn, µn+1) = α.
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Now, we shall prove that α = 0. Suppose to the contray, that α > 0. Applying limit as n → ∞ in 3.2 and using
the properties of the function ϕ, we obtain

α ≤ α− lim inf
n→∞

ϕ(max{ϱ(µn, µn+1), ϱ(µn−1, µn)}) = α− ϕ(α) < α

which is a contradiction. Therefore, α = 0 that is

lim
n→∞

ϱ(µn, µn+1) = 0. (3.3)

Also, we show that {µn} is a cauchy sequence. Assume to the contrary that {µn} is not a cauchy sequence. Then,
there exist ϵ > 0 such that we can find subsequences {µm(l)}, {µn(l)} of {µn} with l ≤ m(l) < n(l) satisfying

ϱ(µm(l), µn(l)) ≥ ϵ (3.4)

Further, corresponding to m(l), we can choose n(l) in such a way that it is the smallest integer with l ≤ m(l) < n(l)
satisfying 3.4. Hence,

ϱ(µm(l), µn(l)−1) < ϵ.

Thus, ϵ ≤ ϱ(µm(l), µn(l)) ≤ ϱ(µm(l), µn(l)−1) + ϱ(µn(l)−1, µn(l)) < ϵ + ϱ(µn(l)−1, µn(l)). Applying l → ∞ and using
3.3, we get

lim
l→∞

ϱ(µm(l), µn(l)) = ϵ. (3.5)

Now, using triangular inequality, we have

ϱ(µm(l), µn(l)) ≤ ϱ(µm(l), µm(l)−1) + ϱ(µm(l)−1, µn(l)−1) + ϱ(µn(l)−1, µn(l))

and
ϱ(µm(l)−1, µn(l)−1) ≤ ϱ(µm(l)−1, µm(l)) + ϱ(µm(l), µn(l)) + ϱ(µn(l), µn(l)−1).

Taking l → ∞ and using 3.5 in the above inequalities, we obtain

lim
l→∞

ϱ(µm(l)−1, µn(l)−1) = ϵ. (3.6)

Since n(l) > m(l), µn(l)−1 > µm(l)−1, from 3.1 we have

ϱ(µn(l), µm(l)) = ϱ(Qµn(l)−1, Qµm(l)−1)

≤ max

{
ϱ(µm(l)−1, Qµm(l)−1)[1 + ϱ(µn(l)−1, Qµn(l)−1)]

1 + ϱ(µn(l)−1, µm(l)−1)
, ϱ(µn(l)−1, µm(l)−1)

}
−ϕ

(
max

{
ϱ(µm(l)−1, Qµm(l)−1)[1 + ϱ(µn(l)−1, Qµn(l)−1)]

1 + ϱ(µn(l)−1, µm(l)−1)
, ϱ(µn(l)−1, µm(l)−1)

})
= max

{
ϱ(µm(l)−1, µm(l))[1 + ϱ(µn(l)−1, µn(l))]

1 + ϱ(µn(l)−1, µm(l)−1)
, ϱ(µn(l)−1, µm(l)−1)

}
−ϕ

(
max

{
ϱ(µm(l)−1, µm(l))[1 + ϱ(µn(l)−1, µn(l))]

1 + ϱ(µn(l)−1, µm(l)−1)
, ϱ(µn(l)−1, µm(l)−1)

})
.

Taking l → ∞ and using 3.5, 3.6 and properties of the function ϕ in the above inequality, we obtain

ϵ ≤ max{0, ϵ} − ϕ(max{0, ϵ}) = ϵ− ϕ(ϵ) < ϵ,

which is a contradiction. Therefore, {µn} ia a cauchy sequence. Since, U is a complete metric space, their exist µ ∈ U
such that lim

n→∞
µn = µ. Also, Q is continuous, so we get

Qµ = Q( lim
n→∞

µn) = lim
n→∞

Qµn = lim
n→∞

µn+1 = µ.

Hence, µ is a fixed point. □

Now, we shall prove that Theorem 3.1 is still valid for Q not necessarily continuous, assuming the following
hypothesis in U :

If {µn} is a non-decreasing sequence in U such that µn → µ, then µ = sup{µn}. (3.7)
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Theorem 3.2. Let (U,≤) be a partially ordered set and suppose that there exist a metric ϱ in U such that (U, ϱ) is
a complete metric space. Suppose that Q be a self mapping on U, Q is monotone non-decreasing mapping and

ϱ(Qµ,Qν) ≤M(µ, ν)− ϕ(M(µ, ν)), for all µ, ν ∈ U with µ ≤ ν, (3.8)

where ϕ : [0,∞) −→ [0,∞) is a lower semi-continuous function with ϕ(t) = 0 if and only if t = 0, and

M(µ, ν) = max

{
ϱ(ν,Qν)[1 + ϱ(µ,Qµ)]

1 + ϱ(µ, ν)
, ϱ(µ, ν)

}
.

Assume that {µn} is a non-decreasing sequence in U such that µn → µ, then µ = sup{µn}, and if there exist
µ0 ∈ U such that µ0 ≤ Qµ0, then Q has a fixed point.

Proof . Following the proof of the Theorem 3.1 we have {µn} is a cauchy sequence. Since, {µn} is a non-decreasing
sequence in U such that µn → µ, then µ = sup{µn}. Particularly, µn ≤ µ, for all n ∈ N.

Since, Q is a monotone non-decreasing mapping Qµn ≤ Qµ, for all n ∈ N. Moreover, as µn < µn+1 ≤ Qµ and µ
= sup{µn}, we get µ ≤ Qµ.

Construct a sequence {νn} as ν0 = µ, νn+1 = Qνn, for all n ≥ 0. Since, ν0 ≤ Qν0, aruguing as above we
obtain that {νn} is non-decreasing sequence and lim

n→∞
νn = ν for some ν ∈ U. So, we have ν = sup{νn}. Since

µn ≤ µ = ν0 ≤ Qµ = Qν0 ≤ νn ≤ ν for all n. Using 3.8, we have

ϱ(µn+1, νn+1) = ϱ(Qµn, Qνn)

≤ max

{
ϱ(νn, Qνn)[1 + ϱ(µn, Qµn)]

1 + ϱ(µn, νn)
, ϱ(µn, νn)

}
−ϕ

(
max

{
ϱ(νn, Qνn)[1 + ϱ(µn, Qµn)]

1 + ϱ(µn, νn)
, ϱ(µn, νn)

})
= max

{
ϱ(νn, νn+1)[1 + ϱ(µn, µn+1)]

1 + ϱ(µn, νn)
, ϱ(µn, νn)

}
−ϕ

(
max

{
ϱ(νn, νn+1)[1 + ϱ(µn, µn+1)]

1 + ϱ(µn, νn)
, ϱ(µn, νn)

})
.

Taking limit as n→ ∞ in the above inequality, we get

ϱ(µ, ν) ≤ max{0, ϱ(µ, ν)} − ϕ (max{0, ϱ(µ, ν)}) < ϱ(µ, ν)

which is a contradiction. Therefore, µ = ν. We have µ ≤ Qµ ≤ µ, therefore Qµ = µ. Hence, µ is a fixed point. □

Corollary 3.3. Let (U,≤) be a partially ordered set, and suppose that there is a metric ϱ such that (U,ϱ) be a
complete metric space. Let Q : U −→ U be a non-decreasing mappping such that

ϱ(Qµ,Qν) ≤ kmax

{
ϱ(ν,Qν)[1 + ϱ(µ,Qµ)]

1 + ϱ(µ, ν)
, ϱ(µ, ν)

}
for all µ, ν ∈ U with µ ≤ ν, where k ∈ (0, 1). Also, assume either Q is continuous or Q has the property 3.7. If there
exist µ0 ∈ U with µ0 ≤ Qµ0, then Q has a fixed point.

Proof . In Theorem 3.1, taking ϕ(t) = (1− k)t, for all t ∈ [0,∞), we get Corollary 3.3. □

Remark 3.4. For β1, β2 > 0, β1 + β2 < 1 and for all µ, ν ∈ U, we have

ϱ(Qµ,Qν) ≤ β1
ϱ(ν,Qν)[1 + ϱ(µ,Qµ)]

1 + ϱ(µ, ν)
+ β2ϱ(µ, ν)

≤ (β1 + β2)max

{
ϱ(ν,Qν)[1 + ϱ(µ,Qµ)]

1 + ϱ(µ, ν)
, ϱ(µ, ν)

}
= kmax

{
ϱ(ν,Qν)[1 + ϱ(µ,Qµ)]

1 + ϱ(µ, ν)
, ϱ(µ, ν)

}
where k = β1 + β2 ∈ (0, 1). Therefore, Corollary 3.3 is a generalization of Theorem 3.1.
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Now, we will give an example where it can be proved that assumption in Theorem 3.1 do not guarantee the
uniqueness of the fixed point.

Example 3.5. Let U = {(1, 2), (2, 1)} ⊂ R2 and consider the usual order given by

(µ, ν) ≤ (ω, χ) ⇐⇒ µ ≤ ω, ν ≤ χ.

Hence, (U,≤) is a partially ordered set in which distinct non-comparable elements. Besides (U,ϱ2) is a complete
metric space, where ϱ2 is the Euclidean distance. The identity map Q(µ, ν) = (µ, ν) is obviously non-decreasing and
continuous and assumption (2.1) of Theorem 3.1 is satified because elements in U are only comparable to themselves.
Moreover, (1,2) ≤ Q(1,2) and Q has two fixed point in U.

Now, for the uniqueness of the fixed point, we suppose that for µ, ν ∈ U , there exists a lower bound or an upper
bound. Nieto et al. [11] proved that it is equivalent to following condition:

For µ, ν ∈ U, their exist ω ∈ U which is comparable to µ and ν. (3.9)

Moreover, the condition 3.9 is a sufficient condition for the uniqueness of the fixed point.

Theorem 3.6. Adding condition 3.9 to the assumption of Theorem 3.1 and Theorem 3.2. We obtain uniqueness of
the fixed point of Q.

Proof . Suppose that their exist µ, ν ∈ U which are two fixed point of Q. Now, we have two different cases.

Case 1. If µ ̸= ν, µ and ν are comparable. Then using 3.1, we have

ϱ(µ, ν) = ϱ(Qµ,Qν)

≤ max

{
ϱ(ν,Qν)[1 + ϱ(µ,Qµ)]

1 + ϱ(µ, ν)
, ϱ(µ, ν)

}
− ϕ

(
max

{
ϱ(ν,Qν)[1 + ϱ(µ,Qµ)]

1 + ϱ(µ, ν)
, ϱ(µ, ν)

})
= max

{
ϱ(ν, ν)[1 + ϱ(µ, µ)]

1 + ϱ(µ, ν)
, ϱ(µ, ν)

}
− ϕ

(
max

{
ϱ(ν, ν)[1 + ϱ(µ, µ)]

1 + ϱ(µ, ν)
, ϱ(µ, ν)

})
.

Therefore,

ϱ(µ, ν) ≤ max{0, ϱ(µ, ν)} − ϕ (max{0, ϱ(µ, ν)}) < ϱ(µ, ν)

which is a contradiction. Therfore, µ = ν.

Case 2. If µ is not comparable to ν, then their exist ω ∈ U which is comparable to µ and ν. Monotonicity implies that
Qnω is comparable to Qnµ = µ and Qnν = ν for n = 0,1,2,3,. . . . If their exist n0 ≥ 1 such that Qn0ω = µ, then
as µ is a fixed point, the sequence { Qnω : n ≥ n0} is constant and consequently, lim

n→∞
Qnω = µ. On the other

hand, if Qnω ̸= µ, for n ≥ 1, using the contractive condition, we obtain for n ≥ 2.

ϱ(Qnω, µ) = ϱ(Qnω,Qnµ)

= ϱ(Q(Qn−1ω), Q(Qn−1µ))

≤ max

{
ϱ(Qn−1µ,Qnµ)[1 + ϱ(Qn−1ω,Qnω)]

1 + ϱ(Qn−1ω,Qn−1µ)
, ϱ(Qn−1ω,Qn−1µ)

}
−ϕ

(
max

{
ϱ(Qn−1µ,Qnµ)[1 + ϱ(Qn−1ω,Qnω)]

1 + ϱ(Qn−1ω,Qn−1µ)
, ϱ(Qn−1ω,Qn−1µ)

})
.

Therefore,
ϱ(Qnω, µ) ≤ max{0, ϱ(Qn−1ω, µ)} − ϕ

(
max{0, ϱ(Qn−1ω, µ)}

)
< ϱ(Qn−1ω, µ) (3.10)

which implies that ϱ(Qnω, µ) < ϱ(Qn−1ω, µ) for all n ≥ 1, that is, ϱ(Qnω, µ) is a decreasing sequence of postive
real numbers, there exist γ ≥ 0 such that lim

n→∞
ϱ(Qnω, µ) = γ. We shall prove that γ = 0. Assume to the

contrary, that γ > 0. Applying limit as n → ∞ and using the properties of the function ϕ in 3.10, we obtain

γ = lim
n→∞

ϱ(Qnω, µ) ≤ γ − lim inf
n→∞

ϕ(ϱ(Qn−1ω, µ)) = γ − ϕ(γ) < γ.

which is a contradiction. Therefore, γ = 0, that is Qnω = µ as n → ∞. Using a simila argument, we can show
that lim

n→∞
Qnω = ν. Also, uniqueness of the limit implies µ = ν. Hence, Q has a unique fixed point.
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□

Now, we present an example where Theorem 3.1 can be applied but it cannot be hold on Theorem 1.2.

Example 3.7. Let U = {0, 1, 2, 3, 4, .....} and let ϱ : U × U → [0,∞) be given by

ϱ(µ, ν) =

{
0, if µ = ν

µ+ ν, if µ ̸= ν.

Then ( U, ϱ) be a complete metric space. Let Q : U → U be defined by

Qµ =

{
0, if µ = 0

µ− 1, if µ ̸= 0,

and let ϕ : [0,∞) → [0,∞) be defined by ϕ(t) = 1 for all t > 0. Now, we discuss the following cases:

Case 1. If µ = 0, ν ̸= 0, we have

ϱ(Qµ,Qν) = ϱ(Q0, Qν) = ϱ(0, ν − 1) = ν − 1

M(µ, ν) = max

{
ϱ(ν,Qν)[1 + ϱ(0, Q0)]

1 + ϱ(0, ν)
, ϱ(0, ν)

}
= max

{
ϱ(ν, ν − 1)[1 + ϱ(0, Q0)]

1 + ϱ(0, ν)
, ϱ(0, ν)

}
= max

{
2ν − 1

1 + ν
, ν

}
= ν.

Thus, M(µ, ν)− ϕM(µ, ν) = ν − 1 = ϱ(Qµ,Qν).

Case 2. If ν > µ and µ, ν ̸= 0, we have

ϱ(Qµ,Qν) = ϱ(µ− 1, ν − 1) = µ+ ν − 2.

Now,

M(µ, ν) = max

{
ϱ(ν,Qν)[1 + ϱ(µ,Qµ)]

1 + ϱ(µ, ν)
, ϱ(µ, ν)

}
= max

{
ϱ(ν, ν − 1)[1 + ϱ(µ, µ− 1)]

1 + ϱ(µ, ν)
, ϱ(µ, ν)

}
= max

{
(2ν − 1)(2µ)

(1 + µ+ ν)
, (µ+ ν)

}
= µ+ ν.

Thus, M(µ, ν)− ϕM(µ, ν) = µ+ ν − 1 > ϱ(Qµ,Qν).

Case 3. If µ = ν, then trivially
ϱ(Qµ,Qν) ≤M(µ, ν)− ϕ(M(µ, ν)), for all µ, ν ∈ U

Hence, all the condition of Theorem 3.1 are satisfied and 0 is the unique fixed point of Q. But the contrative
condition appearing in Theorem 1.2 is not satisfied. For example taking µ = 0 and ν = n+1, we have

ϱ(Q(0), Q(n+ 1)) ≤ β1
ϱ(n+ 1, Q(n+ 1))[1 + ϱ(0, Q0))]

1 + ϱ(0, n+ 1)
+ β2ϱ(0, n+ 1)

n ≤ β1
2n+ 1

n+ 2
+ β2(n+ 1).

Applying n → ∞ in this inequality, we get β2 ≥ 1 which is a contradiction. Hence, Theorem 3.1 is a proper
generalization of Theorem 1.2.
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4 Application to boundary value problem

In this section as an application we present an example, where Theorems 3.2 and 3.6 can be applied. We prove an
existence and uniqueness of solution for the following first order periodic boundary value problem:

µ′(p) = q(p, µ(p)), p ∈ I = [0, P ] and µ(0) = µ(P ) (4.1)

where P > 0 and q : I × R −→ R is a continuous function. Let C(I) denote the space of all continuous functions
defined on I. Obiviously, this space with the metric given by ϱ(µ, ν) = sup{|µ(p) − ν(p)| : p ∈ I} for µ, ν ∈ C(I) is a
complete metric space. On C(I), define a partial order ≤ is given by

µ, ν ∈ C(I);µ(p) ≤ ν(p) for p ∈ I.

Now, we recall the following definitions:

Definition 4.1. A function β ∈ C1(I) is called a lower solution of 4.1, if

β′(p) ≤ q(p, β(p)), p ∈ I, β(0) ≤ β(P )

Definition 4.2. A function β ∈ C1(I) is called a upper solution of 4.1, if

β′(p) ≥ q(p, β(p)), p ∈ I, β(0) ≥ β(P )

Theorem 4.3. In addition to the problem (3.1), suppose that there exist λ > 0 such that for all x,y ∈ R with y ≥ x

0 ≤ q(p, y) + λy − [q(p, x) + λx] ≤ λ ln(y − x+ 1) (4.2)

Then the existence of a lower solution or an upper solution of problem 4.1 ensures the existence and uniqueness of
a solution of problem 4.1.

Proof . Problem 4.1 can be rewritten as{
µ′(p) + λµ(p) = q(p, µ(p)) + λµ(p), p ∈ I

µ(0) = µ(P ).
(4.3)

The problem 4.3 is equivalent to the integral equation

µ(p) =

∫ P

0

G(p, s)[q(s, µ(s)) + λµ(s)]ds

where the Green function G(p, s) is given by

G(p, s) =


eλ(P+s−p)

eλP − 1
, 0 ≤ s < p ≤ P,

eλ(s−p)

eλP − 1
, 0 ≤ p < s ≤ P,

Define a function B : C(I) −→ C(I) by

(Bµ)(p) =

∫ P

0

G(p, s)[q(s, µ(s)) + λµ(s)]ds.

Note that if µ ∈ C(I) is a fixed point of B then µ ∈ C(I) is a solution of 4.1. Now, we check that hypothesis in
Theorem 3.2 and Theorem 3.6 are satisfied. The mapping B is non-decreasing since, by hypothesis, for µ ≥ ν.

q(p, µ) + λµ ≥ q(p, ν) + λν
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which implies that G(p,s) > 0 for (p,s) ∈ I × I, that

(Bµ)(p) =

∫ P

0

G(p, s)[q(s, µ(s)) + λµ(s)]ds

≥
∫ P

0

G(p, s)[q(s, ν(s)) + λν(s)]ds = (Bν)(p)

for p ∈ I, Besides, for µ ≥ ν

ϱ(Bµ,Bν) = sup
p∈1

|(Bµ)(p)− (Bν)(p)|

≤ sup
p∈1

∫ P

0

G(p, s)[q(s, µ(s)) + λµ(s)− q(s, ν(s))− λν(s)]ds

≤ sup
p∈1

∫ P

0

G(p, s).λ ln(µ(s)− ν(s) + 1)ds

As the function Ψ(x) = ln(x + 1) is nondecreasing and µ ≥ ν, then ln(µ(s) − ν(s) + 1) ≤ ln(∥ µ − ν ∥ +1), and
hence we get

ϱ(Bµ,Bν) ≤ sup
p∈1

∫ P

0

G(p, s) · λ ln(µ(s)− ν(s) + 1)ds

≤ ln(∥ µ− ν ∥ +1) · λ. sup
p∈1

∫ P

0

G(p, s)ds

= ln(∥ µ− ν ∥ +1) · λ · sup
p∈1

1

eλP − 1

(
1

λ
eλ(P+s−p)]p0 +

1

λ
eλ(s−p)]Pp

)
= ln(∥ µ− ν ∥ +1) · λ · 1

λ(eλP − 1)
(eλP − 1) = ln(∥µ− ν∥+ 1)

= M(µ, ν)− (M(µ, ν)− ln(∥µ− ν∥+ 1)),

where M(µ, ν) = max

{
(∥ν −Qν∥)[1 + (∥µ−Qµ∥)]

1 + (∥µ− ν∥)
, (∥µ− ν∥)

}
. Moreover,

ϱ(Bµ,Bν) ≤M(µ, ν)− (M(µ, ν)− ln(M(µ, ν) + 1)).

Now, putting ϕ(t) = t − ln(t + 1), then ϕ : [0,∞) −→ [0,∞) is continuous and nondecreasing. Hence, above
inequality can be written as,

ϱ(Bµ,Bν) ≤M(µ, ν)− ϕ(M(µ, ν))

Finally, let β(p) be a lower solution for 4.1 and we will show that β ≤ Bβ. Now,

β′(p) + λβ(p) ≤ q(p, β(p)) + λβ(p)

for p ∈ I. Multiplying by eλp we get

(β(p)eλp)′ ≤ [q(p, β(p)) + λβ(p)]eλp, for p ∈ I

and this gives us

β(p)eλp ≤ β(0) +

∫ P

0

[q(s, β(s)) + λβ(s)]eλsds, for p ∈ I (4.4)

which implies that

β(0)eλp ≤ β(P )eλp ≤ β(0) +

∫ P

0

[q(s, β(s)) + λβ(s)]eλsds

and so

β(0) ≤
∫ P

0

eλs

eλP − 1
[q(s, β(s)) + λβ(s)]ds.
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From this inequality and 4.4 we obtain

β(p)eλp ≤
∫ p

0

eλ(P+s)

eλP − 1
[q(s, β(s)) + λβ(s)]ds+

∫ P

p

eλs

eλP − 1
[q(s, β(s)) + λβ(s)]ds

and consequently,

β(p) ≤
∫ p

0

eλ(P+s−p)

eλP − 1
[q(s, β(s)) + λβ(s)]ds+

∫ P

p

eλ(s−p)

eλP − 1
[q(s, β(s)) + λβ(s)]ds.

Hence,

β(p) ≤
∫ P

0

G(p, s)[q(s, β(s)) + λβ(s)]ds = (Bβ)(p), p ∈ I.

Using our Theorem 3.2 and 3.6, we have B has a unique fixed point. □

5 Conclusion

In this article, we establish results for a generalized weak contractive condition based on rational-type expressions,
which extend and generalize several prominent theorems in the literature, specifically within the context of metric
spaces endowed with a partial order. An example is provided to illustrate the existence and uniqueness of fixed points
for this class of mappings. Moreover, the article includes an application to a first-order periodic boundary value
problem arising in ordinary differential equations, further highlighting the significance of the presented results.
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