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Abstract

Let A be a Banach ternary algebra over a scalar field R or C and X be a Banach ternary A-module.
Let o, 7 and £ be linear mappings on A, a linear mapping D : (A, [ |4) — (X, [ ]x) is called a ternary
(0,7, &)-derivation, if

D([zyz]a) = [D(2)7(y)€(2)]lx + [0(2) D(y)€(2)]x + [o(2)7(y) D(2)]x

for all z,y, z € A.
In this paper, we investigate ternary (o, T, £)-derivation on Banach ternary algebras, associated

with the following functional equation
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Moreover, we prove the generalized Ulam—Hyers stability of ternary (o, 7, )-derivations on Banach
ternary algebras.
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1. Introduction

Ternary algebraic operations were considered in the 19 th century by several mathematicians such
as A. Cayley [I2] who introduced the notion of cubic matrix which in turn was generalized by
Kapranov, Gelfand and Zelevinskii in 1990 ( [30]). The simplest example of such non-trivial ternary
operation is given by the following composition rule:

{CL, b7 C}ijk = Z anilbljmcmkna iaja k.= 1727 7N

Il,m,n

Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes in view
of their possible applications in physics. Some significant physical applications are as follows (see
31, [, 8], [15)- [22], [24], [311, [32], [37], [54] and [56]). A ternary (associative) algebra (A, [])
is a linear space A over a scalar field F = (R or C) equipped with a linear mapping, the so-called
ternary product, [ ]: A X A x A — A such that [[abc]de] = [a]bcd]e] for all a,b,c,d,e € A. This
notion is a natural generalization of the binary case. Indeed if (A, ®) is a usual (binary) algebra then
[abc] := (a ® b) ® ¢ induced a ternary product making A into a ternary algebra which will be called
trivial. It is known that unital ternary algebras are trivial and finitely generated ternary algebras
are ternary subalgebras of trivial ternary algebras [0]. There are other types of ternary algebras in
which one may consider other versions of associativity. Some examples of ternary algebras are (i)
”cubic matrices” introduced by Cayley [I2] which were in turn generalized by Kapranov, Gelfand
and Zelevinskii [30]; (7) the ternary algebra of polynomials of odd degrees in one variable equipped
with the ternary operation [pipaps] = p1 © p2 ® ps, where ® denotes the usual multiplication of
polynomials.

By a Banach ternary algebra we mean a ternary algebra equipped with a complete norm ||.|| such
that [|[abc]|| < ||lall||b|l||c|]|. If a ternary algebra (A,[ ]) has an identity, i.e. an element e such that
a = [aee] = [eae] = [eea] for all a € A, then a ® b := [aeb] is a binary product for which we have

(a®b) ®c = [[aeblec] = [aelbec]] =a ® (b® ¢)
and
a®e=[aee] = a = [eeal = e ® a,

for all a,b,c € A and so (A,[ ]) may be considered as a (binary) algebra. Conversely, if (A, ®) is any
(binary) algebra, then [abc] := a ® b ® ¢ makes A into a ternary algebra with the unit e such that
a® b= laebl.

Let A be a Banach ternary algebra and X be a Banach space. Then X is called a ternary Banach
A-module, if module operations AX Ax X - X, Ax X xA— X,and X x Ax A — X are C-linear
in every variable. Moreover satisfy:

[[abcla dx]x = [a[bed]a x]x = [abledz]x]x,
labc] a4 xd]x = [albcz]x d]x = [ablcad]x]x,
[[zablx cd]x = [z]abcla d]x = [zalbed] ) x,

[[axb]x cd]x = [a[zbe]x d]x = [ax[bed]a]x,
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[[abx]x ed]x = [a[bxc]x d]x = [ablxed]x]x,
for all x € X and all a,b,c,d € A, and
max{||[zab]x||, [[[azb]x |, [[[abx]x[|} < |lalll[o]l[=||

for all z € X and all a,b € A.

Let (A,[ ]a) be a Banach ternary algebra over a scalar field R or C and (X, [ |x) be a ternary
Banach A-module. A linear mapping D : (A, [ ]a) — (X, [ ]x) is called a ternary derivation, if

D([abcla) = [D(a)bc]x + [aD(b)c]x + [abD(c)]x (1.1)

for all a,b,c € A.

Let 0,7 and £ be linear mappings on A. A linear mapping D : (A,[ |4a) — (X, [ ]x) is called a
ternary (o, 7, §)-derivation, if

D([abc]a) = [D(a)T(b)E(e)]x + [o(a) D(b)E(e)]x + [0(a)7(b) D(c)]x (1.2)

for all a,b,c € A.

The stability of functional equations was first introduced by S. M. Ulam [55] in 1940. More
precisely, let Gy, be a group, (Gs,d) be a metric group and € be a positive number, S. M. Ulam
asked, does there exist a 6 > 0 such that if a function f : G; — G5 satisfies the inequality
d(f(zy), f(z)f(y)) < 6 for all z,y € G1, then there exists a homomorphism 7" : G; — G5 such that
d(f(z),T(z)) < e for all x € G;?. When this problem has a solution, we say that the homomorphism
from G, to (9 is stable.

In 1941, D. H. Hyers [27] gave a partial solution of Ulams problem for the case of approximate
additive mappings under the assumption that G; and Go are Banach spaces. In 1950, T. Aoki [I]
was the second author to treat this problem for additive mappings (see also [I1]). In 1978, Th. M.
Rassias [48] generalized the theorem of Hyers by considering the stability problem with unbounded
Cauchy differences. This phenomenon of stability that was introduced by Th. M. Rassias [48] is
called the Hyers-Ulam-Rassias stability, according to J. M. Rassias Theorem, as follows:

Theorem 1.1. Let f: V — W be a mapping from a norm vector space V into a Banach space W
subject to the inequality

1z +y) = f) = FI < e(ll=]” + [ly]") (1.3)

for all x,y € V, where € and p are constants with € > 0 and p < 1. Then there exists a unique additive
mapping T : V. — W such that

2¢
2 —2p

forall x € V. If p < 0 then inequality holds for all x,y # 0, and for x # 0. Also, if the
function t — f(tx) from R into W is continuous for each fized x € V, then T is linear.

If () = T(2)]| <

]| (1.4)

On the other hand J. M. Rassias ( [44]- [40]) generalized the Hyers stability result by presenting
a weaker condition controlled by a product of different powers of norms. According to J. M. Rassias
Theorem [51]:
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Theorem 1.2. If it is assumed that there exist constants © > 0 and pi,ps € R such that p =
p1+pe# 1, and f:V — W is a mapping from a norm space V into a Banach space W such that
the inequality

1f(z+y) = flx) = FW)l < Ollz|”|[y["

for all x,y € V holds, then there exists a unique additive mapping T : V — W such that

I15() T < 5

for all x € V. If in addition for every x € V, f(tx) is continuous in real t for each fixed x, then T is
linear (see [38]-[40]).

(il

During the last decades several stability problems of functional equations have been investigated
by many mathematicians. A large list of references concerning the stability of functional equations
can be found in [5], [6], [11], [13]-[24], [25], [28], [33], [47] and [49]-[53]. Recently, R. Badora , [7]
and T. Miura et al. [34] proved the Ulam-Hyers stability, the Isac and Rassias—type stability [29],
the Hyers—Ulam—Rassias stability and the Bourgin—type superstability of ring derivations on Banach
algebras. On the other hand, C. Park [36] has contributed works to the stability problem of ternary
homomorphisms and ternary derivations(see also [26]).

The main purpose of the present paper is to offer the Ulam—Hyers stability of ternary (o, 7,§)-
derivations on Banach ternary algebras subjected with the following functional equation

L ) =2/(2) (15)

)+f(3x—?i—4z>+f(4x1—3z

2. Ternary (o, T,£&)-derivations on Banach ternary algebras

In this section, we investigate ternary (o, 7, £)-derivations on Banach ternary algebras. Through-
out this section, assume that (A, [ ]4) is a Banach ternary algebra and (X, [ |x) is a ternary Banach
A-module.

Lemma 2.1. Let V and W be linear spaces and let f : V — W be an additive mapping such that
fluz) = pf(x) for all z € V and all p € T'(:= {\ € C ;|\ = 1}). Then the mapping [ is
C-linear. [35]

Lemma 2.2. Let f : A — X be a mapping such that

FOEEIEE) | PRIV | T e, (2.)

for all z,y,z € A and p € T'. Then f is C-linear. [10]

The first result is as follows:

Theorem 2.3. Let p # 1 and 6 be nonnegative real numbers, and let f: A — X be a mapping and
o, T, and & be linear mappings on A such that

T +4y+z)+f(3uaz —4y—4z)+f(4/w4+ 32) — ouf(), (2.2)

for all € T' and all z,y,z € A,

1/ ([zyz]a) = [f(2)T(W)E(2)]x — [o(@)f(W)E(2)]x — lo(@)r(y) f(2)]x]] < Ollz[PllylPll=]P  (2.3)
for all x,y,z € A. Then the mapping f : A — X is a ternary (o, 7, §)-deriwation.
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Proof . Assume p < 1. By Lemma , the mapping f : A — X is C-linear. It follows from ([2.3))
that

1f(lzy21a) = [ ()T ()E()lx = [o(2) f()E(2)]x = [o(2)7(y) [ (2)]x]]
%Hf([( )(ny)(nz)]a) = [f(na)r(ny)E(nz)]x — [o(ne) f(ny)§(n2)lx — [o(nz)7(ny) f(n2)]x||

0 4
< il Pyl
for all z,y, z € A. Thus, since p < 1, by letting n tend to oco in last inequality, we obtain

f([zyzla) = [f(2)7(9)€(2)]x + [o(2) f(Y)E(2)]x + [o0(2)7(y) f(2)]x

for all z,y,z € A. Hence, the mapping f : A — X is a ternary (o, 7, §{)-derivation. Similarly, one
obtains the result for the case p > 1. [J
We prove the following Ulam stability problem for functional equation ((1.5)) controlled by the
mixed type product-sum function
(@) = OClz[" w1207 + N lI” + 1yl + [I=[1")
introduced by J. M. Rassias (see [47],[52]).

Theorem 2.4. Let p, p1, p2, p3 be real numbers such that p < 1, p1+ps+p3 < 1, and 0 > 0. Suppose
f:A— X is a mapping for which there exist mappings g,h,k: A — A whit g(0) = h(0) = k(0) =0
such that

s R At R RS (e S ]

< 60l Iyl P + el + Dl + =17, (2.4
g+ M)~ Ag(e) ~ Ag(w)l < BCllelP + 1) (25
I3\ + Ag) — Ah(z) — Mh(y)| < O(llelP + 1) (2.6
KO + Ag) — M(z) — M) < 6(0e]? + o] (2.7

for all p € T' and all z,y,z € A,
1f ([zy2]a) — f (@)h(y)k(2)]x — [9(2) f()k(2)]x — [g(2)h(y) f(2)]x[| < Ollz[PllylP][=]" (2.8)

for all x,y,z € A. Then there exist unique linear mappings o, 7, and & from A to A and a unique
ternary (o, 1,&)-derivation D : A — X satisfying

lo(@) = o@)l| < 65— |lz| (29)
Ih(w) = ()] < 05—l (2.10)
() — @) < 05— ] (211)
I7(2) = D) < 205 ] (212)

for all x € A.
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Proof . Setting p =1and 2z =y = 2z = 0 in (2.4), yields f(0) = 0. Let us take u = 1, 2 = 0 and
y = x in (2.4)). Then we obtain

2£(5) = £(@)] < 2] (2.13)

for all z € A. In (2.13)), replacing § by z and then dividing by 2, we get

I£) — 55(@2)] < 26l

for all x € A. We easily prove that by induction that
1 n - i(p—
1f(2) = 5o F(2"2)] < 20]P Y 27¢ Y. (2.14)
i=1

In order to show that the functions D, (z) = 2% f(2"x) form a convergent sequence, we use the
Cauchy convergence criterion. Indeed, replace x by 2™z and divide by 2™ in ([2.14]), where m is an
arbitrary positive integer. We find that

m+n

1 1 .
|3 F(2"0) = S f2 )| < 26 D 27

i=m-+1

for all positive integers. Hence, by the Cauchy criterion the limit D(z) = lim, . Dy(x) exists for
each x € A. By taking the limit as n — oo in (2.12)),

If(z) = D(x)|| < 26]|=|” Z 9i(p—1)

and (2.12)) holds for all z € A. Now, we have

nr+y+z

) 3ur —y — 4z
4

) dpxr + 3z
4

1D( + D( + D(F

) = 2pD(z)]

) 1 2%ux + 2"y + 2"z 3.2"ux — 2"y — 4.2"2
= lim | (S g - )

n—oo 21

4.2"nx +3.2"2
4

n : 1 n n n
+f( ) = 2uf(2"2) |4 < lim o-6(][2" ]| ]12"y |7 ]|2" 2|7
n—oo 2
H2m P+ (2 || + [[272]P) = lim 2Pz Dg | 2|y [P ]| P2)
n—oo
+ lim 2"¢=V6(||]|” + [|y[I” + | 2]") = 0

for all u € T! and all z,y, 2 € A. Hence

nr+y—+z
4

ur —y — 4z
4

dpx + 3z

D( 1

)+ D( )+ D( ) = 2uD(x)

for all u € T! and all z,y, 2 € A. So by Lemma , D is C-linear.



Ternary (o, 7, &)-derivations on Banach ternary algebras...5 (2014) No. 1,23-35 29

Also put A = 1 in ([2.5)) to obtain

lg(z +y) — g(x) — gl < 0=+ [lyl|”) (2.15)

fix + € A.Replacing y by z and then dividing by 2 in (2.15]), we get

I59(22) — (x| < 6lja]”

one can use the induction to show that

1 m—+n 1 m iy i— —
|59 27" ) = S92l < Ol > 207y (2.16)

for all x € A. It follows from the convergence of series |D that the sequence {g(gzx)} is cauchy.

Hence, the limit o(z) = lim, . g(;ia:) exists for all x € A. we easily prove that by |) that

oAz + A\y) = Ao(z) + Ao(y) and by (2.16]) that

lg(z) = a(@)]| < Ofl|P D 20~ DEY
i=1
and (2.9) holds for all x € A. Similarly there exist linear mappings 7 and £ on A such that (2.10))
and :2.11) hold for all z € A. On the other hand
1D([zy2]a) — [D(2)7(y)€(2)]x — [o(z)D(y)€(2)]x — [o(x)7(y)D(z)]x|

— lim [ F([(2"2)(2"y)(2"2)]0) — [F(2"2)h(2 ) k(2"2)]x

n—oo SN

—[g(2"z) f(2"yY)k(2"2)]x — [9(2"2)h(2"y) f(2"2)] x ||

. 0 n n n
< Tim o[22y |72
n—oo 8
= lim 68"V ||z |P||y||”||2||”
n—oo
=0
for all z,y, z € A, which means that

D([zy2la) = [D(2)7(H)E(2)]x + [0(2) D(y)E(2)]x + [0 (2)7(y) D(2)]x.

Therefore, we conclude that D is a ternary (o, 7, {)-derivation. Suppose that there exists another
ternary (o, 7,§)-derivation D" : A — X satisfying (2.12). Since D'(z) = 55 D'(2"z), we see that

ID() = D'(@)|| = 3| D(2"2) - D'(2"2)|

< s(lIf(@2') = D@2l + [If(2"2) — D'(2"2)]))

< 4055520 Y]llP

which tends to zero as n — oo for all z € A. Therefore D' = D as claimed and similarly we can
prove that o, 7 and & are unique on A and the proof of the theorem is complete. []
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Theorem 2.5. Let p, p1, p2, p3 be real numbers such that p > 1, p1 +ps+ps > 1, and 0 > 0. Suppose
[+ A— X is a mapping for which there exist mappings g, h,k on A whit g(0) = h(0) = k(0) = 0
such that

pREEYEE) PRI R y pEES) ou(a)

< 60l g 120 + il + P + 1211, (217)
o+ Xy) = Ag(x) — Mg(w)] < Ol + lu]P) (218)
5O + Ag) — Mh(x) — M(w)| < 0]l + 1) (219)
KO + Ag) — M(z) — M) < 0(0]? + o] (220)

for all p € T' and all z,y,z € A,
1f ([zyz]a) = [f(@)h(y)k(2)]x — [9(z) f()k(2)]x — [9(x)h(y) f(2)]x]| < Ollz|P[[y[[Pl|=]]"  (2.21)

for all p € T and all x,y,z € A. Then there exist unique linear mappings o,7 and k on A and a
unique ternary (o, T,§)-deriwation D : A — X satisfying

lg(x) = (@) < 0=l (222)
(@) = ()] < 0=l (2.23)
k(@) — @) < 65— o] (2:24)
ID() = f(2)] < 205 || (2.25)

for all x € A.

Proof . Setting p=1and z =y = z =0 in (2.17), yields f(0) = 0. Let us take =1, z = 0 and
y =z in (2.17). Then we obtain

2£(5) = £(@)] < 2] (2:26)

for all z € A. By induction, we get

n—1

H2"f(2£n) — f@)] < 20|l Y 2707, (2.27)

1=0

In order to show that the functions D,(r) = 2" f(5) form a convergent sequence, we use the
Cauchy convergence criterion. Indeed, replace z by 5 and multiply by 2 in ([2.27)), where m is an
arbitrary positive integer. We find that

m-+n—1

m4n T m L i(1—
27 f() = 2 F ) < 26|y 20
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for all positive integers. Hence, by the Cauchy criterion the limit D(z) = lim,,_,o, D,(x) exists for
each x € A. By taking the limit as n — oo in (2.27)) we see that

ID(x) — f(2)] < 20]j]P Yy 20
=0

and (2.25)) holds for all z € A. Thus, we have

ux+y+z) ur —y — 4z dpxr + 3z
4

D -

+D( )+ D( ) — 2pD(z)]

27" ux + 27"y 4+ 272
4

327 — 27"y —4.27"2
4

= lim 2"[| f( )+ /( )
427" uxr + 3.27 "2
4

+/( ) = 2uf(27"2)|

< T 20G(f[ 27" [P 127 y [P {[27" 7 1277+ 27y [+ 1272 )1P)

= lim 2" PPt 2 ([ [y |2 || ™) + T 2"CPO(|[ |7 + [y ]|” + (|21

n—o0

=0
for all 4 € T! and all x,y, 2 € A. Hence,

ur+y+z

) ur —y — 4z
4

4

dpx + 3z

D( 1

+ D( )+ D( ) =2uD(x)

for all u € T! and all z,y, 2 € A. So by Lemma , D is C-linear.
Also put A = 1 in (2.18)) to obtain

lg(z +y) — g(@) = g()Il < OCllx|” + [ly]I") (2.28)

fix z € A. Replacing y by x and then replacing x by 7 in (2.28), we get

T T
7y - < 2P
I20(5) - g(@)l < 2615

one can use the induction to show that

m4n

m+n T m T 2)(1—
12" () = 279 (G < Ollell” > 200w (2.29)

i=m+1

for all x € A. It follows from the convergence of series (2.29) that the sequence {2"g(5)} is cauchy.
Hence the limit o(z) = lim,_ 2"g(5%) exists for all x € A. we easily prove that by (2.18)) that

o(Az 4+ \y) = Ao(x) + Ao(y) and by (2.29)) that

lg(z) — o(2)]| < Oz Y 2002
=1
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and (2.22) holds for all x € A. Similarly there exist linear mappings 7 and & on A such that ([2.23))
and ([2.24]) hold for all x € A. Thus, we have

ID([zy21a) = [D(2)7(9)E(2)lx = [o(2) D(y)E(2)]x — [o(2)7(y) D(2)]x||

— lim 8" ([27"2) (27"y)(27"2)]a) — [F@ " 2)h(2"y)k(2"2)]x

n—o0

—[g(27"2) F(27"Y)k(27"2)]x — [g(2 ") (27 "y) F(27"2)] x ||

<1l "
<8l

Yy z . (1

P11 =0 = i 680 Py 7] 2|
=0

for all z € A, which means that

D([zyz]a) = [D(2)7(y)€(2)]x + [0(z) D()E(2)]x + o (2)7(y) D(2)]x-

Therefore, we conclude that D is a ternary (o, 7, {)-derivation. Suppose that there exists another
ternary (o, 7, ¢)-derivation D' : A — X satisfying (2.25) Since D'(z) = Q"D/(%), we see that

ID(z) = D'()ll = 2"|D(5) — D' (50)]

< 2°(I/(z7) = D(5)

+ /(%) = D' (I

< 405520 2|7
which tends to zero as n — oo for all z € A. Hence, D' = D as claimed and similarly we can prove
that o, 7 and & are unique on A and proof of theorem is complete. [

We are going to investigate the Hyers-Ulam-Rassias stability problem for functional equation

).

Corollary 2.6. Let P € (—o0,1) U (1,00), 8 > 0. Suppose f: A — X is a mapping for which there
exist mappings g, h,k on A whit g(0) = h(0) = k(0) = 0 such that

pur+y—+z

NGhs AL A

4

dpx + 3z

)+ (R

) = 2 f ()| < O([z]]” + Nlyll” + 1[=11"),
for all p € T' and all x,y,z € A,

lg(Az + Ay) — Ag(z) — Ag(y)|| < O(llz | + llylI”)

[R(Az + Ay) — Ah(z) = Ah(y)l| < O(llz]” + [lyl[*)

[E(Az + Ay) — Ak(z) = Ak ()l < Ol ]1” + [ly[”)
for all A € T' and all x,y € A,

1f(lzy21a) = [f (@) h(m)k(2)]x = l9(2) F(9)k(2)]x = [g(@)h(y) f(2)]x ] < Ollz]"lly]”]l=]”
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for all x,y,z € A. Then there exist unique linear mappings o, 7 and k on A and a unique ternary
(o, 7,&)-derivation D : A — X satisfying

lofe) = o)) < 5 P
() = (@) < b= e
Ik(a) = ()] < 015~ ol
D) = F(@)]| < 27 el

for all x € A.

By Theorems and we solve the following Hyers-Ulam stability problem for functional
equation (|1.5]).

Corollary 2.7. Let 0 be a positive real number. Suppose f : A — X is a mapping for which there
exist mappings g, h, k on A whit g(0) = h(0) = k(0) = 0 such that

ur —y — 4z

) dpxr + 3z
4

4

pr+y+z
4

1/ )+ uf( + /( ) = 2uf(x)] <6,

for all p € T' and all z,y,z € A,

lg(Az + Ay) — Ag(x) — Ag(y)|| < 0

|h(Az + Ay) — Ah(x) — Ah(y)|| < 0
[E(Az + Ay) — Ak(z) — Ak (y)[| < 0
for all \ € T' and all z,y € A,

1/ ([zyz]a) = [f (@)h(y)k(2)]x = [9(2)f()k(2)]x = [9(x)h(y) f(2)]x]| < 0

for all x,y,z € A, Then there exist unique linear mappings o,7 and k on A and a unique ternary
(o,7,&)-derivation D : A — X satisfying

0
(@) = (@) < 5
0
() = (@) < 5
0
Jk(z) = (el < 5

[1D(z) — f(z)]| < 6
for all x € A.
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