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Abstract

The fixed point result in Mustafa-Sims metrical structures obtained by Karapinar and Agarwal
[Fixed Point Th. Appl., 2013, 2013:154] is deductible from a corresponding one stated in terms of
anticipative contractions over the associated (standard) metric space.
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1. Introduction

Let X be a nonempty set; and d : X ×X → R+ := [0,∞[ be a metric over it; the couple (X, d)
is called a metric space. Call the subset Y of X, almost singleton (in short: asingleton), provided
[y1, y2 ∈ Y implies y1 = y2]; and singleton, if, in addition, Y is nonempty; note that, in this case,
Y = {y}, for some y ∈ X. Further, let T ∈ F(X) be a selfmap of X. [Here, given A,B 6= ∅, F(A,B)
stands for the class of all functions f : A→ B; if A = B, we write F(A) in place of F(A,A)]. Denote
Fix(T ) = {x ∈ X;x = Tx}; each point of this set is referred to as fixed under T . The determination
of such elements is to be performed in the context below, comparable with the one in Rus [32, Ch 2,
Sect 2.2]:

1a) We say that T is a Picard operator (modulo d) if, for each x ∈ X, the iterative sequence
(T nx;n ≥ 0) is d-convergent

1b) We say that T is a strong Picard operator (modulo d) if, for each x ∈ X, (T nx;n ≥ 0) is
d-convergent, and limn(T nx) belongs to Fix(T )
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1c) We say that T is a globally strong Picard operator (modulo d), if it is a strong Picard operator
(modulo d), and (in addition), Fix(T ) is an asingleton (or, equivalently: singleton).

The sufficient (regularity) conditions for such properties are being founded on orbital concepts
(in short: o-concepts). Namely, call the sequence (zn;n ≥ 0) in X, orbital (modulo T ), when it is a
subsequence of (T nx;n ≥ 0), for some x ∈ X.

1d) Call (X, d), o-complete, provided (for each o-sequence) d-Cauchy =⇒ d-convergent

1e) We say that T is (o, d)-continuous, if [(zn)=o-sequence and zn
d−→ z] imply Tzn

d−→ Tz.
When the orbital properties are ignored, these conventions may be written in the usual way; we

do not give details.
Concerning the existence results for such points, a basic one was obtained in 1974 by Cirić [8].

Call the selfmap T , (d;α)-contractive (where α ≥ 0), provided

(a01) (∀x, y ∈ X): d(Tx, Ty) ≤
αmax{d(x, Tx), d(x, y), d(x, Ty), d(Tx, y), d(y, Ty)}.

Note that, by the definition of ”max” operator, this property gives its ”implicit” version

(a02) (∀x, y ∈ X): d(Tx, Ty) ≤ αA(x, y);
where A(x, y) = diam[T (x; 1) ∪ T (y; 1)].

Here, diam(U) = sup{d(x, y);x, y ∈ U} is the diameter of the subset U ⊆ X; and

T (x;n) := {T ix; 0 ≤ i ≤ n}, x ∈ X, n ≥ 0;

referred to as: the orbital n-segment generated by x. The reciprocal inclusion [(a02) =⇒ (a01)] is
also true, when 0 ≤ α < 1, as it can be directly seen.

Theorem 1.1. Suppose that T is (d;α)-contractive, for some α ∈ [0, 1[. In addition, let (X, d) be
o-complete. Then, T is globally strong Picard (modulo d).

This result extends the ones in Banach [5], Kannan [19], and Zamfirescu [39]; see also Hardy
and Rogers [16]. Since all quoted statements have a multitude of applications to operator equations,
Theorem 1.1 was the subject of many extensions. The most natural one is to pass from the ”linear”
type contraction above to (implicit) ”functional ”contractive conditions like

(a03) F (d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) ≤ 0,
for all x, y ∈ X;

where F : R6
+ → R is a function. For a basic extension of this type, we refer to Daneš [9]; further

choices of F may be found in Rhoades [31] and the references therein. Note that, all such conditions
are non-anticipative; i.e., the right member of (a03) does not contain terms like d(T iu, T jv), u, v ∈
{x, y}, where i + j ≥ 3; so, the question arises of to what extent it is possible to have anticipative
contractions (in the above sense). A positive answer to this was recently obtained, in the ”linear”
setting of Theorem 1.1, by Dung [12]. It is our aim in the present exposition to give a further
extension of this last result, within the functional context we just quoted. As an argument for its
usefulness, a fixed point theorem in Mustafa-Sims metric spaces due to Karapinar and Agarwal [20]
is derived. This, among others, shows that a reduction of their statement to standard metrical ones
is possible, along the lines described by Jleli and Samet [18]; in contradiction with authors’ claim.
Further aspects will be delineated elsewhere.
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2. Functional anticipative contractions

Let (X, d) be a metric space; and T be a selfmap of X. In the following, we are interested to
solve the problem of introductory part with the aid of (implicit) contractive conditions like

(b01) (∀x, y ∈ X): d(Tx, Ty) ≤ Φ(d(x, Tx), d(x, T 2x), d(x, y), d(x, Ty);
d(Tx, T 2x), d(Tx, y), d(Tx, Ty); d(T 2x, y), d(T 2x, Ty); d(y, Ty));

where Φ : R10
+ → R+ is a certain function. As precise, these conditions are anticipative counterparts

of the (non-anticipative) condition (a03). To describe them, some conventions are needed. Given
ϕ ∈ F(R+), we say that T is anticipative (d;ϕ)-contractive, provided

(b02) (∀x, y ∈ X): d(Tx, Ty) ≤ ϕ(B(x, y));
where B(x, y) = diam[T (x; 2) ∪ T (y; 1)].

The functions ϕ to be considered here are introduced as follows. Call ϕ ∈ F(R+), increasing,
provided [t1 ≤ t2 implies ϕ(t1) ≤ ϕ(t2)]; denote the class of all these as F(in)(R+). For an easy
reference, we list the basic properties for such functions to be used further:

i) Given ϕ ∈ F(in)(R+), we say that it is regressive, in case

ϕ(t) < t, for all t > 0; hence, ϕ(0) = 0.

Note that this property holds in case of ϕ being super regressive:

ϕ(s+ 0) < s, for all s > 0; hence, ϕ(0) = 0.

Here, as usually, ϕ(s+ 0) = limt→s+ ϕ(t) is the right limit of ϕ at s > 0.
ii) Call ϕ ∈ F(in)(R+), Matkowski admissible [22], provided

(b03) ϕn(t)→ 0 as n→∞, for all t > 0;

here, for each n ≥ 0, ϕn stands for the n-th iterate of ϕ. Note that, any such function is regressive; cf.
Matkowski [23]. On the other hand, each super regressive ϕ ∈ F(in)(R+) is Matkowski admissible;
an implicit proof of this may be found in Boyd and Wong [6].

iii) For the last property, we need a convention. Let ϕ ∈ F(in)(R+) be regressive. Denote
ψ(t) = t − ϕ(t), t ∈ R+; it is an element of F(R+); referred to as the complement of ϕ. Remember
that, the coercive property for the complement function ψ(.) means:

(b04) limt→∞(ψ(t)) =∞: i.e.: ∀α > 0, ∃β > α: [t > β =⇒ ψ(t) > α].

By definition, it will be referred to as: ϕ is complement coercive; note that, passing to the negation
operator, this property may be written as:

(b05) ∀α > 0, ∃β > α: [t ≤ α + ϕ(t) =⇒ t ≤ β].

As a consequence, the function

(b06) χ(r) = sup{t ∈ R+; t ≤ r + ϕ(t)}, r ∈ R+

is well defined, as an element of F(in)(R+); moreover (as ϕ ∈ F(in)(R+) is regressive)

χ(0) = 0; χ(r) ≥ r, for all r > 0. (2.1)

We are now in position to state our basic result of this section.
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Theorem 2.1. Suppose that T is anticipative (d;ϕ)-contractive, for some regressive, Matkowski ad-
missible, and complement-coercive function ϕ ∈ F(in)(R+). In addition, let (X, d) be o-complete;
and one of the extra conditions below holds

2a) T is o-continuous [(xn)=o-sequence and xn
d−→ x imply Txn

d−→ Tx]
2b) ϕ is super regressive [ϕ(s+ 0) < s, ∀s > 0].

Then, T is globally strong Picard (modulo d); i.e.,
j) Fix(T ) = {z}, for some z ∈ X
jj) T nx

d−→ z as n→∞, for each x ∈ X.

Proof .We firstly check the asingleton property of Fix(T ). Let z1, z1 ∈ Fix(T ); and suppose by
contradiction that z1 6= z2; hence, d(z1, z2) > 0. Clearly,

T (z1; 2) = {z1}, T (z2; 1) = {z2}; whence, B(z1, z2) = d(z1, z2);

so that, by the contractive condition (and ϕ=regressive)

d(z1, z2) = d(Tz1, T z2) ≤ ϕ(d(z1, z2)) < d(z1, z2);

contradiction. Hence, necessarily z1 = z2; and the asingleton property follows. It remains now to
establish the strong Picard property (modulo d) for T . Fix some x0 ∈ X; and put (xn = T nx0;
n ≥ 0); clearly, this is an orbital sequence. If xn = xn+1 for some n ≥ 0, we are done; so, without
loss, one may assume that

(b07) xn 6= xn+1 (hence, ρn := d(xn, xn+1) > 0), ∀n.

Remember that, for each x ∈ X and each n ≥ 0, T (x;n) = {T ix; 0 ≤ i ≤ n} stands for the orbital
n-segment generated by x. Put also

(b08) T (x;∞) = {T ix; i ≥ 0} = ∪{T (x;n);n ≥ 0};
and call it: the orbital set generated by x. By the introduced notations, we have, for each k ≥ 0,

T (xk;n) = {xh; k ≤ h ≤ k + n}, n ≥ 0; T (xk;∞) = {xh;h ≥ k}. (2.2)

Moreover, by the working hypothesis above,

diamT (xk;n) ≥ ρk := d(xk, xk+1) > 0, for all k ≥ 0, n ≥ 1. (2.3)

There are several steps to be passed.
I) We start with the following useful evaluation

Lemma 2.2. Under the introduced notations,

d(xi, xj) ≤ ϕ(diamT (xi−1; j − i+ 1)), whenever 1 ≤ i ≤ j. (2.4)

Proof .(Lemma 2.2) The case of i = j is clear; so, without loss, one may assume i < j; hence,
i+ 1 ≤ j. By definition (and (2.2) above)

B(xi−1, xj−1) = diam[T (xi−1; 2) ∪ T (xj−1; 1)] = diam{xi−1, xi, xi+1, xj−1, xj}
≤ diam{xn; i− 1 ≤ n ≤ j} = diamT (xi−1; j − i+ 1);

wherefrom, combining with the contractive condition,

d(xi, xj) ≤ ϕ(B(xi−1, xj−1)) ≤ ϕ(diamT (xi−1; j − i+ 1)).

This ends the argument. �
II) The following consequence of this fact is to be noted.
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Lemma 2.3. Denote α = ρ0 := d(x0, x1)(> 0), and β = χ(α) (hence, β ≥ α; see above). Then,

diamT (x0;n) ≤ β, for all n ≥ 1; (2.5)

so, necessarily, diamT (x0;∞) ≤ β.

Proof .(Lemma 2.3) The case n = 1 is clear, via β ≥ α; so, we may assume that n ≥ 2. For each
(i, j) with 1 ≤ i ≤ j ≤ n, we have, by Lemma 2.2,

d(xi, xj) ≤ ϕ(diamT (xi−1; j − i+ 1)) ≤ ϕ(diamT (x0;n)) < diamT (x0;n);

so that, necessarily,
diamT (x0;n) = d(x0, xk), for some k ∈ {1, ..., n}.

On the other hand, the same auxiliary statement gives

d(x1, xk) ≤ ϕ(diamT (x0; k)) ≤ ϕ(diamT (x0;n)).

Putting these together yields, by the triangle inequality,

diamT (x0;n) = d(x0, xk) ≤ d(x0, x1) + d(x1, xk) ≤
d(x0, x1) + ϕ(diamT (x0;n)) = α + ϕ(diamT (x0;n));

wherefrom, diamT (x0;n) ≤ χ(α) = β; as claimed. �
III) The following d-Cauchy property of our iterative sequence is now available.

Lemma 2.4. With the same notations as before, one has

diamT (xn;∞) ≤ ϕn(β), for all n ≥ 0; (2.6)

hence, (xn;n ≥ 0) is a d-Cauchy o-sequence.

Proof .(Lemma 2.4) The case n = 0 is established in Lemma 2.3; so, we may assume that n ≥ 1.
By Lemma 2.2 one has, for each (i, j) with n ≤ i < j,

d(xi, xj) ≤ ϕ(diamT (xi−1, j − i+ 1)) ≤ ϕ(diamT (xn−1;∞)).

Passing to supremum over such (i, j), yields diamT (xn;∞) ≤ ϕ(diamT (xn−1;∞)). After n steps,
one thus gets

diamT (xn;∞) ≤ ϕn(diamT (x0;∞)) ≤ ϕn(β);

and conclusion follows. �
IV) As (X, d) is o-complete, xn

d−→ z, for some (uniquely determined) z ∈ X. There are two
alternatives to be discussed.

Case IV-1. Suppose that T is o-continuous. Then, (yn := Txn = xn+1;n ≥ 0), d-converges

to Tz. On the other hand, (yn;n ≥ 0) is a subsequence of (xn;n ≥ 0); so that, yn
d−→ z. As d is

sufficient, this yields z = Tz.
Case IV-2. Suppose that ϕ is super regressive. To get the desired fact, we use a reductio ad

absurdum argument. Namely, assume that z 6= Tz; i.e., b := d(z, Tz) > 0. From the contractive
property, we have

d(xn+1, T z) ≤ ϕ(B(xn, z)), for each n ≥ 0; (2.7)
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where (cf. the previous notations),

B(xn, z) = diam[T (xn, 2) ∪ T (z; 1)] = diam{xn, xn+1, xn+2, z, T z}, n ≥ 0.

Note that, by the d-continuity of the map (x, y) 7→ d(x, y), the sequence (λn := d(xn+1, T z);n ≥ 0)
fulfills λn → b as n → ∞. On the other hand, by the very definition above, the sequence (µn :=
B(xn, z);n ≥ 0) fulfills

µn ≥ b, ∀n; µn → b, as n→∞.

There are two sub-cases to discuss.
Sub-case IV-2-1. Suppose that

(b09) for each h ≥ 0, there exists k > h, such that µk = b.

As a consequence, there exists a sequence of ranks (i(n);n ≥ 0) with i(n)→∞ as n→∞, such that
µi(n) = b, ∀n. Passing to limit as n → ∞, over this subsequence, in the contractive property (2.7),
yields b ≤ ϕ(b); contradiction.

Sub-case IV-2-2. Assume that the opposite alternative is true: there exists a certain rank
h ≥ 0, such that

(b10) n > h =⇒ µn > b; hence µn → b+ as n→∞.

Passing to limit in the same contractive property (2.7), gives b ≤ ϕ(b+ 0) < b; again a contradiction.
Summing up, the working hypothesis about z ∈ X cannot be accepted; so, we necessarily have
z = Tz. The proof is thereby complete. �

In particular, assume that the function ϕ is linear; i.e.: ϕ(t) = αt, t ∈ R+, for some α ∈ [0, 1[.
Then, ϕ is increasing, super regressive, Matkowski admissible and complement-coercive. By Theorem
2.1 we get the fixed point statement in Dung [12]. Given α ≥ 0, call T , anticipative (d;α)-contractive,
provided

(b11) (∀x, y ∈ X): d(Tx, Ty) ≤ αB(x, y);
where (see above) B(x, y) = diam{x, Tx, T 2x, y, Ty}.

Theorem 2.5. Suppose that T is anticipative (d;α)-contractive, for some α ∈ [0, 1[. In addition,
let (X, d) be o-complete. Then, T is globally strong Picard (modulo d).

(C) For the applications to be considered, the following particular case of this theorem will be
useful. Denote, for x, y ∈ X,

(b12) P (x, y) := max{d(x, Tx) + d(Tx, y), d(T 2x, y) + d(T 2x, Ty),
d(Tx, T 2x) + d(Tx, y), d(Tx, y) + d(Tx, Ty), d(x, y), d(x, Ty), d(y, Ty)},
(b13) Q(x, y) := max{d(x, Tx) + d(Tx, T 2x), d(x, Tx) + d(Tx, y),
d(T 2x, Ty) + d(y, Ty), d(Tx, T 2x) + d(T 2x, Ty), d(x, y), d(x, Ty)}.

Further, given some γ ≥ 0, we say that T is (d, P,Q; γ)-contractive, provided

(b14) (∀x, y ∈ X): d(Tx, Ty) ≤ γmax{P (x, y), Q(x, y)}.

Note that, by the convention above, this contractive condition is anticipative.
The following fixed point result is available.

Theorem 2.6. Suppose that T is (d, P,Q; γ)-contractive, for some γ ∈ [0, 1/2[. In addition, let
(X, d) be complete. Then, T is globally strong Picard (modulo d).
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Proof .By the very conventions above, one has

P (x, y), Q(x, y) ≤ 2B(x, y), ∀x, y ∈ X.

So, by the accepted contractive conditions, it follows that

(∀x, y ∈ X) : d(Tx, Ty) ≤ 2γB(x, y).

Hence, the preceding result applies, with α = 2γ. This ends the argument. �
As a consequence, Theorem 2.6 is indeed reducible to the developments above. However, for

simplicity reasons, it would be useful having a separate proof of it.
Proof .(Theorem 2.6) [Alternate] First, we establish the asingleton property of Fix(T ). Let
r, s be two points in Fix(T ). By definition, P (r, s) = 2d(r, s), Q(r, s) = d(r, s); so that, from the
contractive condition,

d(r, s) = d(Tr, Ts) ≤ 2γd(r, s).

This, along with 0 ≤ 2γ < 1, yields d(r, s) = 0; whence, r = s. It remains now to establish the
strong Picard (modulo d) property of T . To this end, we start from

P (x, Tx), Q(x, Tx) ≤ d(x, Tx) + d(Tx, T 2x), ∀x ∈ X. (2.8)

By the contractive condition, we therefore get

d(Tx, T 2x) ≤ βd(x, Tx), ∀x ∈ X; (2.9)

where 0 ≤ β := γ/(1 − γ) < 1. Fix some x0 ∈ X; and put (xn = T nx0;n ≥ 0). By the above
evaluation,

d(xn, xn+1) ≤ βnd(x0, x1), ∀n.

This tells us that (xn;n ≥ 0) is a d-Cauchy sequence. As (X, d) is complete, there must be some

(uniquely determined) r ∈ X such that xn
d−→ r. We claim that r = Tr; and this completes the

argument. By the contractive condition,

d(xn+1, T r) ≤ γmax{P (xn, r), Q(xn, r)}, ∀n. (2.10)

But, from the very definitions above, one has, for all n ≥ 0,

P (xn, r) = max{d(xn, xn+1) + d(xn+1, r), d(xn+2, r) + d(xn+2, T r),
d(xn+1, xn+2) + d(xn+1, r), d(xn+1, r) + d(xn+1, T r),
d(xn, r), d(xn, T r), d(r, T r)},

Q(xn, r) = max{d(xn, xn+1) + d(xn+1, xn+2), d(xn, xn+1) + d(xn+1, r),
d(xn+2, T r) + d(r, T r), d(xn+1, xn+2) + d(xn+2, T r), d(xn, r), d(xn, T r)}.

This yields
lim
n
P (xn, r) = d(r, T r), lim

n
Q(xn, r) = 2d(r, T r);

whence, passing to limit in the relation (2.10), one gets d(r, T r) ≤ 2γd(r, T r). As 0 ≤ 2γ < 1, this
yields d(r, T r) = 0; so that, r = Tr. The proof is complete. �

Note that, further extensions of the obtained facts are possible, in the class of dislocated metric
spaces defined under the model of Hitzler [17, Ch 1, Sect 1.4]; see also Amini-Harandi [2]. Some
other aspects may be found in Yeh [38]; see also Popa [30].
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3. Dhage metrics

As already precise in the introductory part, there are many generalizations of the Banach’s fixed
point theorem. Here, we shall be interested in the structural way of extension, consisting of the
”dimensional” parameters attached to the ambient metric being increased. For example, this is
the case when the initial metric d : X × X → R+ is to be substituted by a generalized metric
Λ : X × X × X → R+ which fulfills – at this level – the conditions imposed to the standard
case. An early construction of this type was proposed in 1963 by Gaehler [14]; the resulting map
B : X ×X ×X → R+ was referred to as a 2-metric on X. Short after, this structure was intensively
used in many fixed point theorems, under the model due to Namdeo et al [28], Negoescu [29] and
others; see also Ashraf [3, Ch 3], for a consistent references list. However, it must be noted that
this 2-metric is not a true generalization of an ordinary metric; for – as shown in Ha et al [15] –
the associated real function B(., ., .) is not B-continuous in its arguments. This, among others, led
Dhage [10] to construct – via different geometric reasons – a new such object.

(A) Let X be some nonempty set. By a Dhage metric (in short: D-metric) over X, we shall
mean any map D : X ×X ×X → R+, with the properties

(c01) D(x, y, z) = D(x, z, y) = D(y, x, z) = D(y, z, x) =
D(z, x, y) = D(z, y, x), ∀x, y, z ∈ X (symmetric)

(c02) (x = y = z) ⇐⇒ D(x, y, z) = 0 (reflexive sufficient)

(c03) D(x, y, z) ≤ D(x, y, u) +D(x, u, z) +D(u, y, z),
for all x, y, z ∈ X and all u ∈ X (tetrahedral).

In this case, the couple (X,D) will be termed a D-metric space.

Define a sequential D-convergence (
D−→) on (X,D) according to: xn

D−→ x iff D(xm, xn, x) → 0
as m,n→∞; i.e.,

(c04) ∀ε > 0,∃i(ε): m,n ≥ i(ε) =⇒ D(xm, xn, x) ≤ ε.

Note that this concept obeys the general rules in Kasahara [21]. By definition, xn
D−→ x will be

referred to as: x is the D-limit of (xn). The set of all these will be denoted D-limn(xn); if it is
nonempty, then (xn) is called D-convergent; the class of all D-convergent sequences will be denoted
Conv(X,D). Further, let the D-Cauchy structure on (X,D) be introduced as: call the sequence (xn)
in X, D-Cauchy, provided D(xm, xn, xp)→ 0 as m,n, p→∞; i.e.:

(c05) ∀ε > 0,∃j(ε): m,n, p ≥ j(ε) =⇒ D(xm, xn, xp) ≤ ε.

The class of all these will be indicated as Cauchy(X,D); it fulfills the general requirements in Turinici
[36].

By definition, the pair (Conv(X,D), Cauchy(X,D)) will be called the conv-Cauchy structure
attached to (X,D). Note that, by the properties of D, each D-convergent sequence is D-Cauchy
too; referred to as: (X,D) is regular. The converse is not in general true; when it holds, we say that
(X,D) is complete.

(B) According to Dhage’s topological results in the area, this new metric corrects the ”bad”
properties of a 2-metric. As a consequence, his construction was interesting enough so as to be used
in the deduction of many fixed point results; see, for instance, Dhage [11] and the references therein.
The setting of all these is to be described as below. Let (X,D) be a D-metric space; and T ∈ F(X)
be a selfmap of X. The determination of the points in Fix(T ) is to be performed under the lines of
Section 1, adapted to our context:
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3a) We say that T is a Picard operator (modulo D) if, for each x ∈ X, the iterative sequence
(T nx;n ≥ 0) is D-convergent

3b) We say that T is a strong Picard operator (modulo D) if, for each x ∈ X, (T nx;n ≥ 0) is
D-convergent, and D − limn(T nx) belongs to Fix(T )

3c) We say that T is a globally strong Picard operator (modulo D), if it is a strong Picard operator
(modulo D) and (in addition), Fix(T ) is an asingleton (or, equivalently: singleton).

Sufficient conditions guaranteeing these properties are of D-metrical type. The simplest one is
the following. Call T , (D;α)-contractive (for some α ≥ 0) if

(c06) D(Tx, Ty, Tz) ≤ αD(x, y, z), ∀x, y, z ∈ X.

The following fixed point statement in Dhage [10] is a cornerstone for all further developments
in the area.

Theorem 3.1. Let (X,D) be complete bounded; and T : X → X be (D;α)-contractive, for some
α ∈ [0, 1[. Then, T is a globally strong Picard operator (modulo D).

In the last part of his reasoning, Dhage tacitly used the D-continuity of the application (x, y, z) 7→
D(x, y, z), expressed as

[xn
D−→ x, yn

D−→ y, zn
D−→ z] imply D(xn, yn, zn)→ D(x, y, z).

But, as proved in Naidu, Rao and Rao [26], the described property is not in general valid. This
must be related with the developments in Mustafa and Sims [24]; according to which, an appropriate
construction of topological and/or uniform structures over (X,D) is not in general possible; we do
not give details. Returning to the above discussion, note that – technically speaking – it would be
possible that the conclusion in Dhage’s fixed point theorem be retainable, with a different proof.
However, as results from an illuminating example provided by Naidu, Rao and Rao [27], this last
hope fails as well; so that, ultimately, Dhage’s fixed point result is not true.

For the sake of completeness, we shall present this example, with certain small modifications.

Example 3.2. Fix in the following some γ ∈]0, 1[; note that the sequence (an := γn;n ∈ N) is
strictly descending in R0

+ :=]0,∞[ with an → 0. Put X = {an;n ∈ N}; and let us introduce a
mapping D : X ×X ×X → R+ as

D(x, y, z) = 0, if card{x, y, z} = 1,
D(x, y, z) = min{max{x, y},max{y, z},max{z, x}}, otherwise.

I) We firstly show that D is a Dhage metric on X. In fact, the symmetry of D is clear; as well
as (via X ⊂ R0

+), the reflexive sufficiency of the same. It remains to establish that D is tetrahedral.
Let x, y, z ∈ X be arbitrary fixed. By the symmetry of D(., ., .), we may assume that x ≤ y ≤ z;
whence, D(x, y, z) = y. Let u ∈ X be arbitrary fixed. If u ≤ y, we have D(u, y, z) = y = D(x, y, z);
and if u > y, one derives D(x, y, u) = y = D(x, y, z); so that, we are done.

II) We now assert that (X,D) is complete. Let (xn) be a D-Cauchy sequence in X. There are
two cases to consider.

Case 1. Assume that, for some k ∈ N , β > 0,

(c07) {n > k;xn < β} is empty; i.e.: xn ∈ X(β,≤), ∀n > k.

Here, X(β,≤) = {x ∈ X; β ≤ x}, β > 0. As X(β,≤) is finite, there exists a strictly ascending
sequence (i(n);n ∈ N) (hence i(n) → ∞ as n → ∞) such that (yn := xi(n);n ∈ N) is constant:

yn = y0, ∀n ∈ N . Then, evidently, xn
D−→ y0.

Case 2. Assume that the opposite to (c07) alternative holds:
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(c08) ∀k ∈ N , ∀β > 0, ∃h = h(k, β) > k: xh < β.

We claim that xn → 0, in the usual metric of R. Assume not; i.e., for some ε > 0,

(c09) ∀p ∈ N , ∃q > p: xq ≥ ε.

Given this ε > 0, there exists, by hypothesis, i = i(ε) ∈ N such that

D(xm, xn, xp) < ε, ∀m,n, p ≥ i. (3.1)

For the obtained i, there exist, via (c09), a couple of ranks m,n ∈ N with i < m < n, xm, xm ≥ ε.
On the other hand, from (c08) (with k = n, β = ε) there exists p > n with xp < ε; hence,
xp < min{xm, xn}. This by definition, gives

(m,n, p ≥ i and) D(xm, xn, xp) = min{xm, xn} ≥ ε,

in contradiction with (3.1); and our claim follows.
Let v ∈ X be arbitrary fixed. By the previous fact, it follows that, for each ε in ]0, v[ there

must be some rank j = j(ε) ∈ N such that xn < ε < v (hence max{v, xn} = v), ∀n ≥ j. This, by
definition, yields

D(v, xm, xn) = max{xm, xn} < ε, ∀m,n ≥ j;

whence, xn
D−→ v as n→∞; so that (as v ∈ X was arbitrarily chosen) D − limn(xn) = X.

III) In addition to this, note that D(x, y, z) ≤ 1, ∀x, y, z ∈ X; wherefrom, (X,D) is bounded.
IV) Let T : X → X be introduced as: T (an) = an+1, n ∈ N . Clearly,

D(Tx, Ty, Tz) ≤ γD(x, y, z), ∀x, y, z ∈ X; (3.2)

i.e., T is (D; γ)-contractive. Summing up, conditions of Theorem 3.1 are holding for these data.
However, its conclusion is not valid; because Fix(T ) is empty.

A conv-Cauchy motivation of this negative conclusion comes from the fact that the convergence
structure Conv(X,D) attached to our D-metric space is ”too large”; i.e.: for many sequences (xn)
in X, D − limn(xn) is the whole of X. A method of correcting this property was already proposed
in the above quoted papers; however, we must say that – until now, at least – it was not followed
by consistent applications. Hence, summing up: under the admitted conditions upon the underlying
structure, a genuine fixed point theory in D-metric spaces is not (yet) available.

4. Mustafa-Sims metrics

The drawbacks of Dhage metrical structures we just exposed, determined Mustafa and Sims [25]
to look for a different perspective upon this matter. Some basic aspects of it will be described further.

(A) Let X be a nonempty set. By a Mustafa-Sims metric (in short: MS-metric) on X, we mean
any map G : X ×X ×X → R+, with

(d01) G(., ., .) is symmetric and reflexive (see above)

(d02) G(x, x, y) = 0 implies x = y (plane sufficient)

(d03) G(x, x, y) ≤ G(x, y, z), ∀x, y, z ∈X, y 6= z (MS-property)

(d04) G(x, y, z) ≤ G(x, u, u) +G(u, y, z), ∀x, y, z, u ∈ X (MS-triangular).
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In this case, the couple (X,G) will be referred to as a MS-metric space.
The following direct consequences of these axioms are valid.

Proposition 4.1. We have, for each x, y, z, u ∈ X,

G(x, y, z) ≤ G(x, x, y) +G(x, x, z) (4.1)

G(x, y, y) ≤ 2G(x, x, y), G(x, x, y) ≤ 2G(x, y, y) (4.2)

G(x, y, z) ≤ G(x, u, z) +G(u, y, z) (4.3)

G(x, y, z) ≤ (2/3)[G(x, u, y) +G(y, u, z) +G(z, u, x)] (4.4)

G(x, y, z) ≤ G(x, u, u) +G(y, u, u) +G(z, u, u). (4.5)

Proof .i) From (d04) and (d01) we have (taking u = y), G(x, y, z) ≤ G(x, y, y) + G(z, y, y); this,
again via (d01), gives (4.1), by replacing (x, y) with (y, x).

ii) The first half of (4.2) follows at once from (4.1) by taking z = y; and the second part is
obtainable by replacing (x, y) with (y, x).

iii) By (d01), it results that (d03) may be written as

(d05) G(x, y, y) ≤ G(x, y, z), ∀x, y, z ∈X, x 6= z.

Combining with (d04), we get (for x 6= z)

G(x, y, z) ≤ G(x, u, u) +G(u, y, z) ≤ G(x, u, z) +G(u, y, z);

i.e.: (4.3) holds, when x 6= z. It remains to establish the case x = z of this relation:

G(y, x, x) ≤ G(x, u, x) +G(y, x, u). (4.6)

Clearly, the alternative u 6= y is obtainable from (d05). On the other hand, the alternative u = y
means

G(y, x, x) ≤ G(x, y, x) +G(y, x, y);

evident. Hence (4.3) is true.
iv) By a repeated application of (4.3),

G(x, y, z) ≤ G(x, u, y) +G(x, u, z),
G(x, y, z) ≤ G(y, u, z) +G(y, u, x),
G(x, y, z) ≤ G(z, u, x) +G(z, u, y).

Adding these, relation (4.4) follows.
v) By (4.1), we have

G(y, u, z) ≤ G(y, u, u) +G(z, u, u).

Replacing in (d04) gives (4.5). The proof is complete. �

Remark 4.2. In particular, (4.4) tells us that the MS-metric G(., ., .) is tetrahedral. Moreover,
G(., ., .) is sufficient. In fact, assume that G(x, y, z) = 0; but, e.g., y 6= z. From (d03), we then
get G(x, x, y) = 0; wherefrom, by (d02), x = y. In this case, the working hypothesis becomes
G(y, y, z) = 0; so, again via (d02), y = z; contradiction. Hence, summing up, G(., ., .) is a D-metric
on X.
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(B) By an almost metric on X, we mean any map g : X ×X → R+ with

(d06) g(x, y) ≤ g(x, z) + g(z, y), ∀x, y, z ∈ X (triangular)

(d07) x = y ⇐⇒ g(x, y) = 0 (reflexive sufficient);

see also Turinici [37]. Some basic examples of such objects are to be obtained, in the MS-metric
space (X,G), as follows. Define a quadruple of maps b, c, d, e : X ×X → R+ according to: for each
x, y ∈ X,

(d08) b(x, y) = G(x, y, y), c(x, y) = G(x, x, y) = b(y, x)

(d09) d(x, y) = max{b(x, y), c(x, y)}, e(x, y) = b(x, y) + c(x, y).

Proposition 4.3. Under the above conventions,
j) The mappings b(., .) and c(., .) are triangular and reflexive sufficient; hence, these are almost

metrics on X
jj) The mappings d(., .) and e(., .) are triangular, reflexive sufficient and symmetric; hence, these

are (standard) metrics on X
jjj) In addition, the following relations are valid

b ≤ 2c ≤ 2d ≤ 4b, c ≤ 2b ≤ 2d ≤ 4c, d ≤ e ≤ 2d. (4.7)

Proof .j) It will suffice establishing the assertions concerning the map b(., .). The reflexive sufficient
property is a direct consequence of (d01) and (d02). On the other hand, the triangular property is
a direct consequence of (d04). In fact, by this condition, we have (taking y = z)

G(x, y, y) ≤ G(x, u, u) +G(u, y, y);

and, from this we are done.
jj) Evident, by the involved definition.
jjj) The first and second part are immediate, by Proposition 4.1. The third part is evident. Hence

the conclusion. �

Remark 4.4. A formal verification of j) is to be found in Jleli and Samet [18]. On the other hand,
jj) (modulo e) was explicitly asserted in Mustafa and Sims [25]. This determines us to conclude that
j) is also clarified by the quoted authors.

(C) Having these precise, we may now pass to the conv-Cauchy structure of a MS-metric space
(X,G).

Define a sequential G-convergence (
G−→) on (X,G) according to: xn

G−→ x iff G(xm, xn, x) → 0
as m,n→∞; i.e.,

(d10) ∀ε > 0,∃i(ε): m,n ≥ i(ε) =⇒ G(xm, xn, x) ≤ ε.

As before, this concept obeys the general rules in Kasahara [21]. By definition, xn
G−→ x will

be referred to as: x is the G-limit of (xn). The set of all these will be denoted G-limn(xn); if
it is nonempty, then (xn) is called G-convergent; the class of all G-convergent sequences will be

denoted Conv(X,G). Call the convergence (
G−→), separated when G-limn(xn) is an asingleton, for

each sequence (xn) of X. Further, let the G-Cauchy structure on (X,G) be introduced as: call (xn),
G-Cauchy, provided G(xm, xn, xp)→ 0 as m,n, p→∞; i.e.:

(d11) ∀ε > 0,∃j(ε): m,n, p ≥ j(ε) =⇒ G(xm, xn, xp) ≤ ε.
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The class of all these will be indicated as Cauchy(X,G); it fulfills the general requirements in Turinici
[36]. By definition, the pair (Conv(X,G), Cauchy(X,G)) will be called the conv-Cauchy structure
attached to (X,G). Call (X,G), regular when each G-convergent sequence is G-Cauchy too; and
complete, if the converse holds: each G-Cauchy sequence is G-convergent.

In parallel to this, we may introduce a conv-Cauchy structure attached to any g ∈ {b, c, d, e}. This,

essentially, consists in the following. Define a sequential g-convergence (
g−→) on (X, g) according to:

xn
g−→ x iff g(xn, x)→ 0. This will be referred to as: x is the g-limit of (xn). The set of all these will

be denoted g-limn(xn); if it is nonempty, then (xn) is called g-convergent; the class of all g-convergent

sequences will be denoted Conv(X, g). Call the convergence (
g−→), separated when g-limn(xn) is an

asingleton, for each sequence (xn) of X. Further, let the g-Cauchy structure on (X, g) be introduced
as: call the sequence (xn) in X, g-Cauchy, provided g(xm, xn) → 0 as m,n → ∞; the class of all
these will be indicated as Cauchy(X, g). By definition, (Conv(X, g), Cauchy(X, g)) will be called the
conv-Cauchy structure attached to (X, g). Call (X, g), regular, when each g-convergent sequence is
g-Cauchy; and complete, when the converse holds: each g-Cauchy sequence is g-convergent.

Proposition 4.5. Under the above conventions,

i) (∀(xn) ⊆ X, ∀x ∈ X): xn
G−→ x is equivalent with

xn
g−→ x for some/all g ∈ {b, c, d, e} (4.8)

ii) the convergence structures (
G−→) and (

g−→) (for g ∈ {b, c, d, e}) are separated.

Proof .i) Assume that xn
G−→ x; i.e.: G(xm, xn, x)→ 0 as m,n→∞. This yields G(xn, xn, x)→ 0

as n → ∞; i.e.: xn
c−→ x; wherefrom, combining with Proposition 4.3, (4.8) is clear. Conversely,

assume that (4.8) holds. Taking (4.7) into account, gives xn
b−→ x; wherefrom, by means of (4.1),

xn
G−→ x.
ii) Clearly, (

g−→) is separated, for g ∈ {d, e}. This, by the preceding step, gives the desired fact.
Hence the conclusion. �

Likewise, the following characterization of the Cauchy property is available.

Proposition 4.6. The following are valid:
j) (∀(xn) ⊆ X): (xn) is G-Cauchy is equivalent with

(xn) is g-Cauchy, for some/all g ∈ {b, c, d, e} (4.9)

jj) (X,G) and (X, g) (for g ∈ {b, c, d, e}) are regular
jjj) (X,G) is complete iff (X, g) is complete, for some/all g ∈ {b, c, d, e}.

Proof .j) Assume that (xn) is G-Cauchy; i.e.: G(xm, xn, xp)→ 0 as m,n, p→∞. This, in particular,
yields G(xm, xn, xn) → 0 as m,n → ∞; i.e.: (xn) is b-Cauchy; so that, combining with Proposition
4.3, (4.9) follows. Conversely, assume that (4.9) holds. Taking (4.7) into account, one gets that (xn)
is b-Cauchy; wherefrom, by means of (4.1), we are done.

jj) The assertion is clear for (X,G), by Proposition 4.1; as well as for (X, g) (where g ∈ {d, e}),
by its metric properties. The remaining situations (g ∈ {b, c}) follow from Proposition 4.5 and j)
above.

jjj) Evident, by the previously obtained facts. �
(D) Let (X,G) be a MS-metric space. Given the function Λ : X×X×X → R, call it sequentially

G-continuous, provided
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xn
G−→ x, yn

G−→ y, zn
G−→ z imply Λ(xn, yn, zn)→ Λ(x, y, z).

A basic example of this type is just the one of G(., ., .). To verify this, the following auxiliary fact is
to be used (cf. Mustafa and Sims [25]):

Proposition 4.7. The map G(., ., .) is d-Lipschitz:

|G(x, y, z)−G(u, v, w)| ≤ d(x, u) + d(y, v) + d(z, w), ∀x, y, z, u, v, w ∈ X; (4.10)

hence, in particular, G(., ., .) is d-continuous.

Proof .By the MS-triangular property of G,

G(u, v, w) ≤ G(v, y, y) +G(y, u, w),
G(u,w, y) ≤ G(u, x, x) +G(x, y, w),
G(w, x, y) ≤ G(w, z, z) +G(z, x, y);

so that (by the adopted notations)

G(u, v, w)−G(x, y, z) ≤ d(u, x) + d(v, y) + d(w, z).

In a similar way, one gets (by replacing (x, y, z) with (u, v, w))

G(x, y, z)−G(u, v, w) ≤ d(x, u) + d(y, v) + d(z, w).

These, by the symmetry of d(., .), give the written conclusion. �
As a direct consequence of this, we have (taking Proposition 4.5 into account)

Proposition 4.8. The map G(., ., .) is sequentially G-continuous in its variables.

This property allows us to get a partial answer to a useful global question. Call the MS-metric
G(., ., .), symmetric if

G(x, y, y) = G(x, x, y), ∀x, y ∈ X.

Note that, under the conventions above, this may be expressed as: b = c; wherefrom: d = b = c,
e = 2b = 2c. The class of symmetric MS-metrics is nonempty. For example, given the metric g(., .)
on X, its associated MS-metric

G(x, y, z) = max{g(x, y), g(y, z), g(z, x)}, x, y, z ∈ X
is symmetric, as it can be directly seen. On the other hand, the class of all non-symmetric MS-metrics
is also nonempty; see Mustafa and Sims [25] for an appropriate example. Hence, the question of a
certain MS-metric on X being or not symmetric is not trivial. An appropriate answer to this may
be given as follows. Call the MS-metric space (X,G), perfect provided

for each x ∈ X there exists a sequence (xn) in X \ {x} with xn
G−→ x.

Proposition 4.9. Suppose that (X,G) is perfect. Then, G(., ., .) is symmetric.

Proof .Let x, y ∈ X be arbitrary fixed. Further, let (yn) be a sequence in X \ {y} with yn
G−→ y.

From the MS-property of G(., ., .),

G(x, x, y) ≤ G(x, y, yn), for all n.

Passing to limit as n → ∞ yields, via Proposition 4.8, G(x, x, y) ≤ G(x, y, y). As x, y ∈ X were
arbitrary, one gets (under our notations) c(x, y) ≤ b(x, y), ∀x, y ∈ X. This gives (by a substitution
of (x, y) with (y, x)), b(x, y) ≤ c(c, y); wherefrom b = c. The proof is complete. �

It follows from this that the class of all non-symmetric MS-metrics over X is not very large.
Further aspects will be delineated elsewhere.
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5. Contractions over MS-metric spaces

From the developments above, it follows that the metrical construction proposed by Mustafa and
Sims [25] corrects certain errors of the preceding one, due to Dhage [10]. As a consequence, this
structure was intensively used in many fixed point theorems; see, for instance, Aage and Salunke
[1], Aydi, Shatanawi and Vetro [4], Choudhury and Maity [7], Saadati et al [33], Shatanawi [35],
to quote only a few. But, as recently proved by Jleli and Samet [18], most fixed point results on
MS-metric spaces are directly reducible to their corresponding statements on almost/standard metric
spaces. Under this perspective, a return of certain writers in the area to 2-metric spaces must be
not surprising; see, e.g., Dung et al [13]. Clearly, it is possible that not all fixed point results over
MS-metric spaces be obtainable in this way; to substantiate the claim, an example was proposed by
Karapinar and Agarwal [20]. Some conventions are in order. Let (X,G) be a MS-metric space; with,
in addition,

(e01) (X,G) is complete; hence, so is (X, d).

Here, d is the associated to G standard metric we just introduced; namely,

d(x, y) = max{G(x, y, y), G(x, x, y)}, x, y ∈ X. (5.1)

Remember that, by the MS-triangular inequality,

G(x, y, z) ≤ G(x, y, y) +G(y, y, z), ∀x, y, z ∈ X;

and this gives the so-called strong triangle inequality:

G(x, y, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ X. (5.2)

Further, let T be a selfmap of X. The question of determining its fixed points is to be treated with
the aid of Picard concepts in Section 3 (modulo G). Sufficient conditions for these properties are
G-counterparts of the ones in Section 1.

(A) Define, for x, y, z ∈ X,

(e02) M(x, y, z) = max{G(x, Tx, y), G(y, T 2x, Ty), G(Tx, T 2x, Ty),
G(y, Tx, Ty), G(x, Tx, z), G(z, T 2x, Tz),
G(Tx, T 2x, Tz), G(z, Tx, Ty), G(x, y, z),
G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz),
G(z, Tx, Tx), G(x, Ty, Ty), G(y, Tz, Tz)}.

Given γ ≥ 0, let us say that T is (G,M ; γ)-contractive, provided

(e03) G(Tx, Ty, Tz) ≤ γM(x, y, z), ∀x, y, z ∈ X.

We are now in position to state the announced result (in our notations):

Theorem 5.1. Suppose that T is (G,M ; γ)-contractive, for some γ ∈ [0, 1/2[. Then,
i) T is a globally strong Picard operator (modulo d)
ii) T is a globally strong Picard operator (modulo G).

According to the authors, this fixed point statement is an illustration of the following assertion:
there are many fixed point results over MS-metric structures, to which the reduction techniques in
Jleli and Samet (see above) are not applicable. It is our aim in the following to show that, actually,
the above stated fixed point theorem cannot be viewed as such an exception [i.e.: as an illustration
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of this (hypothetical for the moment) alternative]. Precisely, we shall establish that Theorem 5.1
is reducible to the anticipative fixed point result over standard metric spaces given in a preceding
place. This will follow from the proposed
Proof .(Theorem 5.1) By the accepted condition,

G(Tx, Ty, Ty) ≤ γM(x, y, y), G(Tx, Tx, Ty) ≤ γM(x, x, y), ∀x, y ∈ X; (5.3)

and this, from the definition of d (see above), gives

d(Tx, Ty) ≤ γmax{M(x, y, y),M(x, x, y)}, ∀x, y ∈ X. (5.4)

Now, let us deduce from such a ”mixed” contractive relation in terms of (d,G), some contractive
relation in terms of d only. To this end, we have

M(x, y, y) = max{G(x, Tx, y), G(y, T 2x, Ty), G(Tx, T 2x, Ty),
G(y, Tx, Ty), G(x, Tx, y), G(y, T 2x, Ty),
G(Tx, T 2x, Ty), G(y, Tx, Ty), G(x, y, y),
G(x, Tx, Tx), G(y, Ty, Ty), G(y, Ty, Ty),
G(y, Tx, Tx), G(x, Ty, Ty), G(y, Ty, Ty)};

or equivalently (eliminating the identical terms)

M(x, y, y) = max{G(x, Tx, y), G(y, T 2x, Ty), G(Tx, T 2x, Ty),
G(y, Tx, Ty), G(x, y, y), G(x, Tx, Tx),
G(y, Ty, Ty), G(y, Tx, Tx), G(x, Ty, Ty)}.

By the strong triangle inequality,

G(x, Tx, y) ≤ d(x, Tx) + d(Tx, y),
G(y, T 2x, Ty) ≤ d(T 2x, y) + d(T 2x, Ty),
G(Tx, T 2x, Ty) ≤ d(Tx, T 2x) + d(T 2x, Ty),
G(y, Tx, Ty) ≤ d(Tx, y) + d(Tx, Ty);

and this yields (by avoiding the smaller terms)

M(x, y, y) ≤ P (x, y) := max{d(x, Tx) + d(Tx, y),
d(T 2x, y) + d(T 2x, Ty), d(Tx, T 2x) + d(Tx, y),
d(Tx, y) + d(Tx, Ty), d(x, y), d(x, Ty), d(y, Ty)}.

(5.5)

Similarly, we have

M(x, x, y) = max{G(x, Tx, x), G(x, T 2x, Tx), G(Tx, T 2x, Tx),
G(x, Tx, Tx), G(x, Tx, y), G(y, T 2x, Ty),
G(Tx, T 2x, Ty), G(y, Tx, Tx), G(x, x, y),
G(x, Tx, Tx), G(x, Tx, Tx), G(y, Ty, Ty),
G(y, Tx, Tx), G(x, Tx, Tx), G(x, Ty, Ty)};

or equivalently (eliminating the identical terms)

M(x, x, y) = max{G(x, x, Tx), G(x, Tx, T 2x), G(Tx, Tx, T 2x),
G(x, Tx, Tx), G(x, Tx, y), G(y, T 2x, Ty),
G(Tx, T 2x, Ty), G(y, Tx, Tx), G(x, x, y),
G(y, Ty, Ty), G(x, Ty, Ty)}.
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By the strong triangle inequality

G(x, Tx, T 2x) ≤ d(x, Tx) + d(Tx, T 2x),
G(x, Tx, y) ≤ d(x, Tx) + d(Tx, y),
G(y, T 2x, Ty) ≤ d(T 2x, Ty) + d(y, Ty),
G(Tx, T 2x, Ty) ≤ d(Tx, T 2x) + d(T 2x, Ty);

and this yields (by avoiding the smaller terms)

M(x, x, y) ≤ Q(x, y) := max{d(x, Tx) + d(Tx, T 2x),
d(x, Tx) + d(Tx, y), d(T 2x, Ty) + d(y, Ty),
d(Tx, T 2x) + d(T 2x, Ty), d(x, y), d(x, Ty)}.

(5.6)

Summing up, we therefore have

d(Tx, Ty) ≤ γmax{P (x, y), Q(x, y)}, ∀x, y ∈ X. (5.7)

In other words, T is (d, P,Q; γ)-contractive (according to a preceding convention). But then, the
metrical fixed point result (involving anticipative contractions) we just evoked gives us the conclusion
in terms of d. The remaining conclusion (in terms of G) is a direct consequence of it, by the properties
of the Mustafa-Sims convergence we already sketched. �

Note, finally, that this reduction process comprises as well another fixed point result over Mustafa-
Sims metric spaces given by Karapinar and Agarwal [20]; we do not give details. Further aspects
may be found in Samet et al [34].
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