| تعداد نشریات | 21 |
| تعداد شمارهها | 687 |
| تعداد مقالات | 9,985 |
| تعداد مشاهده مقاله | 70,957,060 |
| تعداد دریافت فایل اصل مقاله | 62,422,381 |
Prediction of air quality index using machine learning algorithms: A case study of Tehran | ||
| International Journal of Nonlinear Analysis and Applications | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 08 بهمن 1404 اصل مقاله (622.5 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/ijnaa.2025.34633.5179 | ||
| نویسندگان | ||
| Arshia Azizi؛ Sajjad Rahmany* | ||
| Department of Mathematics and Computer Science, Damghan University, Damghan, Iran | ||
| تاریخ دریافت: 11 تیر 1403، تاریخ پذیرش: 02 بهمن 1403 | ||
| چکیده | ||
| Air quality index (AQI) forecasting is a useful tool for increasing the general public 's awareness of the state of the air in the next days. This is one of the most significant problems facing any country. In this study, machine learning algorithms are used to predict the AQI in Tehran. The six important regression models are applied to forecast AQI on a daily basis. Models were compared and evaluated using statistical measures such as Mean Absolute Error (MAE), coefficient of determination, and root mean square error (RMSE). Based on these evaluations, the best model was selected. ExtraTreesRegressor is thought to be the best model for forecasting AQI in all seasons based on its outcomes. The results demonstrate that the ExtraTreesRegressor 's determination coefficient is nearly 1, and that the values of MAE and RMSE are respectively 0.002 and 0.004. | ||
| کلیدواژهها | ||
| air pollution؛ air quality index؛ machine learning؛ algorithms؛ mean absolute error؛ root mean square error | ||
| مراجع | ||
|
[1] S. Agarwal, S. Sharma, M.H. Rahman, S. Vranckx, B. Maiheu, L. Blyth, S. Janssen, P. Gargava, V.K. Shukla, and S. Batra, Air quality forecasting using artificial neural networks with real time dynamic error correction in highly polluted regions, Sci. Total Envir. 735 (2020), 139454.
[2] L. Bai, J. Wang, X. Ma, and H. Lu, Air pollution forecasts: An overview, Int. J. Environ. Res. Public Health 15 (2018), no. 4, 780.
[3] M.R. Delavar, A. Gholami, G.R. Shiran, Y. Rashidi, G.R. Nakhaeizadeh, K. Fedra, and S. Hatefi Afshar, A novel method for improving air pollution prediction based on machine learning approaches: A case study applied to the capital city of Tehran, ISPRS Int. J. Geo.-Inf. 8 (2019), no. 2, 99.
[4] Z. Ghaemi, A. Alimohammadi, and M. Farnaghi, LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran, Environ Monit Assess 190 (2018), no. 5, 300.
[5] S.G. Gocheva-Ilieva, D.S. Voynikova, M.P. Stoimenova, A.V. Ivanov, and I.P. Iliev, Regression trees modeling of time series for air pollution analysis and forecasting, Neural Comput. Appl. 31 (2019), no. 12, 9023-9039.
[6] A. Heydari, M. Majidi Nezhad, D. Astiaso Garcia, F. Keynia, and L. De Santoli, Air pollution forecasting application based on deep learning model and optimization algorithm, Clean Technol. Envir. Policy 24 (2022), no. 2, 607-621.
[7] K. Kaya and S. Gunduz Oguducu, Deep flexible sequential (DFS) model for air pollution forecasting, Sci. Rep. 10 (2020), no. 1, 3346.
[8] H. Luo, Q. Guan, J. Lin, Q. Wang, L. Yang, Z. Tan, and N. Wang, Air pollution characteristics and human health risks in key cities of northwest China, Sci. Total Envir. 269 (2020), 110791.
[9] R. Munsif, M. Zubair, A. Aziz, and M.N. Zafar, Industrial air emission pollution: Potential sources and sustainable mitigation, Environ Emissions, Chapter 4, 2021.
[10] A.K. Rad, R.R. Shamshiri, A. Naghipour, S.O. Razmi, M. Shariati, F. Golkar, and S.K. Balasundram, Machine learning for determining interactions between air pollutants and environmental parameters in three cities of Iran, Sustainability 14 (2022), no. 13, 8027.
[11] N. Sharma, S. Taneja, V. Sagar, and A. Bhatt, Forecasting air pollution load in Delhi using data analysis tools, Procedia Comput. Sci. 132 (2018), 1077-1085.
[12] C. Wen, S. Liu, X. Yao, L. Peng, X. Li, Y. Hu, and T. Chi, A novel spatiotemporal convolutional long short-term neural network for air pollution prediction, Sci. Total Envir. 654 (2019), 1091-1099.
[13] L. Wu, N. Li, and Y. Yang, Prediction of air quality indicators for the Beijing-Tianjin-Hebei region, Cleaner Prod. 196 (2018), 682-687.
[14] M. Zamani Joharestani, C. Cao, X. Ni, B. Bashir, and S. Talebiesfandarani, PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data, Atmosphere 10 (2019), no. 7, 373. | ||
|
آمار تعداد مشاهده مقاله: 41 تعداد دریافت فایل اصل مقاله: 44 |
||