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NON-ARCHIMEDEAN STABILITY OF CAUCHY-JENSEN TYPE
FUNCTIONAL EQUATION

H. AZADI KENARY

ABSTRACT. In this paper we investigate the generalized Hyers-Ulam stability of
the following Cauchy-Jensen type functional equation
Tty T+z z2+y
Q52 +2) +Q(5= +y) (T +2) = 2Q) + Q) + Q=)
in non-Archimedean spaces .

1. INTRODUCTION

A classical question in the theory of functional equations is the following: When
is it true that a function which approzimately satisfies a functional equation must be
close to an exact solution of the equation?.

If the problem accepts a solution, we say that the equation is stable. The first sta-
bility problem concerning group homomorphisms was raised by Ulam [35] in 1940.

In the next year, Hyres [1 1] gave a positive answer to the above question for ad-
ditive groups under the assumption that the groups are Banach spaces. In 1978,
Rassias [30] proved a generalization of Hyres’s theorem for additive mappings. The
result of Rassias has influenced the development of what is now called the Hyers-
Ulam-Rassias stability problem for functional equations. In 1994, a generalization of
Rassias’s theorem was obtained by Gavruta [9] by replacing the bound e(]|z[|”+||y||?)
by a general control function ¢(z,vy).

The functional equation

Qz+y) +Qz —y) =2Q(x) +2Q(y)

is called a quadratic functional equation. In particular, every solution of the qua-
dratic functional equation is said to be a quadratic mapping. In 1983, a generalized
Hyers-Ulam stability problem for the quadratic functional equation was proved by
Skof [34] for mappings f : X — Y, where X is a normed space and Y is a Banach
space. In 1984, Cholewa [5] noticed that the theorem of Skof is still true if the
relevant domain X is replaced by an Abelian group and, in 2002, Czerwik [0] proved
the generalized Hyers-Ulam stability of the quadratic functional equation.
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The stability problems of several functional equations have been extensively inves-
tigated by a number of authors and there are many interesting results concerning
this problem ([1]- [4], [3], [12]-[15], [18]- [26],[28]- [24]).

In 1897, Hensel [10] has introduced a normed space which does not have the Archimedean
property. It turned out that non-Archimedean spaces have many nice applications

(see [7], [16], [17], [27]).
2. PRELIMINARIES

A waluation is a function | - | from a field K into [0, c0) such that 0 is the unique
element having the 0 valuation, |rs| = |r||s| and the triangle inequality holds, i.e.,

|7+ 5| < max{|r|,[s[}.

A field K is called a valued field if K carries a valuation. The usual absolute values
of R and C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle
inequality. If the triangle inequality is replaced by

|7+ s| < max{|r|, ||}

for all r, s € K, then the function | -| is called a non-Archimedean valuation and the
field is called a non-Archimedean field. Clearly, |1| =] — 1| =1 and |n| < 1 for all
n > 1. A trivial example of a non-Archimedean valuation is the function |- | taking
everything except for 0 into 1 and |0] = 0.

Definition 2.1. Let X be a vector space over a field K with a non-Archimedean
valuation | - |. A function || - || : X — [0,00) is called a non-Archimedean norm if
the following conditions hold:

(a) ||z|| = 0 if and only if x = 0 for all x € X;

(b) ||rz|| = |r]||z| for all » € K and x € X;

(¢) the strong triangle inequality holds:

[l +yll < max{{l], [[y]l}
for all z,y € X. Then (X, | -||) is called a non-Archimedean normed space.

Definition 2.2. Let {z,} be a sequence in a non-Archimedean normed space X.
(a) A sequence {z,}5%, in a non-Archimedean space is a Cauchy sequence iff, the
sequence {11 — T, }°2, converges to zero.
(b) The sequence {x,} is said to be convergent if, for any ¢ > 0, there are a
positive integer N and x € X such that

[ — 2| <&

for all n > N. Then the point x € X is called the limit of the sequence {x,}, which
is denote by lim,, .o =, = x.

(¢) If every Cauchy sequence in X converges, then the non-Archimedean normed
space X is called a non-Archimedean Banach space.

Definition 2.3. Let X be a set. A function d : X x X — [0,00] is called a
generalized metric on X if d satisfies the following conditions:

(a) d(z,y) = 0 if and only if x =y for all z,y € X;

(b) d(z,y) = d(y,x) for all z,y € X;

(c) d(x,z) < d(x,y) +d(y, z) for all x,y,z € X.



94 H. AZADI KENARY

Theorem 2.4. Let (X,d) be a complete generalized metric space and J : X — X be
a strictly contractive mapping with Lipschitz constant L < 1. Then, for all z € X,
either
d(J"z, J" M r) = 0 (2.1)

for all nonnegative integers n or there exists a positive integer ng such that

(a) d(J"x, J" M x) < oo for all ng > ng;

(b) the sequence {J"x} converges to a fized point y* of J;
(c) y* is the umque fixed point of J in the set Y ={y € X : d(J™z,y) < 0o},

)

(d) d(y,y") < 127d(y, Jy) for ally €Y.
In [25], NeJatl introduced the following functional equation:
r+vy Tr+z Z+y _
Q2 +2) (= +y) (T + ) = 2Q@) + Q) + Q). (22)

In this paper, we prove the generalized Hyers-Ulam stability of functional equation
(2.2) in non-Archimedean spaces.

3. NON-ARCHIMEDEAN STABILITY OF EQ. (2.2): DIRECT METHOD

Theorem 3.1. Let ¢ : G — [0, +00) be a mapping such that
lim |2|”¢( S A ) —0 (3.1)

n—o00 2”

for all x,y,z € G and let for each x € G the limit
L k[T T T
Ox) = ,}Eilomax{m C(zk’ 2k’ ok
exists. Suppose that ) : G — X 1s a mapping satisfies

fo(52) () o
+Q(FY +2) — 21Q() + Q) + Q)|

) O<k<n} (3.2)

< ((z,y,2).
Then .
Cx N B n al
S(z) = 7}1_{202 Q<2n> (3.4)
exists for all x € G and defines an additive mapping S : G — X such that
1Q(x) — S(2)]] < ©(x) (3.5)

for all x € G. Moreover, if
lim hmmax{|2| C(m ﬁﬁ);jﬁl{:<n+j}:0 (3.6)

j—o0 n—00 2]“’ 2’“7 ok
then T is the unique additive mapping satisfying (3.5).
Proof. Putting =y = z in (3.11), we get

x T T X
2(3) - @@ =<(5:5:3) 37
for all z € G. Replacing = by 57 in (3.7), we obtain

) ez <bre(Eas) s
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It follows from (3.1) and (3.8) that the sequence {2"@(2%)} is a Cauchy se-
n>1
quence. Since X is complete, so {2”@(%)} is convergent. Set
n>1
$(z) := lim 2"@( )
n—oo
Using induction one can show that
o T k[T T T
‘ 2 Q(z_n) - Q(m)H = mam{m C(Qk’ ok’ Qk) Osk< n} (3.9)
for all n € N and all z € G. By taking n to approach infinity in (3.9), and using
(3.2), one obtains (3.5). By (3.1) and (3.11), we get

H“(ﬂ +z) +%(x—+z +y> +%(Z+Ty +x> —2[S(x) + S(y) +%(z)]H

2 2
) n T4y z r+z y
= I 2 QG + 50) + (G + 51) T (Gt +50)]

— ! [Q<£> +Q(2%) +Q(2n)] H

< hm\2|g< a Z)

n—o00 2”

= 0

for all z,y,z € G. Therefore the function & : G — X satisfies (2.2). To prove the
uniqueness property of , let R : G — X be another function satisfying (3.5). Then

x x
3@ =% = im 2r[3(57) ()|
< Jim l2Pmar{[3(5:) - ()| () - 2(50)|}
< Jim fim mar{ P (g g ge)r 9 Sk <t}
=0
for all x € G. Therefore & = R, and the proof is complete. O

Corollary 3.2. Let £ : [0,00) — [0,00) be a mapping satisfying

(12171 < €(1217h)e() (1= 0)  &(1217) < 27 (3.10)
Let kK >0 and QQ : G = X be a mapping satisfying
(5 +2) +@(*5+9) 11

+@(ﬂ +2) —2(Q) +Qy) + Q)|

r(&(z]) + &yl + &(12)))-

for all z,y,z € G. Then there exists a unique additive mapping S : G — X such
that

Q) = 3(@)[| < 3r&(|]). (3.12)
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Proof. Defining ¢ : G®> — [0,00) by ((z,v, 2) := (&(|z|) + £(Jy]) + £(|z])), then, we

have

tm 2 (5 5o ge) S B2z B13)

n—00 2”
= 0

for all z,y,2 € G. The last equality comes form fact that [2[£(]2]7!) < 1. On the
other hand

O(r) = Jlrgomax{|2|kC<%, %, %), 0<k< n} (3.14)

- C("/L‘7Qj7 w)
= 3r¢(|z])
exists for all x € G. Also

lim lim max{m C(x = £); j§k<n+j} (3.15)

j—)OO n—oo 2k, 2k, 2k

= lim |2|J <x E 2)

j—o0 27723727
= 0.
Applying Theorem (3.1), we get desired result. OJ
Theorem 3.3. Let ¢ : G* — [0, +00) be a mapping such that

2nx, 2"y, 2"
llm C( "'E’ y? 2)

n—00 |2|”

=0 (3.16)

for all z,y, z € G and let for each x € G the limit

C(2Fx, 28z, 2% )
2|

exists. Suppose that f : G — X is a mapping satisfies

HQ(:U—H/H) +Q<x;z+y) (3.18)

+Q( 4+ 2) —200() + Q) + Q)|

O(z) = lim mam{

n—o0

L0<k< n} (3.17)

<((x,y,2).
Then (772)
Q2"
T(x):= nh_)lgo 5 (3.19)
exists for all x € G and defines an additive mappmg S G — X, such that
1Q(x) = S(2)]| < |2| O(x) (3.20)
for all x € G. Moreover, if
o C(2Fx, 2kx, 2k ) .
. < —
Jim i max{ 2" Jsk<ntif=o (3:21)

then T is the unique mapping satisfying (3.20).
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Proof. Putting x =y = 2z in (3.18), we get

HQ(x) _ Q) H < C(xl’;”x) (3.22)
for all z € G. Replacing = by 2"z in (3.22), we obtain
Q(2"z)  Q(2""'x) ¢(2"x, 2"x,2™x)
| ot H ST g (3:23)

It follows from (3.16) and (3.23) that the sequence {%} is convergent. Set
n>1

() = limy 00 Q2 57— On the other hand, it follows from (3.23) that

HQ(T’@") _ Q(2%) H _ _Q@2Ma) H
P 24 — ok+1
< max{HQ(QQ:x) — Q(;::llx) H i p<k< CI}
< e gt < <)

for all z € G and all non-negative integers p,q with ¢ > p > 0. Letting p = 0 and
passing the limit ¢ — oo in the last inequality and using (3.17), we obtain (3.20).
The rest of the proof is similar to the proof of Theorem 3.1. O

Corollary 3.4. Let £ : [0,00) — [0,00) be a mapping satisfying
g(12]t) < €(12))€@) (¢ =0),  &(]2]) < 2. (3.24)
Let k >0 and f: G — X be a mapping satisfying

) oy o
+Q(F1Y +2) —21Q() + Q) + Q)|
< w(€(2l) £(wD)-£(121).

for all x,y,z € G. Then, there exists a unique additive mapping S : G — X such
that

Q) — S(2)]] < ol (3.26)

Proof. Define ¢ : G — [0, 00) by ((z,y, 2) := r(&(|z])-£(|y])-£(|2])) and apply The-
orem 3.3 to get the result. O

4. NON-ARCHIMEDEAN STABILITY OF EQ.(2.2): FIXED POINT METHOD

Theorem 4.1. Let ¢ : X® — [0,00) be a mapping such that there exists an L < 1
with

((x,y,2) < (2x,2y,2z) (4.1)

2]



98 H. AZADI KENARY

forallz,y,z € X. Let Q : X =Y be a mapping satisfying

r+y T+ z
[o(=*+2) +e(=5=+9) (42
z+
+Q( 1) = 20) + Q) + Q)|
< ((@,y,2)
for all x,y,z € X. Then there is a unique additive mapping R : X — 'Y such that
Qr) — R(2)|| £ ——=((z,z, ). 4.3
Q) - R < G5 (.. (143)
Proof. Putting x = y = z in (4.2), we have
x rx T
) = <222 )
’2Q(2) Q(@H—§<2’2’2> (44)
for all x € X. Consider the set
S={g9g: X =Y} (4.5)
and the generalized metric d in S defined by
A(f.9) = inf {p € B* : [lg(a) = h(w)| < pl(z.z) Vo € X}, (46)

where inf () = +00. It is easy to show that (5, d) is complete (see [20], Lemma 2.1).
Now, we consider a linear mapping J : S — S such that

Th(z) = Zh(g) (4.7)

for all z € X. Let g, h € S be such that d(g,h) = €. Then

lg(z) — h(z)| < e((x, 2, x) (4.8)
for all z € X and so

o)~ an@l = |20(3) ~20(3)|

r Tr X
S |2|6C(§7§7§>
L

C(x7 x? x)
2|
for all z € X. Thus d(g, h) = € implies that d(Jg, Jh) < Le. This means that

d(Jg, Jh) < Ld(g,h) (4.9)
for all g,h € S. Tt follows from (4.4) that
L

d(QJQ)s‘ 1

By Theorem 2.4, there exists a mapping R : X — Y satisfying
(1) R is a fixed point of J, that is,

R(g) - %R(m) (4.11)

for all x € X. The mapping R is a unique fixed point of J in the set
Q={heS:d(g,h) < oo} (4.12)

< |2l

(4.10)
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This implies that R is a unique mapping satisfying (4.11) such that there exists
w € (0,00) satisfying

1Q(z) — R(2)|| < pl(x, z,x) (4.13)
for all z € X.
(2) d(J"Q, R) — 0 as n — oo. This implies the equality
lim 2'Q(5-) = Q@) (4.14)
for all z € X.
(3) d(Q, R) <
d(f,C) < ————. (4.15)
12| = [2|L
This implies that the inequality (4.3) holds.
By (3.45),

HR( Ty + ) +R<IT+Z +y) +R<# +$> —2[R(z) + R(y) +R(z)]H

< hrn 12" C( kA 2Zn>

n

< lim 2" ——
n—o00 |2|”
for all z,y,2 € X and n € N. So

HR( Ty + ) +R<‘TT+Z +y> +R<Z+Ty +a:> —2[R(z) + R(y) + R(z)]

for all x,y,z € X. Thus, the mapping R : X — Y is additive, as desired. O

(2,9, 2)

=0

Corollary 4.2. Let 0 > 0 and r be a real number with 0 <r < 1. Let Q) : X — Y
be a mapping satisfying

o2 +2) <a(£ 4 w1

+Q(11Y +0) —21Q() + Q) + Q)|
< O(lllI” + flyll" +1I=0")
forall z,y,z € X. Then

R(z) = lim Q”Q(£> (4.17)
n—o0o on
exists for allz € X and R: X — Y is a unique additive mapping such that
312[0] ("
1Q(z) — R(x)|| < 21— 212 (4.18)

forallz € X.
Proof. The proof follows from Theorem 4.1 by taking

Gl y, 2) = 0l]" + [lyll" + ll=[") (4.19)
for all z,y, 2 € X. In fact, if we choose L = |2|'~", then we get the desired result. [J
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Theorem 4.3. Let ¢ : X® — [0,00) be a function such that there exists an L < 1
with

((27,2y,22) < |2|L{(7,y, 2) (4.20)
forall x,y,z € X. Let Q : X — 'Y be a mapping satisfying
r+y T+ z
(552 +2) + (5= +v) (4.21)
z+y
+Q(5 Y + o) —2Q@) + Q) + Q)]
<((z,y,2)
for all z,y,z € X. Then, there is a unique additive mapping R : X — Y such that
1
1Q(x) — R(@)|| < 5r—57¢(@, 2, @) (4.22)
2| - [2IL

Proof. 1t follows from (3.22) that

2
HQ(m) _ Q) H < {7, 7) (4.23)
2 2]
for all z € X. The rest of the proof is similar to the proof of Theorem 4.1. O

Corollary 4.4. Let 8 > 0 and r be a real number with r > % Let QQ: X =Y bea
mapping satisfying

o(5*+2) +o(5+9) (424
+Q( Y +4) —20Q() + Q) + Q)|

< (/" Nlyll"-[1=[]")

forall z,y,z € X. Then

2n
R(z) = Tim 22"0) (4.25)
n—o00 on
exists for allx € X and R : X — 'Y 1is a unique additive mapping such that
0|x|*

forallx € X.
Proof. The proof follows from Theorem 4.3 by taking
¢y, 2) = 0(ll=l" Iyl lI=]I") (4.27)

for all z,y,2 € X. In fact, if we choose L = [2|> 71 then we get the desired
result. O
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