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Abstract

We study an interesting class of Banach function algebras of infinitely differentiable functions on
perfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, called
Lipschitz algebras of infinitely differentiable functions and denoted by Lip(X,M,α), where X is a
perfect, compact plane set, M = {Mn}∞n=0 is a sequence of positive numbers such that M0 = 1 and
(m+n)!
Mm+n

≤ ( m!
Mm

)( n!
Mn

) for m,n ∈ N ∪ {0} and α ∈ (0, 1]. Let d = lim sup( n!
Mn

)
1
n and Xd = {z ∈ C :

dist(z,X) ≤ d}. Let LipP,d(X,M,α)[LipR,d(X,M,α)] be the subalgebra of all f ∈ Lip(X,M,α)
that can be approximated by the restriction to Xd of polynomials [rational functions with poles off

Xd]. We show that the maximal ideal space of LipP,d(X,M,α) is X̂d, the polynomially convex hull
of Xd, and the maximal ideal space of LipR,d(X,M,α) is Xd, for certain compact plane sets.. Using
some formulae from combinatorial analysis, we find the maximal ideal space of certain subalgebras
of Lipschitz algebras of infinitely differentiable functions.
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1. Introduction and preliminaries

Let X be a compact Housdorff space. We denote by C(X) the complex algebra of all continuous
complex-valued functions on X. For f ∈ C(X) and a closed subset E of X, we denote the uniform
norm f on E by ||f ||E; that is, ‖f‖E = sup{|f(x)| : x ∈ X}. A function algebra on X is a subalgebra
A of C(X) that separates the points of X and contains the constant functions on X. If there is an
algebra norm ||.|| on A such that A is complete under the norm ||.|| and ||1|| = 1, then A is a Banach
function algebra on X, and if the given norm is the uniform norm on X, then A is a uniform algebra
on X.

Let A be a Banach function algebra on X. We denote by M(A) the maximal ideal space of A.
We know that M(A) with the Gelfand topology is a compact Hausdorff space. For each x ∈ X,
the map ex : A → C, defined by ex(f) = f(x), is an element of M(A) and called the evaluation
character on A at x. This fact implies that ‖f‖X ≤ ‖f̂‖M(A) for all f ∈ A, where f̂ is the Gelfand
transform of f . The map J : X → M(A), defined by J(x) = ex, is injective and continuous, and
so X is homeomorphic to a compact subset of M(A). If the map J is surjective, then A is called a
natural Banach function algebra on X and we write M(A) ≈ X. In this case, ‖f‖X = ‖f̂‖M(A) for
all f ∈ A.

It is known that if A is a Banach function algebra on X, then Ā, the uniform closure A in C(X),
is a uniform algebra on X andM(Ā) ⊆M(A). The following result is proved in [9] and we will use
it in sequel.

Theorem 1.1. Let X be a compact Hausdorff space and let A be a Banach function algebra on
X. Then M(A) = M(Ā) if and only if ||f̂ ||M(A) = ||f ||X , for all f ∈ A, where f̂ is the Gelfand
transform of f .

For a compact plane set X, we denote the set of all complex-valued continuous functions on X
that are analytic on int(X) by A(X), and the set of all complex-valued functions on X having an
analytic extension to a neighborhood of X by H0(X). We denote the set of restriction to X of
rational functions with poles off X by R0(X), and the restriction to X of polynomials by P0(X).

The polynomial convex hull of X is denoted by X̂. By the coordinate functional on X we mean the
function Z on X that maps any point to itself. We denote by H(X), R(X) and P (X) the uniform
closure of H0(X), R0(X) and P0(X), respectively. It is known that R(X) = H(X), R(X) is natural
and M(P (X)) ≈ X̂ (see[8]).

Let X be a perfect, compact plane set. We say that complex-valued function f on X is complex-
differentiable at a point a ∈ X if the limit

f ′(a) = lim
z → a
z ∈ X

f(z)− f(a)

z − a

exists. We call f ′(a) the complex-derivative of f at a. We denoted the nth derivative of f at a ∈ X by
f (n)(a). We denote the set of n times continuously complex-differentiable functions on X by Dn(X)
and the set of infinitely complex-differentiable functions on X by D∞(X).

Let M = {Mn}∞n=0 be a sequence of positive numbers. We say that M is an algebra sequence if
M0 = 1 and

(m+ n)!

Mm+n

≤ m!

Mm

n!

Mn

,
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for all m,n ∈ N ∪ {0}. Let M = {Mn}∞n=0 be an algebra sequence and let d(M) = lim sup
n→∞

( n!
Mn

)
1
n .

We say that M = {Mn}∞n=0 is an analytic algebra sequence if d(M) > 0 and a non-analytic algebra
sequence if d(M) = 0.

We need the following result about an algebra sequence M = {Mn}∞n=0.

Lemma 1.2. Let M = {Mn}∞n=0 be an algebra sequence. Then

(i) the sequence {( n!
Mn

)
1
n}∞n=0 is convergent and

d(M) = lim
n→∞

(
n!

Mn

)
1
n = inf{( n!

Mn

)
1
n : n ∈ N ∪ {0}},

(ii) the series
∞∑
n=0

n!
Mnρn

is convergent, if ρ > d(M).

To see the proof of Lemma 1.2(i), we refer to [6, Proposition A.1.26].
For a perfect compact plane set X and an algebra sequence M = {Mn}∞n=0, a Dales-Davie algebra

associated with X and M is defined by

D(X,M) = {f ∈ D∞(X) :
∞∑
n=0

∥∥f (n)
∥∥
X

Mn

<∞},

where the norm on D(X,M) is given by

‖f‖D(X,M) =
∞∑
n=0

∥∥f (n)
∥∥
X

Mn

.

Since Z ∈ D(X,M) and M is an algebra sequence, D(X,M) is a normed function algebra on X.
A compact subset X of the complex plane is connected by rectifable arcs if any two points of

X can be joined by a rectifiable arc lying within X. For such a set, let δ(z, w) denote the geodesic
distance between z and w; that is, the infimum of the lengths of the arcs joining z and w. Clearly δ
defines a metric, the geodesic metric, on X.

Definition 1.3. Let X be a compact plane set which is connected by rectifiable arcs, and let δ(z, w)
be the geodesic distance between z and w in X.

(i) X is regular if for every z ∈ X there exists a constant Cz such that δ(z, w) ≤ Cz|z−w|, for all
w ∈ X.

(ii) X is uniformly regular if there exists a constant C such that δ(z, w) ≤ C|z−w|, for all z, w ∈ X.

Dales and Davie in [6] proved that if X is finite of union of uniformly regular sets, then D(X,M)
is complete. In fact, if X is a finite union of regular sets, then D1(X) with the norm ||f ||D1(X) =
||f ||X + ||f ′||X is complete and so D(X,M) with the norm || · ||D(X,M) is complete. For some further
results see [4].

We sometimes require the following condition on X which is called the (∗)-condition.
(∗) There exists a constant C such that for every z, w ∈ X and f ∈ D1(X),

|f(z)− f(w)| 6 C |z − w| (‖f‖X + ‖f ′‖X) .

For example, every uniformly regular set satisfies the (∗)-condition (see [6]). The completeness of
D1(X) is also concluded from the (∗)-condition.
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Let X be a compact plane set and let α ∈ (0, 1]. We denote by Lip(X,α) the complex algebra of

complex-valued functions f on X for which pα(f) = sup{ |f(z)−f(w)||z−w|α : z, w ∈ X, z 6= w} is finite. For

each f ∈ Lip(X,α), set ||f ||α = ||f ||X + pα(f). Then ||.||α is an algebra norm on Lip(X,α) and
Lip(X,α) with the norm ||.||α is a natural Banach function algebra on X. These algebras are called
Lipschitz algebras of order α and were first studied by Sherbert in [13, 14].

We denote the complex algebra of complex-valued functions f on a perfect compact plane set X
whose derivatives of all orders exist and f (n) ∈ Lip(X,α) for all n ∈ N ∪ {0}, by Lip∞(X,α).

For a perfect compact plane set X, an algebra sequence M = {Mn}∞n=0 and α ∈ (0, 1], a Lipschitz
algebra of infinitely differentiable functions associated with X , M and α is defined by

Lip(X,M,α) = {f ∈ Lip∞(X,α) :
∞∑
n=0

∥∥f (n)
∥∥
X

+ pα(f (n))

Mn

<∞},

where the norm on Lip(X,M,α) is given by

‖f‖Lip(X,M,α) =
∞∑
n=0

∥∥f (n)
∥∥
X

+ pα(f (n))

Mn

.

Since Z ∈ Lip(X,M,α) and M is an algebra sequence, Lip(X,M,α) is a normed function algebra
on X. If D1(X) under the norm ||f ||D1(X) = ||f ||X + ||f ′||X is complete, then Lip(X,M,α) with
the norm || · ||Lip(X,M,α) is complete and so a Banach function algebra on X [10]. Some properties of
these algebras have studied in [3, 10, 11, 12].

NOTATION. Let X be a compact plane set. For a point ζ ∈ C, the distance between ζ and
X is defined by dist(ζ,X) = inf{|ζ − z| : z ∈ X}. For a non-negative real number d, we set
Xd = {ζ ∈ C : dist(ζ,X) ≤ d}. For z ∈ C and r > 0, D(z, r) = {ζ ∈ C : |ζ − z| < r} and
∆(z, r) = {ζ ∈ C : |ζ − z| ≤ r} are the open and closed disc with center at z and radius r.

Abtahi and Honary studied some properties of certain subalgebras of Dales-Davie algebras in
[2]. In this paper we introduce certain subalgebras of Lipschitz algebras of infinitely differentiable
functions and determine their maximal ideal spaces.

2. Certain subalgebras

Throughout this section, we assume that X is a perfect compact plane set, M = {Mn}∞n=0 is an
algebra sequence and α ∈ (0, 1].

Clearly, Lip(X,M,α) contains the polynomials on X; that is,

P0(X) ⊆ Lip(X,M,α).

Proposition 2.1. Suppose that d = d(M) and X satisfies the (∗)-condition. Then H0(Xd) is con-
tained in Lip(X,M,α) and, moreover, the embedding of H0(Xd) in Lip(X,M,α) is continuous in
the sense that if f ∈ H0(Xd) and {fn}∞n=1 is a sequence in H0(X) and fn → f uniformly on a
neighborhood U of Xd, then fn → f in Lip(X,M,α) .

Proof . Let f ∈ H0(Xd). Then, there exists a neighborhood U of Xd such that f and f ′ are analytic
on U . Choose ρ > d so that Xρ ⊆ U . Suppose that z ∈ X. Then C(z, ρ) ⊆ U , where C(z, ρ) is the
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circle with center at z and radius ρ. Let n ∈ N ∪ {0}. By the Cauchy integral formula, we have

f (n) (z) =
n!

2πi

∫
C(z,p)

f (ζ)

(ζ − z)n+1 dζ,

f (n+1) (z) =
n!

2πi

∫
C(z,p)

f ′ (ζ)

(ζ − z)n+1 dζ.

Hence, ∣∣f (n)(z)
∣∣ ≤ n! ‖f‖Xρ

ρn
,

∣∣f (n+1)(z)
∣∣ ≤ n! ‖f ′‖Xρ

ρn
.

Therefore, ∥∥f (n)
∥∥
X
≤
n! ‖f‖Xρ

ρn
,

∥∥f (n+1)
∥∥
X
≤
n! ‖f ′‖Xρ

ρn
. (2.1)

Since X satisfies the (∗)-condition, there exists a positive constant C such that for each g ∈ D1(X)
and for all z, w ∈ X,

|g (z)− g (w)| ≤ C |z − w(| ‖g‖X + ‖g′‖X). (2.2)

Applying (2.2) for f (n) and then (2.1), we obtain

|f (n)(z)− f (n)w| ≤ C|z − w|(‖f (n)‖X + ‖(f (n))
′‖X)

= C|z − w|α|z − w|1−α(‖f (n)‖X + ‖(f (n+1))‖X)

≤ C|z − w|α(diamX)1−α(
n! ‖f‖Xρ

ρn
+
n! ‖f ′‖Xρ

ρn
)

= |z − w|α(
n!C(diamX)1−α

ρn
)(‖f‖Xρ + ‖f ′‖Xρ),

for all z, w ∈ X with z 6= w. This implies that

pα(fn) ≤ (
n!C(diamX)1−α

ρn
)(‖f‖Xρ + ‖f ′‖Xρ). (2.3)

From (2.1) and (2.3), we give∥∥f (n)
∥∥
X

+ pα
(
f (n)

)
Mn

≤ n!

ρnMn

[‖f‖Xρ + C(diamX)1−α(‖f‖Xρ + ‖f ′‖Xρ)]. (2.4)

Since the series
∞∑
n=0

n!
ρnMn

is convergent by Lemma 1.2(ii) and (2.4) holds for all n ∈ N ∪ {0}, we

conclude that the series
∞∑
n=0

‖f (n)‖
X
+pα(f (n))
Mn

is convergent and

∞∑
n=0

‖f (n)‖X + pα
(
f (n)

)
Mn

≤ λ
∞∑
n=0

n!

ρnMn

,

where
λ = ‖f‖Xρ + C(diamX)1−α(‖f‖Xρ + ‖f ′‖Xρ).
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This implies that f ∈ Lip(X,M,α) and

‖f‖Lip(X,M,α) ≤ λ
∞∑
n=0

n!

ρnMn

. (2.5)

Therefore, H0(Xd) is contained in Lip(X,M,α).
Now, suppose that f ∈ H0(Xd) and {fn}∞n=1 is a sequence on H0(Xd) such that fn → f uniformly

in a neighborhood U of Xd. By [5, Theorem VII.2.1], fn
′ → f ′ uniformly on every compact subset of

U . We can choose ρ > d such that Xd ⊆ Xρ ⊆ U , so that lim
n→∞

‖fn − f‖Xρ = 0 and lim
n→∞

‖fn′−f ′‖Xρ =

0. Let n ∈ N. Then fn − f ∈ Lip(X,M,α) and, by above argument, we have

0 ≤ ‖fn − f‖Lip(X,M,α) ≤ γn

∞∑
m=0

m!

ρmMm

,

where
γn = ‖fn − f‖Xρ + C(diamX)1−α(||fn − f ||Xρ + ‖fn′ − f ′‖Xρ).

Clearly, lim
n→∞

γn = 0. Therefore,

lim
n→∞

‖fn − f‖Lip(X,M,α) = 0,

and so the proof is complete. �

Proposition 2.2. Suppose that X satisfies the (∗)-condition. If d is a real number with d(M) ≤ d,
then R0(Xd) is contained in Lip(X,M,α).

Proof . Since M = {Mn}∞n=0 is an algebra sequence, X satisfies the (∗)-condition and α ∈ (0, 1],
we conclude that H0(Xd(M)) ⊆ Lip(X,M,α) by Theorem 2.1. Now, let d be a real number with
d(M) ≤ d. Then R0(Xd) ⊆ R0(Xd(M)). On the other hand, R0(Xd(M)) ⊆ H0(Xd(M)). Therefore,
R0(Xd) is contained in Lip(X,M,α). �

Corollary 2.3. If d(M) = 0, then R0(X) ic contained in Lip(X,M,α).

Abtahi and Honary in [2] proved that if X is a perfect compact plane set such that (D(X,M), ‖ ·
‖D(X,M)) is complete, then

(i) H0(Xd) ⊆ D(X,M), when d = d(M),

(ii) R0(Xd) ⊆ D(X,M), if and only if d(M) ≤ d,

(iii) R0(Xd(M)) ⊆ D(X,M) if and only if d(M) = 0.

They also defined the closed subalgebras DP,d(X,M), DR,d(X,M), and DH,d(X,M) of D(X,M) to
be the closure of P0(Xd), R0(Xd) and H0(Xd) in D(X,M), respectively (see [2, Definition 2.4]).
Similarly, we introduce certain subalgebras of Lip(X,M,α) as the following.

Definition 2.4. Let d = d(M) and let X satisfying the (∗)-condition. We define LipP,d(X,M),Lip

R,d(X,M), and LipH,d(X,M) to be the closure of P0(Xd), R0(Xd), and H0(Xd) in Lip(X,M,α),
respectively.

It is clear that LipP,d(X,M,α), LipR,d(X,M,α), and LipH,d(X,M,α) are Banach function algebras
on X with the norm ‖ · ‖Lip(X,M,α).

Definition 2.5. Let Y be a plane set and let z0 ∈ Y . We say that Y is star-shaped with respect to
z0, if for each z ∈ X the closed segment [z0, z] is contained in X.
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Lemma 2.6. Let z0 ∈ X̂ and let X̂ be star-shaped with respect to z0. Suppose that ρ > 0. If
f ∈ H0(X̂ρ), then there exists a sequence {pn}∞n=1 of polynomials such that

lim
n→∞

‖pn − f‖Xρ = 0, and lim
n→∞

‖pn′ − f ′‖Xρ = 0.

Proof . Let f ∈ H0(X̂ρ). Then f ′ ∈ H0(X̂ρ). By Runge’s theorem, there exists a sequence {qn}∞n=1

of polynomials such that
lim
n→∞

‖qn − f ′‖Xρ = 0.

Let {pn}∞n=1 be the sequence of polynomials with pn
′ = qn on Xρ and pn(z0) = f(z0) for all n ∈ N.

Let z ∈ Xρ. Then there exists wz ∈ X such that |wz−z| = ρ. We assume that Cz = [z0, wz]+ [wz, z].
Then

|pn (z)− f (z)| = |[
∫
Cz

qn (ζ) dζ + pn (z0)]− [
∫
Cz

f ′ (ζ) dζ + f (z0)]|

= |
∫
Cz

[qn (ζ)− f ′ (ζ)] dζ|

≤ (|wz − z0|+ |z − wz|) ‖qn − f ′‖Xρ
≤
(
ρ+ diamX̂

)
‖qn − f ′‖Xρ ,

for all n ∈ N. This implies that ||pn − f ||Xρ ≤ (ρ+ diamX̂)||qn − f ′||Xρ and so lim
n→∞

‖pn − f‖Xρ = 0.

Hence, the proof is complete. �

Theorem 2.7. Suppose that X satisfies the (∗)-condition, z0 ∈ X̂ and X̂ is star-shaped with respect

to z0. If d = d(M), then H0(X̂d) is contained in LipP,d (X,M,α).

Proof . For f ∈ H0(X̂d), there exists ρ > d such that f ∈ H0(X̂ρ). By Lemma 2.6, there exists a
sequence {pn}∞n=1 of polynomials such that

lim
n→∞

‖pn − f‖Xρ = 0, and lim
n→∞

‖pn′ − f ′‖Xρ = 0.

Let n ∈ N. Since H0(X̂ρ) ⊆ H0(Xρ) and X satisfies the (∗)-condition, we conclude that pn − f ∈
Lip(X,M,α) by Proposition 2.1 and

‖pn − f‖Lip(X,M,α) ≤ ηn

∞∑
m=0

m!

ρmMm

,

by given argument in the proof of Proposition 2.1, where

ηn = ‖pn − f‖Xρ + C(diamX)1−α(||pn − f ||Xρ + ‖pn′ − f ′‖Xρ).

Since lim
n→∞

ηn = 0, we conclude that

lim
n→∞

‖pn − f‖Lip(X,M,α) = 0,

and so f ∈ LipP,d(X,M,α). Therefore,

H0(X̂d) ⊆ LipP,d (X,M,α) ,

and the proof is complete. �
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3. Extensions of infinitely differentiable Lipschitz functions

Throughout this section, we assume that X is a perfect compact plane set, M = {Mn}∞n=0 is an
analytic sequence with d = d(M) > 0.

Let f ∈ D(X,M) and z ∈ X. By Lemma 1.2,we have

f (k)(z)

k!
(ζ − z)k ≤ ‖f

(k)‖X
k!

dk ≤ ‖f
(k)‖X
Mk

,

for all ζ ∈ ∆(z, d) and for all k ∈ N ∪ {0}. This implies that the power series
∞∑
k=0

f (k)(z)
k!

(ζ − z)k is

uniformly convergent on ∆(z, d). Therefore, the function Fz : ∆(z, d)→ C defined by

Fz(ζ) =
∞∑
k=0

f (k)(z)

k!
(ζ − z)k, (3.1)

is continuous on ∆(z, d) and analytic on D(z, d).
Abtahi and Honary obtained the following result in [2].

Theorem 3.1 (see [2, Theorem 3.2]). Let X be a perfect, compact plane set such that (D(X,M), ‖·
‖D(X,M)) is complete. Then every f ∈ DH,d(X,M) has a unique extension F in A(Xd) and ||F ||Xd ≤
||f ||D(X,M).

Theorem 3.2 (see [2, Corollary 3.3]). Let X be a perfect, compact plane set such that (D(X,M), ‖·
‖D(X,M)) is complete. Then every f ∈ DP,d(X,M) has a unique extension F in A(X̂d).

Theorem 3.3 (see [2, Corollary 3.5]). Let X be a regular set such that (D(X,M), ‖ · ‖D(X,M)) is
complete. Then D(X,M) is contained in H0(X).

Since Lip∞(X,α) ⊆ D∞(X) and ||f (n)||X ≤ ||f (n)||X+pα(f (n)) for each f ∈ Lip∞(X,α) and for all
n ∈ N∪{0}, we conclude that Lip(X,M,α) ⊆ D(X,M). Hence, LipH,d(X,M,α) ⊆ DH,d(X,M) and
LipP,d(X,M,α) ⊆ DP,d(X,M), when X satisfies the (∗)-condition. Therefore, we give the following
results.

Theorem 3.4. Suppose that X satisfies the (∗)-condition. Then every f ∈ LipH,d(X,M,α) has a
unique extension F in A(Xd) and

||F ||Xd ≤ ||f ||D(X,M) ≤ ||f ||Lip(X,M,α).

Theorem 3.5. Suppose that X satisfies the (∗)-condition. Then, every f ∈ LipP,d(X,M,α) has a

unique extension F in A(X̂d) and

||F ||X̂d ≤ ||f ||D(X,M) ≤ ||f ||Lip(X,M,α).

Theorem 3.6. Let X be a regular set satisfying the (∗)-condition. Then Lip(X,M,α) is contained
in H0(X).
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4. Maximal ideal space

Throughout this section, we assume that X is a perfect compact plane set, M = {Mn}∞n=0 is an
algebra sequence and α ∈ (0, 1].

Dalse and Davie in [6] proved that if d(M) = 0, then D(X,M) is complete andM(DR(X,M)) ≈
X and M(DP (X,M)) ≈ X̂. Honary and Mahyar proved [8] that if d(M) = 0, then Lip(X,M,α) is

complete and LipR,d(X,M,α) is natural and M(Lipp,d(X,M,α)) ≈ X̂.
Abtahi and Honary obtained the following result in [2].

Theorem 4.1 (see [2, Theorem 4.1]). Let X be a perfect, compact plane set such that D(X,M)

is complete. Then M(DR,d(X,M)) ≈ Xd and M(DP,d(X,M)) ≈ X̂d, where d = d(M).

We now determine the maximal ideal space of the Banach function subalgebras LipR,d(X,M,α) and
LipP,d(X,M,α) of Lip(X,M,α).

Theorem 4.2. Suppose that X satisfies the (∗)-condition. If d = d(M), thenM(LipR,d(X,M,α)) ≈
Xd.

Proof . Let ζ ∈ Xd. We define hζ : LipR,d(X,M,α) → C by hζ(f) = F (ζ), where F is the
unique extension of f in A(Xd) given by Theorem 3.4. We deduce that hζ ∈M(LipR,d(X,M,α)) by
Theorem 3.4.

Let h ∈ M(LipR,d(X,M,α)) and let ζ = h(Z), where Z is the coordinate functional on X. We
claim that ζ ∈ Xd. Since ζ1 − Z ∈ LipR,d(X,M,α) and h(ζ1 − Z) = ζh(1) − h(Z) = ζ − ζ = 0,
we conclude that the function ζ1 − Z is not invertible in LipR,d(X,M,α). Now, we assume that
ζ ∈ C \Xd. Then 1

ζ1−Z ∈ R0(Xd) ⊆ LipR,d(X,M,α). Hence ζ1− Z is invertible in LipR,d(X,M,α).

This contradiction implies that our claim is justified. It is easy to see that h(f |X) = f(ζ) for all
f ∈ R0(Xd). Now, let f ∈ LipR,d(X,M,α). Then there is a sequence {fn}∞n=1 in R0(Xd) such that

lim
n→∞

||fn|X − f ||Lip(X,M,α) = 0. (4.1)

This implies that fn|X → f uniformly on X. Since f ∈ LipH,d(X,M,α), we conclude that f has
a unique extension F in A(Xd) and ||F ||Xd ≤ ||f ||Lip(X,M,α), by Theorem 3.4. Then fn − F is the
unique extension fn|X − f in A(Xd) and so ||fn−F ||Xd ≤ ||fn|X − f ||Lip(X,M,α, for all n ∈ N. Hence,

lim
n→∞

fn(ζ) = F (ζ), (4.2)

by (4.1). From (4.1), continuity of h on LipR,d(X,M,α) and (4.2), we deduce that

h(f) = lim
n→∞

h(fn|X) = lim
n→∞

fn(ζ) = F (ζ) = hζ(f).

Since f assumed that an arbitrary element of LipR,d(X,M,α), we conclude that h = hζ . Therefore,
M(LipR,d(X,M,α)) ⊆ {hζ : ζ ∈ Xd}. Hence, M(LipR,d(X,M,α)) ≈ Xd. �

Theorem 4.3. Suppose that X satisfies the (∗)-condition, z0 ∈ X̂, and X̂ is star-shaped with respect

to z0. If d = d(M), then M(LipP,d(X,M,α)) ≈ X̂d.

Proof . Let ζ ∈ X̂d. We define hζ : LipP,d(X,M,α) → C by hζ(f) = F (ζ), where F is the unique

extension of f in A(X̂d) given by Theorem 3.5. We deduce that hζ ∈M(LipP,d(X,M,α)) by Theorem
3.5. Let h ∈ M(LipP,d(X,M,α)) and let ζ = h(Z), where Z is the coordinate functional on X. We



18 Alimohammadi, Nezamabadi

claim that ζ ∈ X̂d. Since ζ1 − Z ∈ LipP,d(X,M,α) and h(ζ1 − Z) = ζh(1) − h(Z) = ζ − ζ = 0,
we conclude that the function ζ1 − Z is not invertible in LipP,d(X,M,α). Now, we assume that

ζ ∈ C\X̂d. Then 1
ζ1−Z ∈ H0(X̂d) and so 1

ζ1−Z ∈ LipP,d(X,M,α) by Theorem 2.7. This contradiction

implies that our claim is justified. It is easy to see that hζ(p) = p(ζ) for all p ∈ P0(X̂d). Now let

f ∈ LipP,d(X,M,α). Then there is a sequence {pn}∞n=1 in P0(X̂d) such that

lim
n→∞

‖pn|X − f‖Lip(X,M,α) = 0. (4.3)

This shows that pn|X → f uniformly on X. Since f ∈ LipP,d(X,M,α), we conclude that f has a

unique extension F in A(X̂d) and ||F ||X̂d ≤ ||f ||Lip(X,M,α) by Theorem 3.5. Therefore, pn|X̂d − F is

the unique extension pn|X − f in A(X̂d) and so that ||pn|X̂d − F ||X̂d ≤ ||pn|X̂d − f ||Lip(X,M,α), for all
n ∈ N. Hence,

lim
n→∞

pn (ζ) = F (ζ) , (4.4)

by (4.3). From (4.3), continuity of f on LipP,d(X,M,α) and (4.4), we deduce that

h(f) = lim
n→∞

h(pn|X) = lim
n→∞

pn(ζ) = F (ζ) = hζ(f).

Since f assumed that an arbitrary element of LipP,d(X,M,α), we conclude that h = h(ζ). Therefore,

M(LipP,d(X,M,α)) ⊆ {hζ : ζ ∈ X̂d}. Hence, M(LipP,d(X,M,α)) ≈ X̂d. �

To continue we need some formulae from combinatorial analysis. For m,n ∈ N with n ≥ m, we
take S(m,n) as the set of all a = (a1, ..., an) ∈ (N∪{0})n such that

∑n
k=1 ak = m and

∑n
k=1 kak = n.

For any m ∈ N and any sequence {Ak}∞k=1 of positive numbers, by [1, Formula B3, P. 823],

(
∞∑
k=1

Ak)
m = m!

∞∑
n=m

∑
a∈S(m,n)

1
n

Π
k=1

ak!

n

Π
k=1

(Ak)
ak . (4.5)

The following equality for higher derivatives of composite functions is known as the Faa di Bruno’s
Formula (See[1, P. 823]):

(Fof)(n) =
n∑

m=1

(F (m)of)
∑

a∈S(m,n)

n!
n

Π
k=1

ak!

n

Π
k=1

(
f (k)

k!
)ak (n ∈ N). (4.6)

The following lemma is useful and found in [2].

Lemma 4.4 (see [2, Lemma 4.2]). Let K > 0 and let {εm}∞m=0 be a sequence of positive numbers
with lim

m→∞
εm = 0. Then

lim sup
p→∞

(
p∑

m=0

(
p
m

)(εm)mKp−m

) 1
p

≤ K.

Lemma 4.5. Let X be a perfect, compact plane set such that Lip(X,M,α) is complete. Suppose
that AL = {f ∈ Lip∞(X,α) : f ′ ∈ Lip(X,M,α)}.
(i) The set AL is a subalgebra of Lip(X,M,α) containing 1X and separating the points of X.

(ii) If d(M) = 0, then ||f̂ ||M(Lip(X,M,α)) = ||f ||X for all f ∈ AL.
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Proof . (i) Clearly, C1 ⊆ AL. Let f ∈ AL and g = f ′. Since n+1
Mn+1

≤ 1
M1Mn

for all n ∈ N ∪ {0}, we
have

∞∑
n=0

||f (n)||α
Mn

=
||f ||α
M0

+
∞∑
n=1

||f (n)||α
Mn

=
||f ||α
M0

+
∞∑
n=0

||f (n+1)||α
Mn+1

=
||f ||α
M0

+
∞∑
n=0

n+ 1

Mn+1

||g(n)||α
n+ 1

≤ ||f ||α
M0

+
∞∑
n=0

1

M1Mn

||g(n)||α
n+ 1

=
||f ||α
M0

+
1

M1

∞∑
n=0

1

n+ 1

||g(n)||α
Mn

≤ ||f ||α
M0

+
1

M1

∞∑
n=0

||g(n)||α
Mn

< ∞.

Hence, f ∈ Lip(X,M,α) and so that AL ⊆ Lip(X,M,α). It is clear that Z ∈ AL. Thus, AL
separates the points of X. Moreover, AL contains the constant functions on X. We now show that
AL is a subalgebra of Lip(X,M,α). Let f, g ∈ AL. Clearly, AL is closed under the addition and
scalar multiplication. Let f, g ∈ AL. Since f ′, g′ ∈ Lip(X,M,α) and AL ⊆ Lip(X,M,α), we deduce
that f, g ∈ Lip(X,M,α). Thus, f ′g + fg′ ∈ Lip(X,M,α) and so (fg)′ ∈ Lip(X,M,α). Therefore,
fg ∈ AL and so AL is a subalgebra of Lip(X,M,α).
(ii) Let d(M) = 0. We deduce that Lip(X,M,α) is a Banach function algebra on X. Let f ∈ A and
j ∈ N. Suppose that F (z) = zj (z ∈ C). Then f j = F ◦ f . By the Faa di Bruno’s formula (4.6), we
have

||f j||Lip(X,M,α)

= ||F ◦ f ||Lip(X,M,α)

=
||F ◦ f ||α

M0

+
∞∑
n=1

||(F ◦ f)(n)||α
Mn

=
||f j||α
M0

+
∞∑
n=1

‖ 1

Mn

∞∑
m=1

(
F (m)of

) ∑
a∈S(m,n)

n!
n∏
k=1

ak!

n∏
k=1

(
f (k)

k!

)ak
‖α

6
||f j||α
M0

+
∞∑
n=1

min{j,n}∑
m=1

‖m!

(
j
m

)
f j−m

Mn

∑
a∈S(m,n)

n!
n∏
k=1

ak!

n∏
k=1

(
f (k)

k!

)ak
‖α

6
||f j||α
M0

+
∞∑
n=1

min{j,n}∑
m=1

m!

(
j
m

)
‖f‖j−mα

Mn

∑
a∈S(m,n)

n!
n∏
k=1

ak!

n∏
k=1

(∥∥f (k)
∥∥
α

k!

)ak

.
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After interchanging the order of summation, we have

||f j||Lip(X,M,α)

≤ ||fj ||α
M0

+
j∑

m=1

(
j
m

)
||f ||j−mα m!

∞∑
n=m

∑
a∈S(m,n)

1
n∏
k=1

ak!

n!
Mn

n∏
k=1

(
‖f (k)‖

α

k!

)ak
≤ ||fj ||α

M0
+

j∑
m=1

(
j
m

)
||f ||j−mα m!

∞∑
n=m

∑
a∈S(m,n)

1
n∏
k=1

ak!

n∏
k=1

(Pk−1)
ak

Pn

n∏
k=1

(
‖f (k)‖

α

kMk−1

)ak
≤ ||fj ||α

M0
+

j∑
m=1

(
j
m

)
||f ||j−mα m!

∞∑
n=m

∑
a∈S(m,n)

1
n∏
k=1

ak!

Pn−m
Pn

n∏
k=1

(
‖f (k)‖

α

kMk−1

)ak
≤ ||fj ||α

M0
+

j∑
m=1

(
j
m

)
||f ||j−mα

m!
Pm

∞∑
n=m

∑
a∈S(m,n)

1
n∏
k=1

ak!

n∏
k=1

(
‖f (k)‖

α

kMk−1

)ak
≤ ||fj ||α

M0
+

j∑
m=1

(
j
m

)
||f ||j−mα m!

∞∑
n=m

∑
a∈S(m,n)

1
n∏
k=1

ak!

n∏
k=1

(
‖(f ′)(k−1)‖

α

(Pm)
1
mMk−1

)ak
.

Choosing Ak = ||(f ′)(k−1)||α
(Pm)

1
mMk−1

for all k ∈ N and applying Formula (4.5), we have

||f j||Lip(X,M,α) ≤
||f j||α
M0

+

j∑
m=1

(
j
m

)
||f ||j−mα (

∞∑
k=1

||(f ′)(k−1)||α
(Pm)

1
mMk−1

)m

=
||f j||α
M0

+

j∑
m=1

(
j
m

)
||f ||j−mα (

∞∑
k=0

||(f ′)(k)||α
(Pm)

1
mMk

)m

=
||f j||α
M0

+

j∑
m=1

(
j
m

)
||f ||j−mα

1

Pm
(||f ′||Lip(X,M,α))

m.

If f ′ = 0, then ||f j||Lip(X,M,α) ≤ ||f j||α and so

||f̂ ||M(Lip(X,M,α)) ≤ lim
j→∞

(||f j||α)
1
j = ‖f̂‖M(Lip(X,α)) = ||f ||X .

Suppose that f ′ 6= 0. Take K = ||f ||X and define the sequence {εm}∞m=0 by

ε0 = 1, and εm = (
m!

Mm

)
1
m ||f ′||Lip(X,M,α) (m ∈ N).

Then lim
m→∞

εm = d(M)||f ′||Lip(X,M,α) = 0. By Lemma 4.4,

lim sup
j→∞

(
j∑

m=0

(
j
m

)
(εm)mKj−m

) 1
j

≤ K.

Hence,

lim sup
j→∞

(
(||f ||α)j +

j∑
m=1

(
j
m

)
1

Pm
(||f ′||Lip(X,M,α))

m||f ||j−mα

) 1
j

≤ K.

On the other hand, for all j ∈ N we have

||f j||Lip(X,M,α) ≤ ||f j||α +

j∑
m=1

(
j
m

)
||f ||j−mα

1

Pm
(||f ′||Lip(X,M,α))

m.
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Therefore, lim sup
j→∞

(||f j||Lip(X,M,α))
1
j ≤ K = ||f ||X , and so

||f̂ ||M(Lip(X,M,α)) ≤ ||f ||X .

Since Lip(X,M,α) is a Banach function algebra on X, we have ||f ||X ≤ ||f̂ ||M(Lip(X,M,α)). Conse-

quently, ||f̂ ||M(Lip(X,M,α)) = ||f ||X . �

Theorem 4.6. Let M = {Mn}∞n=0 be a non-analytic algebra sequence, and let X be a uniformly

regular set. Suppose that AL = {f ∈ Lip∞(X,α) : f ′ ∈ Lip(X,M,α)}, and BL = AL
L

, the closure
of AL in Lip(X,M,α). Then BL is a natural Banach function subalgebra of Lip(X,M,α) on X.

Proof . By Lemma 4.5, AL is a subalgebra of Lip(X,M,α) containing 1X and separating the points
of X. Since M = {Mn}∞n=0 is a non-analytic algebra sequence, Lip(X,M,α) is a Banach function
algebra on X. Thus, BL is a Banach function algebra on X with the norm ||.||Lip(X̂,M,α) and so

||ĝ||M(Lip(X,M,α)) = ||ĝ||M(BL), ∀g ∈ BL. (4.7)

We now show that BL is natural. Using Theorem 1.1, it is enough to show that BL, the uniform
closure of BL in C(X), is natural and ||f̂ ||M(BL) = ||f ||X for all f ∈ BL. Since M = {Mn}∞n=0 is a
non-analytic sequence, R0(X) ⊆ AL. It is clear that BL ⊆ D1(X). Since X is a uniformly regular
set, D1(X) ⊆ R(X) by [4,Theorem 1.5(iv)]. Thus, R0(X) ⊆ BL ⊆ R(X) so that BL = R(X), and
BL is natural by naturality of R(X). Let f ∈ BL. Then there exists a sequence {fn}∞n=1 in A such
that lim

n→∞
||fn − f ||Lip(X,M,α) = 0. Since

||fn − f ||X ≤ ||f̂n − f̂ ||M(BL) = ||f̂n − f̂ ||M(Lip(X,M,α)) ≤ ||fn − f ||Lip(X,M,α),

for all n ∈ N, we conclude that

lim
n→∞

||f̂n||M(Lip(X,M,α)) = ||f̂ ||M(Lip(X,M,α)) and lim
n→∞

||fn||X = ||f ||X .

Since fn ∈ AL for all n ∈ N, we have ||f̂n||M(Lip(X,M,α)) = ||fn||X for all n ∈ N by Lemma 4.5.

Therefore, ||f̂ ||M(Lip(X,M,α)) = ||f ||X . Consequently, ||f̂n||M(BL) = ||f ||X by (4.7). This completes
the proof. �

Question. Is the subalgebra AL = {f ∈ Lip∞(X,α) : f ′ ∈ Lip(X,M,α)} dense in Lip(X,M,α)?
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