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Abstract

In this paper, we obtain some fixed point theorems of mappings satisfying a generalized rational type weak contractive
condition in partially ordered metric spaces. The presented results generalize and extend various fixed point theorems
of the literature. We also provide an example which supports our new results, but it contradicts the previously
established results. Furthermore, we discuss the application of these results to the existence and uniqueness of
solutions for first-order periodic boundary value problems arising in ordinary differential equations.
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1 Introduction

The Banach contraction principle is one of the most pivotal results in the study of nonlinear analysis. Due to
its applicability, this principle has been generalized and extended in different directions by various researchers in the
literature. In 1997, the concept of weak contraction was introduced by Alber and Guerre-Delabriere [1] in Hilbert
spaces and proved the corresponding fixed point result. Later, this result is also valid in complete metric spaces,
as proved by Rhoades [16]. Furthermore, in this direction, Dutta and Choudhary [6] proved a generalized result by
defining (v, ¢)-weak contraction in complete metric spaces. However, in 2009, Zhang and Song [17] introduced a proper
extension of ¢-weak contraction, namely, generalized ¢-weak contraction. Thereafter, Doric [5] extended the result of
Zhang and Song [I7] by defining a more generalized (1, ¢)-weak contraction and proved some fixed point theorems.
Also, the existence of fixed points in partially ordered metric spaces was first investigated by Ran and Reurings [15] in
2004, and subsequently Nieto et al. [T1] extended their results for non-decreasing mappings and found the solution of
first order ordinary differential equation with periodic boundary conditions. Moreover, results on weakly contractive
mappings in partially ordered metric spaces were obtained by Harjani and Sadarangani [§] and also extended the result
of Dutta and Choudhary [6] with application to differential equations (see [9]). There are many other researchers who
have contributed some fixed point theorems for weakly contractive mappings in partially ordered metric spaces (see
[2], [7, [10], [12], [13], [14], and references therein).

In 1975, Dass and Gupta [4] proved the following fixed point theorem.
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Theorem 1.1. Let (U,p) be a comlplete metric space and Q : U — U be a self mapping such that their exist 51, 82 >
0 with 51 4+ f2 < 1 satisfying

o(v, Qu)[1 + o(p, Q)]
L+ o(p,v)

0(Qu, Qv) < by + B20(p, v)

for all u,v € U. Then Q has a fixed point.

Also, Cabrera et al. [3] extended the result of Dass and Gupta [4] and proved the following fixed point theorem in
partially ordered metric spaces.

Theorem 1.2. Let (U,<) be a partially ordered set and suppose that there exist a metric ¢ in U such that (U,p) is
a complete metric space. Let Q : U — U be a continuous and non-decreasing mapping such that there exist 81, 82 >
0 with 81 4+ P2 < 1 satisfying

o(v, Qu)[1 + o(i, Qu)]

1+Q(N7V) +ﬁ2@(,ua V)

0(Qu, Qu) < py

for all u,v € U with p < v. If there exist g € U such that pg < Quo then Q has a fixed point.

Now, the motive of this paper is to establish the fixed point results for generalized weak contraction mapping
satisfying a rational type expression in partially ordered metric spaces, which generalizes the result due to Cabrera
et al. [3]. To illustrate the applicability of our results, there is a proper example which supports our results, but not
that of Cabrera et al. [3]. Additionally, we demonstrate how our results can be applied to prove the existence and
uniqueness of a solution for first order periodic boundary value problem that arises in ordinary differential equations.

2 Preliminaries

Throughout the discussion of the paper, the following definitions will be necessary.

together with (U, p) is a metric space

Definition 2.1. The triple (U, g, <) is called a partially ordered metric space, if (U, <) is a partially ordered set

Definition 2.2. If (U, p) is a complete metric space, then the triple (U, g, <) is called a partially ordered complete
metric space.

Definition 2.3. Let (U, <) be a partially ordered set. A self-mapping @ : U — U is said to be strictly increasing,
if Q(p) < Q(v), for all p,v € U with p < v and is also said to be strictly decreasing, if Q(u) > Q(v), for all p,v €
U with p < wv.

Definition 2.4. Suppose (U, <) be a partially ordered set and let @ : U — U be a self mapping. Q is said to be
monotone non-decreasing mapping if for all p,v € U,

u < v implies Qu < Qu.

and (@ is said to be monotone non-increasing mapping if for all p,v € U,
© < vimplies Qu > Qu.

Definition 2.5. Let (U,<) be a partially ordered set and let Q : U — U be a self mapping. Then

(1) Element u,v € U are comparable, if 4 < v or v < p holds.
(2) A non-empty set U is called well ordered set. If two elements of it are comparable.

Definition 2.6. A partially ordered metric space (U, p,<) is called an ordered complete, if for each convergent

sequence {u,}—, C U, one of the following condition holds
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(i) if {un} is a non-decreasing sequence in U such that pu, — p implies pu, < u, for all n € N that is, p = sup{pn}
or
(ii) if {u,} is a non-increasing sequence in U such that u, — p implies g < p,,, for all n € N that is, p = inf{u, }.

Definition 2.7. Let (U, ¢) be a metric space and @ : U — U is said to be a ¢ - weak contraction if it satisfies the
condition

o(Qu, Q) < o(p,v) — d(o(p, v))

for all p,v € U, where ¢ : [0,00) — [0,00) is a continuous and non-decreasing function with ¢(¢) = 0 if and only if
t=0.

3 Main Results

Theorem 3.1. Let (U,<) be a partially ordered set and suppose that there exist a metric ¢ in U such that (U,p) is
a complete metric space. Let Q is a continuous self mapping on U, Q is monotone non-decreasing mapping satisfying
the following inequality

0(Qu, Qu) < M(p,v) — ¢(M(p,v)), for all p,v € Uwith p < v, (3.1)
where ¢ : [0,00) — [0, 00) is a lower semi-continuous function with ¢(t) = 0 if and only if t = 0, and

o(v, Qu)[1 + o(p, Q)]
L+ o(p,v)

M) = mo Y

If there exist pg € U such that py < Quo, then @ has a fixed point.

Proof . If Qug = g, then the theorem is proved. So, suppose that pg < Qug. Since, @ is monotone non-decreasing
mapping. Therefore, by using mathematical induction, we get

fo < Quo < Q%po < ... < Q"o < Q" g <.

This gives a sequence {u,} in U such that p,+1 = Qu, for every n > 0. Since, @) is monotone non-decreasing
mapping, we have

po S pp S p2 S Sy Sy Sl

If there exist n > 1 such that pn+1 = Qupn = fn, tn is a fixed point, and the proof is finished. So, we suppose that
Pnt1 F fiy for all n > 0. Since, jiy, < piny1 for any n € N, for n > 1 and using contractive condition [3.1} we get

o(tns 1) = 0(Qpn—1,Qpin)
n; n 1 n—1; n—
max { Q(‘u Q‘ul —)f—[ Q?;,Lg(lj /1/1 )Q'u 1)] ) Q(:un—h ,Un)}
_(b (max { Q(Mna Qﬂln—)'_[lgai(/jn/—jl:)czun—l)] , Q(un—la Mn})
= max {o(kn, tnt1), 0(tn—1, pn) } — & (max {o(tin, pnt1), 0(kn—1, ptn)}) - (3.2)

IN

Suppose that their exists mq such that o(timg, tmo+1) > 0(lmg—1, my ), then from we have

Q(,Ummﬂmo-i-l) < max{g(umovﬂmo-l-l)aQ(ﬂmo—laumo)} - qs(ma’x{@(:umohumo-‘rl)vQ(:umo—lhumo)})
= Q(/J'mo7/’['mo+1) - ¢(Q(Mm0’umo+1))
< 0(fmgs fmg+1)

which is a contradiction. Hence, o(tn,tint1) < 0(ttn—1, tn) for all n > 1.Since, o(pn, fint1) 1S a non-increasing
sequence of postive real numbers, there exists o > 0 such that

lim Q(anun+1) = .
n—oo
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Now, we shall prove that o = 0. Suppose to the contray, that o > 0. Applying limit as n — oo in [3.2] and using
the properties of the function ¢, we obtain

a < a —liminf g(max{e(tn, tn+1), 0(kn-1,1n)}) = @ = ¢(@) < @
which is a contradiction. Therefore, o = 0 that is

lim Q(Mnaﬂn-‘rl) =0. (33)
n—00

Also, we show that {u,} is a cauchy sequence. Assume to the contrary that {u,} is not a cauchy sequence. Then,
there exist € > 0 such that we can find subsequences {ft,, )}, {pn@y} of {tn} with I <m(l) < n(l) satisfying

0(Km(1ys Bn(t)) 2 € (3.4)

Further, corresponding to m(l), we can choose n(l) in such a way that it is the smallest integer with [ < m(l) < n(l)
satisfying Hence,
O(lm(1)s Pnt)—1) < €

Thus, € < 0(fm(1ys Hn@) < 0(Hm@)s Hn)—1) + 0(Hn@)—15 Bn@)) < € + 0(fin()—15 Hn@))- Applying | — co and using
B3} we get

Jim O(fm(1ys Hn(1)) = €. (3.5)
Now, using triangular inequality, we have

O(Lm(1ys Bn(1)) < 0(Hm(ys Hm)—1) + 0(Hm@) =15 Hn()—1) + 0(Hn()=15 Hn (1))
and
()15 Hn(1)=1) < 0(tm@)—15 Hm(@)) T (Hm (1), Bn@)) + 0(Kn()s Hn()—1)-

Taking | — oo and using [3.5]in the above inequalities, we obtain

. un Q(/—j/m(l)fla Un(l)fl) € (3 6)
Since n(l) > m(l), pn@)—1 > Hm()—1, from we have

(@), bm@y) = 0(Qhn@)—1, Qlm)—1)
{ ()15 Qtm@y—1)[1 + 0(pn(y—1, Qltn()—1)]

max

L+ 0(fn()=1, Bm(1)—1)

(L (ty—15 Qtm@)—1)[1 + 0(pn(y—1, Qlinty-1)]
7(725 (max { ;0 —1 —
L+ 0(Mn@)—1, Bm()—1) (bn—1 1)

— e { ()15 Hm@) [1 + 0(tn@)=15 Bn(1))]

L+ o(pfn@y=1, Bm(@)—1)

Oty =15 Mm@ [L + 0(tn()—15 n@))]
—¢<max{ s OB ()= 15 Hm(1)— .
L+ 0(fn()—1, Bm()—1) (bin -1 fmy-1)

< s 0(fn(1)=1 /%(0—1)}

’ Q(N’n(l)—lv MTYL(l)—l)}

Taking | — oo and using and properties of the function ¢ in the above inequality, we obtain
e < max{0,e} — p(max{0,e}) =€ — P(€) < e,

which is a contradiction. Therefore, {u,} ia a cauchy sequence. Since, U is a complete metric space, their exist p € U
such that lim p, = p. Also, @ is continuous, so we get
n—oo

Qu = Q( lim ,un) = lim Qu, = lim ppi1 = p.
n— oo n—o00 n— oo

Hence, p is a fixed point. O

Now, we shall prove that Theorem is still valid for @ not necessarily continuous, assuming the following
hypothesis in U:

If {un} is a non-decreasing sequence in U such that p, — p, then p = sup{u,}. (3.7)



Fixed point for generalized weak contraction 5

Theorem 3.2. Let (U, <) be a partially ordered set and suppose that there exist a metric o in U such that (U, o) is
a complete metric space. Suppose that @ be a self mapping on U, @) is monotone non-decreasing mapping and

0(Qu, Qv) < M(p,v) — 6(M (. ), for all p,v € U with u < v, (3.8)
where ¢ : [0,00) — [0, 00) is a lower semi-continuous function with ¢(t) = 0 if and only if t = 0, and

o(v, Qv)[1 + o(p, Q)]

M(u,v) = max{

Assume that {u,} is a non-decreasing sequence in U such that p, — p, then p = sup{u,}, and if there exist
o € U such that pg < Qug, then Q has a fixed point.

Proof . Following the proof of the Theorem [3.1| we have {u,} is a cauchy sequence. Since, {y,} is a non-decreasing
sequence in U such that p,, — p, then u = sup{u,}. Particularly, u, < u, for all n € N.

Since, @ is a monotone non-decreasing mapping Qu, < Qu, for all n € N. Moreover, as p, < pnp+1 < Qu and g
= sup{pn}, we get u < Qpu.
Construct a sequence {v,} as vp = p, Vpt1 = Qup, for all n > 0. Since, vy < Qup, aruguing as above we

obtain that {v,} is non-decreasing sequence and lim v, = v for some v € U. So, we have v = sup{v,}. Since
n

— 00
pn < =19 < Qu=Quy <v, <v for all n. Using[3.8] we have

o(tnt1,vnt1) = 0(Qpn, Qun)
i )
(e 0 )
S
ot )

Taking limit as n — oo in the above inequality, we get

o(u, v) < max{0, o(p, v)} — ¢ (max{0, o(p, V) }) < o, v)
which is a contradiction. Therefore, p = v. We have u < Qu < p, therefore Qu = p. Hence, p is a fixed point. [

Corollary 3.3. Let (U, <) be a partially ordered set, and suppose that there is a metric ¢ such that (U,p) be a
complete metric space. Let @ : U — U be a non-decreasing mappping such that

(v, Qu)[1 + o(p, Q)]
R ),

for all p,v € U with p < v, where k € (0,1). Also, assume either @ is continuous or @ has the property If there
exist po € U with pg < Quo, then Q has a fixed point.

o(Qu, Qv) < kmax { ¢

Proof . In Theorem [3.1] taking ¢(t) = (1 — k)t, for all t € [0, 00), we get Corollary 3.3} O

Remark 3.4. For 1,82 > 0, 51 + B2 < 1 and for all u,v € U, we have

o(v, Qu)[1 + o(p, Qu)]

o(Qu,Qr) < B T+ o(a 1) + Bao(p, v)
< (0 pama { AL 00 D, )

= Fmax { o, Q[ + (1, Qu)]
1+ o(p,v)

where k = 81 + 52 € (0, 1). Therefore, Corollary is a generalization of Theorem

so(u, V)}
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Now, we will give an example where it can be proved that assumption in Theorem do not guarantee the
uniqueness of the fixed point.

Example 3.5. Let U = {(1,2),(2,1)} C R? and consider the usual order given by

(,v) < (w,x) = p<w, v<x.

Hence, (U,<) is a partially ordered set in which distinct non-comparable elements. Besides (U,02) is a complete
metric space, where g is the Euclidean distance. The identity map Q(u,v) = (u,v) is obviously non-decreasing and
continuous and assumption (2.1) of Theorem is satified because elements in U are only comparable to themselves.
Moreover, (1,2) < Q(1,2) and @ has two fixed point in U.

Now, for the uniqueness of the fixed point, we suppose that for u,v € U, there exists a lower bound or an upper
bound. Nieto et al. [II] proved that it is equivalent to following condition:

For pu,v € U, their exist w € U which is comparable to p and v. (3.9)

Moreover, the condition [3.9]is a sufficient condition for the uniqueness of the fixed point.

Theorem 3.6. Adding condition [3.9] to the assumption of Theorem [3.1] and Theorem We obtain uniqueness of
the fixed point of Q.

Proof . Suppose that their exist u, v € U which are two fixed point of ). Now, we have two different cases.

Case 1. If y # v, p and v are comparable. Then using [3.1] we have

olp,v) = o(Qu, Q)
< max{Q(V’Q”)[l + Q(“’Q””,g(uw)} 4 (max{e(v, Qu)[1 + o(p, Qu)] , Q(H,V)}>

1+ o(p,v) 1+ o(p,v)
_ o(v, V)[1 + oy, p)] — 6 ((max § QWL+ 0w, )] 5
a max{ 1+ o(u,v) ol ,,)} ¢ ( { 1+ o(p,v) L )}) '

Therefore,

o(p,v) < max{0, o(p, )} — ¢ (max{0, o(u1,v)}) < o(p, v)

which is a contradiction. Therfore, u = v.

Case 2. If p is not comparable to v, then their exist w € U which is comparable to g and v. Monotonicity implies that
Q"w is comparable to Q" u = p and Q"v = v for n = 0,1,2,3,.... If their exist ng > 1 such that Q™ w = u, then
as p is a fixed point, the sequence { Q"w : n > ng} is constant and consequently, nhﬁn;o Q"w = p. On the other

hand, if Q"w # p, for n > 1, using the contractive condition, we obtain for n > 2.

o(Q"w, ) = 0o(Q"w, Q")
= Q" 'w),Q(Q" ')

Q" ', Q" )1+ 0(Q" 'w, QW) }
< maX{ T+ Q" 1w, 0" 1) Q" w, Q" )
Q(Qn—1M7QnM)[1 + Q(Qn_1w>an)] n—1 n—1
¢ (max{ 1+ 0(Q" 'w, Q" 1p) 2@ w4 M)}> '
Therefore,
0(Q"w, p) < max{0, o(Q" " 'w, u)} — ¢ (max{0, o(Q"w, u)}) < 2(Q"'w, ) (3.10)

which implies that o(Q"w, 1) < o(Q™ tw, u) for all n > 1, that is, o(Q"w, p) is a decreasing sequence of postive
real numbers, there exist v > 0 such that lim o(Q"w,u) = . We shall prove that v = 0. Assume to the
n—oo

contrary, that v > 0. Applying limit as n — oo and using the properties of the function ¢ in [3.10] we obtain
v = lim o(Q"w, ) <y —liminf ¢(o(Q"w, u)) =7 — ¢(7) < 7.

which is a contradiction. Therefore, v = 0, that is Q"w = p as n — co. Using a simila argument, we can show

that lim Q"w = v. Also, uniqueness of the limit implies p = v. Hence, @ has a unique fixed point.
n—oo
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O
Now, we present an example where Theorem can be applied but it cannot be hold on Theorem [1.2

Example 3.7. Let U ={0,1,2,3,4,....} and let p: U x U — [0, 00) be given by
0 if pu=v

o(p,v) = {u+v, ot

Then ( U, p) be a complete metric space. Let Q : U — U be defined by
0, if u=20
Qu = .
M= 1a if H 7& Ov
and let ¢ : [0,00) — [0,00) be defined by ¢(t) =1 for all t > 0. Now, we discuss the following cases:
Case 1. If y = 0, v # 0, we have
o(Qp, Qr) = 0(Q0,Qv) = 0(0,v = 1) =v — 1

-~ o(v, Qu)[1 + 0(0, Q0)]
M(p,v) = max{ T+ 2(0,) , 0(0, V)}
o Q(V7 V= 1)[1 + Q(Ov QO)]
= max{ 1+ 0(0,0) ,Q(O,V)}
2v—1
= max {Mﬂ/}
Thus, M(M’V> _¢M(M7V) =v—1= Q(Q,U7QV)~
Case 2. If v > p and p,v # 0, we have
o Qu,Qv)=op—1lv—1)=p+v-2.
Now,
B o(v, Qv)[1 + o(p, Qp)]
Mu) = wax { QLU )|
~ pax d 2y =D+ o(u, g~ 1)] 5
a { 1+ o(u,v) ol )}
o fev-ew
- e FE )

= u+t+v.

Thus, M(u,v) — oM (p,v) = p+v—1> o(Qu, Qu).
Case 3. If y = v, then trivially
0(Qu, Qu) < M(p,v) — ¢(M(p,v)), for all p,v € U

Hence, all the condition of Theorem are satisfied and 0 is the unique fixed point of Q. But the contrative
condition appearing in Theorem is not satisfied. For example taking 4 = 0 and v = n+1, we have

o(n+1,Q(n+1))[1 + 0(0,Q0))]
14+ 0(0,n+1)

2n +1

n—+ 2

0(Q0),Q(n+1)) < 5 + B20(0,n + 1)

S
IN

B1 + Ba(n +1).

Applying n — oo in this inequality, we get 82 > 1 which is a contradiction. Hence, Theorem [3.1] is a proper
generalization of Theorem



8 Paul, Gairola

4 Application to boundary value problem

In this section as an application we present an example, where Theorems and can be applied. We prove an
existence and uniqueness of solution for the following first order periodic boundary value problem:

1 (p) = q(p,u(p)), pel=I[0,Pland u(0)= pu(P) (4.1)

where P > 0 and ¢ : I x R — R is a continuous function. Let C(I) denote the space of all continuous functions
defined on I. Obiviously, this space with the metric given by o(u,v) = sup{|u(p) — v(p)| : p € I} for p,v € C(I) is a
complete metric space. On C(I), define a partial order < is given by

p,v € C(I); u(p) < v(p) for pe 1.
Now, we recall the following definitions:
Definition 4.1. A function 8 € C(I) is called a lower solution of if
B'(p) < alp.B(p)), peI, B(0) <B(P)
Definition 4.2. A function 3 € C1(I) is called a upper solution of if
B'(p) = a(p, B(p)), pel, B(0)=B(P)
Theorem 4.3. In addition to the problem (3.1), suppose that there exist A > 0 such that for all x,y € R with y > x

0 <q(p,y) + Xy —[q(p, =) + A\z] < An(y — x + 1) (4.2)

Then the existence of a lower solution or an upper solution of problem ensures the existence and uniqueness of
a solution of problem [£.1}

Proof . Problem [£.1] can be rewritten as

1 (p) +Au(p) = q(p, () + Aulp), p € I
1(0) = p(P).

The problem [£.3]is equivalent to the integral equation

.
u(p) = / G(p, 9)[a(s, u(5)) + M(s)]ds

where the Green function G(p, s) is given by

eA(P+sfp)

TP 1 0<s<p<P
G(p,s) = eeA(S*p)

SY N 0<p<s<P

Define a function B : C(I) — C(I) by
P
(Bu)(p) = / G(p, 5)lq(s, i(s)) + Au(s)]ds.

Note that if p € C(I) is a fixed point of B then pu € C(I) is a solution of Now, we check that hypothesis in
Theorem and Theorem are satisfied. The mapping B is non-decreasing since, by hypothesis, for p > v.

q(p,p) + A > q(p,v) + v
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which implies that G(p,s) > 0 for (p,s) € I x I, that

Bu)p) = / G(p, 5)[a(s, u(5)) + Mu(s)]ds

> / G (p, 5)la(5,1(5)) + Av(s)]ds = (Bv)(p)

0

for p € I, Besides, for u > v

o(Bu,Br) = sup |(Bu)(p) — (Bv)(p)|
P
< ?nlélf/o G(p, s)la(s, u(s)) + Au(s) — q(s,v(s)) — Av(s)]ds

IN

P
sup/ G(p,s).A In(u(s) —v(s) +1)ds
pel Jo

As the function ¥(z) = Iln(z + 1) is nondecreasing and pu > v, then In(u(s) —v(s) + 1) < In(|| p — v || +1), and
hence we get

P
o(Bu,Br) < sup/ G(p,s) - A In(u(s) —v(s)+ 1)ds
pel Jo

P
< v ) Aswp [ Glp.s)ds
0

p€El
1 (1 s 1 .
= In(lp—v]+1)-A- 21;11) P (AeA(P+ PP 4 Xe)‘( p)]f)
1 AP
= In(p—v| +1)'>\'m(6 - =Mhn(p—-v[+1)

= M(p,v) = (M(p,v) = In(fjp = v[ + 1)),

(ly = QvID[ + (lx = QuiD]
1+ ([l = vl

o(Byu, Bv) < M(p,v) — (M(p,v) — In(M (1, ) + 1)).

where M (u,v) = max{ (|l — z/||)} Moreover,

Now, putting ¢(t) = t — In(t + 1), then ¢ : [0,00) — [0,00) is continuous and nondecreasing. Hence, above
inequality can be written as,

o(Bp, Bv) < M(p,v) = ¢(M(p,v))
Finally, let 8(p) be a lower solution for and we will show that § < BS. Now,
B'(p) + AB(p) < qlp, Bp)) + AB(p)
for p € I. Multiplying by e? we get
(Bp)e?) < lalp, B(p)) + AB(p))e™?, for p € I

and this gives us

B(p)e*? < B(0) +/ [q(s, B(s)) + AB(s)]e*ds, for pe I (4.4)

0
which implies that

.,
BO0)e™ < B(P)EM < B(0) + / lg(s, B(s)) + AB(s)]eX*ds

and so

P eNs
500 < [ —late. B(s) + AB())ds
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From this inequality and [£.4] we obtain

As

P A(P+s) P
B < [ St Ao+ Aa(eds + [ g

— la(s,8(s)) + AB(s)]ds

and consequently,

P oA(P+s—p) P oA(s—p)
80) < | Sl A6 + AN+ [ S late B(s) + AR

p

Hence,

B(p) < / G (p, 5)la(s, B(s)) + A3(s)]ds = (BB)(p), p € I.

Using our Theorem [3.2] and we have B has a unique fixed point. O

5 Conclusion

In this article, we establish results for a generalized weak contractive condition based on rational-type expressions,

which extend and generalize several prominent theorems in the literature, specifically within the context of metric
spaces endowed with a partial order. An example is provided to illustrate the existence and uniqueness of fixed points

for

this class of mappings. Moreover, the article includes an application to a first-order periodic boundary value

problem arising in ordinary differential equations, further highlighting the significance of the presented results.
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