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Abstract

Let A be a Banach ternary algebra over a scalar field R or C and X be a Banach ternary A-module.
Let σ, τ and ξ be linear mappings on A, a linear mapping D : (A, [ ]A)→ (X, [ ]X) is called a ternary
(σ, τ, ξ)-derivation, if

D([xyz]A) = [D(x)τ(y)ξ(z)]X + [σ(x)D(y)ξ(z)]X + [σ(x)τ(y)D(z)]X

for all x, y, z ∈ A.

In this paper, we investigate ternary (σ, τ, ξ)-derivation on Banach ternary algebras, associated
with the following functional equation

f(
x+ y + z

4
) + f(

3x− y − 4z

4
) + f(

4x+ 3z

4
) = 2f(x) .

Moreover, we prove the generalized Ulam–Hyers stability of ternary (σ, τ, ξ)-derivations on Banach
ternary algebras.
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1. Introduction

Ternary algebraic operations were considered in the 19 th century by several mathematicians such
as A. Cayley [12] who introduced the notion of cubic matrix which in turn was generalized by
Kapranov, Gelfand and Zelevinskii in 1990 ( [30]). The simplest example of such non-trivial ternary
operation is given by the following composition rule:

{a, b, c}ijk =
∑
l,m,n

anilbljmcmkn, i, j, k... = 1, 2, ..., N.

Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes in view
of their possible applications in physics. Some significant physical applications are as follows (see
[3], [4], [8], [15]- [22], [24], [31], [32], [37], [54] and [56]). A ternary (associative) algebra (A, [ ])
is a linear space A over a scalar field F = (R or C) equipped with a linear mapping, the so-called
ternary product, [ ]: A × A × A → A such that [[abc]de] = [a[bcd]e] for all a, b, c, d, e ∈ A. This
notion is a natural generalization of the binary case. Indeed if (A,�) is a usual (binary) algebra then
[abc] := (a� b)� c induced a ternary product making A into a ternary algebra which will be called
trivial. It is known that unital ternary algebras are trivial and finitely generated ternary algebras
are ternary subalgebras of trivial ternary algebras [9]. There are other types of ternary algebras in
which one may consider other versions of associativity. Some examples of ternary algebras are (i)
”cubic matrices” introduced by Cayley [12] which were in turn generalized by Kapranov, Gelfand
and Zelevinskii [30]; (ii) the ternary algebra of polynomials of odd degrees in one variable equipped
with the ternary operation [p1p2p3] = p1 � p2 � p3, where � denotes the usual multiplication of
polynomials.

By a Banach ternary algebra we mean a ternary algebra equipped with a complete norm ‖.‖ such
that ‖[abc]‖ ≤ ‖a‖‖b‖‖c‖. If a ternary algebra (A,[ ]) has an identity, i.e. an element e such that
a = [aee] = [eae] = [eea] for all a ∈ A, then a� b := [aeb] is a binary product for which we have

(a� b)� c = [[aeb]ec] = [ae[bec]] = a� (b� c)

and

a� e = [aee] = a = [eea] = e� a,

for all a, b, c ∈ A and so (A,[ ]) may be considered as a (binary) algebra. Conversely, if (A,�) is any
(binary) algebra, then [abc] := a � b � c makes A into a ternary algebra with the unit e such that
a� b = [aeb].

Let A be a Banach ternary algebra and X be a Banach space. Then X is called a ternary Banach
A-module, if module operations A×A×X → X, A×X×A→ X, and X×A×A→ X are C-linear
in every variable. Moreover satisfy:

[[abc]A dx]X = [a[bcd]A x]X = [ab[cdx]X ]X ,

[abc]A xd]X = [a[bcx]X d]X = [ab[cxd]X ]X ,

[[xab]X cd]X = [x[abc]A d]X = [xa[bcd]A]X ,

[[axb]X cd]X = [a[xbc]X d]X = [ax[bcd]A]X ,
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[[abx]X cd]X = [a[bxc]X d]X = [ab[xcd]X ]X ,

for all x ∈ X and all a, b, c, d ∈ A, and

max{‖[xab]X‖, ‖[axb]X‖, ‖[abx]X‖} ≤ ‖a‖‖b‖‖x‖

for all x ∈ X and all a, b ∈ A.
Let (A, [ ]A) be a Banach ternary algebra over a scalar field R or C and (X, [ ]X) be a ternary

Banach A-module. A linear mapping D : (A, [ ]A)→ (X, [ ]X) is called a ternary derivation, if

D([abc]A) = [D(a)bc]X + [aD(b)c]X + [abD(c)]X (1.1)

for all a, b, c ∈ A.
Let σ, τ and ξ be linear mappings on A. A linear mapping D : (A, [ ]A) → (X, [ ]X) is called a

ternary (σ, τ, ξ)-derivation, if

D([abc]A) = [D(a)τ(b)ξ(c)]X + [σ(a)D(b)ξ(c)]X + [σ(a)τ(b)D(c)]X (1.2)

for all a, b, c ∈ A.
The stability of functional equations was first introduced by S. M. Ulam [55] in 1940. More

precisely, let G1, be a group, (G2, d) be a metric group and ε be a positive number, S. M. Ulam
asked, does there exist a δ > 0 such that if a function f : G1 −→ G2 satisfies the inequality
d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then there exists a homomorphism T : G1 → G2 such that
d(f(x), T (x)) < ε for all x ∈ G1?. When this problem has a solution, we say that the homomorphism
from G1 to G2 is stable.

In 1941, D. H. Hyers [27] gave a partial solution of Ulam,s problem for the case of approximate
additive mappings under the assumption that G1 and G2 are Banach spaces. In 1950, T. Aoki [1]
was the second author to treat this problem for additive mappings (see also [11]). In 1978, Th. M.
Rassias [48] generalized the theorem of Hyers by considering the stability problem with unbounded
Cauchy differences. This phenomenon of stability that was introduced by Th. M. Rassias [48] is
called the Hyers-Ulam-Rassias stability, according to J. M. Rassias Theorem, as follows:

Theorem 1.1. Let f : V −→ W be a mapping from a norm vector space V into a Banach space W
subject to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.3)

for all x, y ∈ V, where ε and p are constants with ε > 0 and p < 1. Then there exists a unique additive
mapping T : V −→ W such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p (1.4)

for all x ∈ V. If p < 0 then inequality (1.3) holds for all x, y 6= 0, and (1.4) for x 6= 0. Also, if the
function t 7→ f(tx) from R into W is continuous for each fixed x ∈ V, then T is linear.

On the other hand J. M. Rassias ( [44]- [46]) generalized the Hyers stability result by presenting
a weaker condition controlled by a product of different powers of norms. According to J. M. Rassias
Theorem [51]:
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Theorem 1.2. If it is assumed that there exist constants Θ ≥ 0 and p1, p2 ∈ R such that p =
p1 + p2 6= 1, and f : V → W is a mapping from a norm space V into a Banach space W such that
the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ Θ‖x‖p1‖y‖p2

for all x, y ∈ V holds, then there exists a unique additive mapping T : V → W such that

‖f(x)− T (x)‖ ≤ Θ

2− 2p
‖x‖p,

for all x ∈ V. If in addition for every x ∈ V, f(tx) is continuous in real t for each fixed x, then T is
linear (see [38]-[46]).

During the last decades several stability problems of functional equations have been investigated
by many mathematicians. A large list of references concerning the stability of functional equations
can be found in [5], [6], [11], [13]-[24], [25], [28], [33], [47] and [49]-[53]. Recently, R. Badora , [7]
and T. Miura et al. [34] proved the Ulam–Hyers stability, the Isac and Rassias–type stability [29],
the Hyers–Ulam–Rassias stability and the Bourgin–type superstability of ring derivations on Banach
algebras. On the other hand, C. Park [36] has contributed works to the stability problem of ternary
homomorphisms and ternary derivations(see also [26]).

The main purpose of the present paper is to offer the Ulam–Hyers stability of ternary (σ, τ, ξ)-
derivations on Banach ternary algebras subjected with the following functional equation

f(
x+ y + z

4
) + f(

3x− y − 4z

4
) + f(

4x+ 3z

4
) = 2f(x) . (1.5)

2. Ternary (σ, τ, ξ)-derivations on Banach ternary algebras

In this section, we investigate ternary (σ, τ, ξ)-derivations on Banach ternary algebras. Through-
out this section, assume that (A, [ ]A) is a Banach ternary algebra and (X, [ ]X) is a ternary Banach
A-module.

Lemma 2.1. Let V and W be linear spaces and let f : V → W be an additive mapping such that
f(µx) = µf(x) for all x ∈ V and all µ ∈ T1(:= {λ ∈ C ; |λ| = 1}). Then the mapping f is
C-linear. [35]

Lemma 2.2. Let f : A→ X be a mapping such that

f(
µx+ y + z

4
) + f(

3µx− y − 4z

4
) + f(

4µx+ 3z

4
) = 2µf(x), (2.1)

for all x, y, z ∈ A and µ ∈ T1. Then f is C-linear. [10]

The first result is as follows:

Theorem 2.3. Let p 6= 1 and θ be nonnegative real numbers, and let f : A→ X be a mapping and
σ, τ, and ξ be linear mappings on A such that

f(
µx+ y + z

4
) + f(

3µx− y − 4z

4
) + f(

4µx+ 3z

4
) = 2µf(x), (2.2)

for all µ ∈ T1 and all x, y, z ∈ A,

‖f([xyz]A)− [f(x)τ(y)ξ(z)]X − [σ(x)f(y)ξ(z)]X − [σ(x)τ(y)f(z)]X‖ ≤ θ‖x‖p‖y‖p‖z‖p (2.3)

for all x, y, z ∈ A. Then the mapping f : A→ X is a ternary (σ, τ, ξ)-derivation.



Ternary (σ, τ, ξ)-derivations on Banach ternary algebras...5 (2014) No. 1,23-35 27

Proof . Assume p < 1. By Lemma 2.2, the mapping f : A → X is C-linear. It follows from (2.3)
that

‖f([xyz]A)− [f(x)τ(y)ξ(z)]X − [σ(x)f(y)ξ(z)]X − [σ(x)τ(y)f(z)]X‖

=
1

n3
‖f([(nx)(ny)(nz)]A)− [f(nx)τ(ny)ξ(nz)]X − [σ(nx)f(ny)ξ(nz)]X − [σ(nx)τ(ny)f(nz)]X‖

≤ θ

n3
n3p‖x‖p‖y‖p‖z‖p

for all x, y, z ∈ A. Thus, since p < 1, by letting n tend to ∞ in last inequality, we obtain

f([xyz]A) = [f(x)τ(y)ξ(z)]X + [σ(x)f(y)ξ(z)]X + [σ(x)τ(y)f(z)]X

for all x, y, z ∈ A. Hence, the mapping f : A → X is a ternary (σ, τ, ξ)-derivation. Similarly, one
obtains the result for the case p > 1. �

We prove the following Ulam stability problem for functional equation (1.5) controlled by the
mixed type product-sum function

(x, y)→ θ(‖x‖p1‖y‖p2‖z‖p3 + ‖x‖p + ‖y‖p + ‖z‖p)

introduced by J. M. Rassias (see [47],[52]).

Theorem 2.4. Let p, p1, p2, p3 be real numbers such that p < 1, p1 + p2 + p3 < 1, and θ > 0. Suppose
f : A→ X is a mapping for which there exist mappings g, h, k : A→ A whit g(0) = h(0) = k(0) = 0
such that

‖f(
µx+ y + z

4
) + f(

3µx− y − 4z

4
) + f(

4µx+ 3z

4
)− 2µf(x)‖

≤ θ(‖x‖p1‖y‖p2‖z‖p3 + ‖x‖p + ‖y‖p + ‖z‖p), (2.4)

‖g(λx+ λy)− λg(x)− λg(y)‖ ≤ θ(‖x‖p + ‖y‖p) (2.5)

‖h(λx+ λy)− λh(x)− λh(y)‖ ≤ θ(‖x‖p + ‖y‖p) (2.6)

‖k(λx+ λy)− λk(x)− λk(y)‖ ≤ θ(‖x‖p + ‖y‖p) (2.7)

for all µ ∈ T1 and all x, y, z ∈ A,

‖f([xyz]A)− [f(x)h(y)k(z)]X − [g(x)f(y)k(z)]X − [g(x)h(y)f(z)]X‖ ≤ θ‖x‖p‖y‖p‖z‖p (2.8)

for all x, y, z ∈ A. Then there exist unique linear mappings σ, τ, and ξ from A to A and a unique
ternary (σ, τ, ξ)-derivation D : A→ X satisfying

‖g(x)− σ(x)‖ ≤ θ
2

2− 2p
‖x‖p (2.9)

‖h(x)− τ(x)‖ ≤ θ
2

2− 2p
‖x‖p (2.10)

‖k(x)− ξ(x)‖ ≤ θ
2

2− 2p
‖x‖p (2.11)

‖f(x)−D(x)‖ ≤ 2θ
2p

2− 2p
‖x‖p (2.12)

for all x ∈ A.



28 Eshaghi, Farokhzad and Hosseinioun

Proof . Setting µ = 1 and x = y = z = 0 in (2.4), yields f(0) = 0. Let us take µ = 1, z = 0 and
y = x in (2.4). Then we obtain

‖2f(
x

2
)− f(x)‖ ≤ 2θ‖x‖p , (2.13)

for all x ∈ A. In (2.13), replacing x
2

by x and then dividing by 2, we get

‖f(x)− 1

2
f(2x)‖ ≤ 2pθ‖x‖p ,

for all x ∈ A. We easily prove that by induction that

‖f(x)− 1

2n
f(2nx)‖ ≤ 2θ‖x‖p

n∑
i=1

2i(p−1). (2.14)

In order to show that the functions Dn(x) = 1
2n
f(2nx) form a convergent sequence, we use the

Cauchy convergence criterion. Indeed, replace x by 2mx and divide by 2m in (2.14), where m is an
arbitrary positive integer. We find that

‖ 1

2m
f(2mx)− 1

2m+n
f(2m+nx)‖ ≤ 2θ‖x‖p

m+n∑
i=m+1

2i(p−1)

for all positive integers. Hence, by the Cauchy criterion the limit D(x) = limn→∞Dn(x) exists for
each x ∈ A. By taking the limit as n→∞ in (2.12),

‖f(x)−D(x)‖ ≤ 2θ‖x‖p
∞∑
i=1

2i(p−1)

and (2.12) holds for all x ∈ A. Now, we have

‖D(
µx+ y + z

4
) +D(

3µx− y − 4z

4
) +D(

4µx+ 3z

4
)− 2µD(x)‖

= lim
n→∞

1

2n
‖f(

2nµx+ 2ny + 2nz

4
) + f(

3.2nµx− 2ny − 4.2nz

4
)

+f(
4.2nµx+ 3.2nz

4
)− 2µf(2nx)‖A ≤ lim

n→∞

1

2n
θ(‖2nx‖p1‖2ny‖p2‖2nz‖p3

+‖2nx‖p + ‖2ny‖p + ‖2nz‖p) = lim
n→∞

2n(p1+p2+p3−1)θ(‖x‖p1‖y‖p2‖z‖P3)

+ lim
n→∞

2n(p−1)θ(‖x‖p + ‖y‖p + ‖z‖P ) = 0

for all µ ∈ T1 and all x, y, z ∈ A. Hence

D(
µx+ y + z

4
) +D(

3µx− y − 4z

4
) +D(

4µx+ 3z

4
) = 2µD(x)

for all µ ∈ T1 and all x, y, z ∈ A. So by Lemma 2.2, D is C-linear.



Ternary (σ, τ, ξ)-derivations on Banach ternary algebras...5 (2014) No. 1,23-35 29

Also put λ = 1 in (2.5) to obtain

‖g(x+ y)− g(x)− g(y)‖ ≤ θ(‖x‖p + ‖y‖P ) (2.15)

fix x ∈ A.Replacing y by x and then dividing by 2 in (2.15), we get

‖1

2
g(2x)− g(x)‖ ≤ θ‖x‖p

one can use the induction to show that

‖ 1

2m+n
g(2m+nx)− 1

2m
g(2mx)‖ ≤ θ‖x‖p

m+n−1∑
i=m

2(i−1)(p−1) (2.16)

for all x ∈ A. It follows from the convergence of series (2.16) that the sequence {g(2
nx)

2n
} is cauchy.

Hence, the limit σ(x) = limn→∞
g(2nx)
2n

exists for all x ∈ A. we easily prove that by (2.5) that
σ(λx+ λy) = λσ(x) + λσ(y) and by (2.16) that

‖g(x)− σ(x)‖ ≤ θ‖x‖p
∞∑
i=1

2(i−1)(p−1)

and (2.9) holds for all x ∈ A. Similarly there exist linear mappings τ and ξ on A such that (2.10)
and (2.11) hold for all x ∈ A. On the other hand

‖D([xyz]A)− [D(x)τ(y)ξ(z)]X − [σ(x)D(y)ξ(z)]X − [σ(x)τ(y)D(x)]X‖

= lim
n→∞

1

8n
‖f([(2nx)(2ny)(2nz)]A)− [f(2nx)h(2ny)k(2nz)]X

−[g(2nx)f(2ny)k(2nz)]X − [g(2nx)h(2ny)f(2nz)]X‖

≤ lim
n→∞

θ

8n
‖2nx‖p‖2ny‖p‖2nz‖p

= lim
n→∞

θ8n(p−1)‖x‖p‖y‖p‖z‖p

= 0

for all x, y, z ∈ A, which means that

D([xyz]A) = [D(x)τ(t)ξ(z)]X + [σ(x)D(y)ξ(z)]X + [σ(x)τ(y)D(z)]X .

Therefore, we conclude that D is a ternary (σ, τ, ξ)-derivation. Suppose that there exists another
ternary (σ, τ, ξ)-derivation D

′
: A→ X satisfying (2.12). Since D

′
(x) = 1

2n
D

′
(2nx), we see that

‖D(x)−D′
(x)‖ = 1

2n
‖D(2nx)−D′

(2nx)‖

≤ 1
2n

(‖f(2nx)−D(2nx)‖+ ‖f(2nx)−D′
(2nx)‖)

≤ 4θ 2p

2−2p 2n(p−1)‖x‖p ,

which tends to zero as n → ∞ for all x ∈ A. Therefore D
′

= D as claimed and similarly we can
prove that σ, τ and ξ are unique on A and the proof of the theorem is complete. �
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Theorem 2.5. Let p, p1, p2, p3 be real numbers such that p > 1, p1 + p2 + p3 > 1, and θ > 0. Suppose
f : A → X is a mapping for which there exist mappings g, h, k on A whit g(0) = h(0) = k(0) = 0
such that

‖f(
µx+ y + z

4
) + f(

3µx− y − 4z

4
) + f(

4µx+ 3z

4
)− 2µf(x)‖

≤ θ(‖x‖p1‖y‖p2‖z‖p3 + ‖x‖p + ‖y‖p + ‖z‖p), (2.17)

‖g(λx+ λy)− λg(x)− λg(y)‖ ≤ θ(‖x‖p + ‖y‖p) (2.18)

‖h(λx+ λy)− λh(x)− λh(y)‖ ≤ θ(‖x‖p + ‖y‖p) (2.19)

‖k(λx+ λy)− λk(x)− λk(y)‖ ≤ θ(‖x‖p + ‖y‖p) (2.20)

for all µ ∈ T1 and all x, y, z ∈ A,

‖f([xyz]A)− [f(x)h(y)k(z)]X − [g(x)f(y)k(z)]X − [g(x)h(y)f(z)]X‖ ≤ θ‖x‖p‖y‖p‖z‖p (2.21)

for all µ ∈ T1 and all x, y, z ∈ A. Then there exist unique linear mappings σ, τ and k on A and a
unique ternary (σ, τ, ξ)-derivation D : A→ X satisfying

‖g(x)− σ(x)‖ ≤ θ
2

2p − 2
‖x‖p (2.22)

‖h(x)− τ(x)‖ ≤ θ
2

2p − 2
‖x‖p (2.23)

‖k(x)− ξ(x)‖ ≤ θ
2

2p − 2
‖x‖p (2.24)

‖D(x)− f(x)‖ ≤ 2θ
2p

2p − 2
‖x‖p (2.25)

for all x ∈ A.

Proof . Setting µ = 1 and x = y = z = 0 in (2.17), yields f(0) = 0. Let us take µ = 1, z = 0 and
y = x in (2.17). Then we obtain

‖2f(
x

2
)− f(x)‖ ≤ 2θ‖x‖p , (2.26)

for all x ∈ A. By induction, we get

‖2nf(
x

2n
)− f(x)‖ ≤ 2θ‖x‖p

n−1∑
i=0

2i(1−p). (2.27)

In order to show that the functions Dn(x) = 2nf( x
2n

) form a convergent sequence, we use the
Cauchy convergence criterion. Indeed, replace x by x

2m
and multiply by 2m in (2.27), where m is an

arbitrary positive integer. We find that

‖2m+nf(
x

2m+n
)− 2mf(

x

2m
)‖ ≤ 2θ‖x‖p

m+n−1∑
i=m

2i(1−p)



Ternary (σ, τ, ξ)-derivations on Banach ternary algebras...5 (2014) No. 1,23-35 31

for all positive integers. Hence, by the Cauchy criterion the limit D(x) = limn→∞Dn(x) exists for
each x ∈ A. By taking the limit as n→∞ in (2.27) we see that

‖D(x)− f(x)‖ ≤ 2θ‖x‖p
∞∑
i=0

2i(1−p)

and (2.25) holds for all x ∈ A. Thus, we have

‖D(
µx+ y + z

4
) +D(

3µx− y − 4z

4
) +D(

4µx+ 3z

4
)− 2µD(x)‖

= lim
n→∞

2n‖f(
2−nµx+ 2−ny + 2−nz

4
) + f(

3.2−nµx− 2−ny − 4.2−nz

4
)

+f(
4.2−nµx+ 3.2−nz

4
)− 2µf(2−nx)‖

≤ lim
n→∞

2nθ(‖2−nx‖p1‖2−ny‖p2‖2−n‖p3 + ‖2−nx‖p + ‖2−ny‖p + ‖2−nz‖p)

= lim
n→∞

2n(1−p1+p2+p3)θ(‖x‖p1‖y‖p2‖z‖P3) + lim
n→∞

2n(1−p)θ(‖x‖p + ‖y‖p + ‖z‖P )

= 0

for all µ ∈ T1 and all x, y, z ∈ A. Hence,

D(
µx+ y + z

4
) +D(

3µx− y − 4z

4
) +D(

4µx+ 3z

4
) = 2µD(x)

for all µ ∈ T1 and all x, y, z ∈ A. So by Lemma 2.2, D is C-linear.
Also put λ = 1 in (2.18) to obtain

‖g(x+ y)− g(x)− g(y)‖ ≤ θ(‖x‖p + ‖y‖P ) (2.28)

fix x ∈ A. Replacing y by x and then replacing x by x
2

in (2.28), we get

‖2g(
x

2
)− g(x)‖ ≤ 2θ‖x

2
‖p

one can use the induction to show that

‖2m+ng(
x

2m+n
)− 2mg(

x

2m
)‖ ≤ θ‖x‖p

m+n∑
i=m+1

2(i)(1−p) (2.29)

for all x ∈ A. It follows from the convergence of series (2.29) that the sequence {2ng( x
2n

)} is cauchy.
Hence the limit σ(x) = limn→∞ 2ng( x

2n
) exists for all x ∈ A. we easily prove that by (2.18) that

σ(λx+ λy) = λσ(x) + λσ(y) and by (2.29) that

‖g(x)− σ(x)‖ ≤ θ‖x‖p
∞∑
i=1

2(i)(1−p)
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and (2.22) holds for all x ∈ A. Similarly there exist linear mappings τ and ξ on A such that (2.23)
and (2.24) hold for all x ∈ A. Thus, we have

‖D([xyz]A)− [D(x)τ(y)ξ(z)]X − [σ(x)D(y)ξ(z)]X − [σ(x)τ(y)D(z)]X‖

= lim
n→∞

8n‖(f [(2−nx)(2−ny)(2−nz)]A)− [f(2−nx)h(2−ny)k(2−nz)]X

−[g(2−nx)f(2−ny)k(2−nz)]X − [g(2−nx)h(2−ny)f(2−nz)]X‖

≤ lim
n→∞

8nθ‖ x
2n
‖p‖ y

2n
‖p‖ z

2n
‖p = lim

n→∞
θ8n(1−p)‖x‖p‖y‖p‖z‖p

= 0

for all x ∈ A, which means that

D([xyz]A) = [D(x)τ(y)ξ(z)]X + [σ(x)D(y)ξ(z)]X + [σ(x)τ(y)D(z)]X .

Therefore, we conclude that D is a ternary (σ, τ, ξ)-derivation. Suppose that there exists another
ternary (σ, τ, ξ)-derivation D

′
: A→ X satisfying (2.25) Since D

′
(x) = 2nD

′
( x
2n

), we see that

‖D(x)−D′
(x)‖ = 2n‖D( x

2n
)−D′

( x
2n

)‖

≤ 2n(‖f( x
2n

)−D( x
2n

)‖+ ‖f( x
2n

)−D′
( x
2n

)‖)

≤ 4θ 2p

2p−22n(1−p)‖x‖p ,

which tends to zero as n→∞ for all x ∈ A. Hence, D
′

= D as claimed and similarly we can prove
that σ, τ and ξ are unique on A and proof of theorem is complete. �

We are going to investigate the Hyers–Ulam–Rassias stability problem for functional equation
(1.5).

Corollary 2.6. Let P ∈ (−∞, 1) ∪ (1,∞), θ > 0. Suppose f : A→ X is a mapping for which there
exist mappings g, h, k on A whit g(0) = h(0) = k(0) = 0 such that

‖f(
µx+ y + z

4
) + f(

3µx− y − 4z

4
) + f(

4µx+ 3z

4
)− 2µf(x)‖ ≤ θ(‖x‖p + ‖y‖p + ‖z‖p),

for all µ ∈ T1 and all x, y, z ∈ A,

‖g(λx+ λy)− λg(x)− λg(y)‖ ≤ θ(‖x‖p + ‖y‖p)

‖h(λx+ λy)− λh(x)− λh(y)‖ ≤ θ(‖x‖p + ‖y‖p)

‖k(λx+ λy)− λk(x)− λk(y)‖ ≤ θ(‖x‖p + ‖y‖p)

for all λ ∈ T1 and all x, y ∈ A,

‖f([xyz]A)− [f(x)h(y)k(z)]X − [g(x)f(y)k(z)]X − [g(x)h(y)f(z)]X‖ ≤ θ‖x‖p‖y‖p‖z‖p
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for all x, y, z ∈ A. Then there exist unique linear mappings σ, τ and k on A and a unique ternary
(σ, τ, ξ)-derivation D : A→ X satisfying

‖g(x)− σ(x)‖ ≤ θ
2

|2p − 2|
‖x‖p

‖h(x)− τ(x)‖ ≤ θ
2

|2p − 2|
‖x‖p

‖k(x)− ξ(x)‖ ≤ θ
2

|2p − 2|
‖x‖p

‖D(x)− f(x)‖ ≤ 2θ
2p

|2p − 2|
‖x‖p

for all x ∈ A.

By Theorems 2.4 and 2.5 we solve the following Hyers–Ulam stability problem for functional
equation (1.5).

Corollary 2.7. Let θ be a positive real number. Suppose f : A → X is a mapping for which there
exist mappings g, h, k on A whit g(0) = h(0) = k(0) = 0 such that

‖f(
µx+ y + z

4
) + µf(

3µx− y − 4z

4
) + f(

4µx+ 3z

4
)− 2µf(x)‖ ≤ θ,

for all µ ∈ T1 and all x, y, z ∈ A,

‖g(λx+ λy)− λg(x)− λg(y)‖ ≤ θ

‖h(λx+ λy)− λh(x)− λh(y)‖ ≤ θ

‖k(λx+ λy)− λk(x)− λk(y)‖ ≤ θ

for all λ ∈ T1 and all x, y ∈ A,

‖f([xyz]A)− [f(x)h(y)k(z)]X − [g(x)f(y)k(z)]X − [g(x)h(y)f(z)]X‖ ≤ θ

for all x, y, z ∈ A, Then there exist unique linear mappings σ, τ and k on A and a unique ternary
(σ, τ, ξ)-derivation D : A→ X satisfying

‖g(x)− σ(x)‖ ≤ θ

2

‖h(x)− τ(x)‖ ≤ θ

2

‖k(x)− ξ(x)‖ ≤ θ

2

‖D(x)− f(x)‖ ≤ θ

for all x ∈ A.
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