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Abstract

In this paper we introduce a sequential block iterative method and its simultaneous version with op-
timal combination of weights (instead of convex combination) for solving convex feasibility problems.
When the intersection of the given family of convex sets is nonempty, it is shown that any sequence
generated by the given algorithms converges to a feasible point. Additionally for linear feasibility
problems, we give equivalency of our algorithms with sequential and simultaneous block Kaczmarz
methods explaining the optimal weights have been inherently used in Kaczmarz methods. In addi-
tion, a convergence result is presented for simultaneous block Kaczmarz for the case of inconsistent
linear system of equations.
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1. Introduction

A common problem in di�erent areas of mathematics and physical sciences comprises of �nding a
point in the intersection of convex sets. This problem is referred to as the convex feasibility problem
(CFP), see [2] for a general de�nition. We are interested to �nd a point in the nonempty intersection
of a �nite family of closed convex sets in the Euclidean space Rn. Of special interest is the case with
linear equations and/or inequalities, often referred to as the linear feasibility problem (LFP). Such
linear systems may arise from discretization of an ill-posed problem such as the Radon transform
used in modeling of several reconstruction problems, see, e.g., [18, 23]. Work related to the CFP
are wide-ranging and numerous iterative methods for the CFP has been studied, see, e.g., [2, 5, 12]
and references in [26]. Some problems that are modeled into CFP could be listed as discretized
models of image reconstruction from projections, the fully discretized model of radiation-therapy
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treatment planning, and problems of image restoration. However, from such real-world applications,
the resulting convex feasibility problem is often huge. Since direct factorization methods are ine�cient
for such a large-scale problem we employ iterative methods. Projection algorithms are successful
iterative methods in the area of constructive solution of such problems see [5] and references therein.
These kind of methods are formed by doing some projections onto the individual sets. Then, usually
convex combination of projected results were used to produce the next iteration, see, e.g., [1]. The
main result of our work allows, in some sense, to have the best combination instead of convex
combination of projections. Also we observe that the simultaneous and sequential block Kaczmarz
methods intrinsically employ the optimal weights resulted in faster convergence respect to other
methods. In case of LFP, an extension of Kaczmarz method is recently achieved in [24].

In a simple way, one may classify projection methods as either sequential or simultaneous. The
block iterative methods (in the image reconstruction literature is named ordered subsets methods
[4, 11, 19]), which lie between sequential and simultaneous cases, have been studied in several works
with di�erent applications, see, e.g., [1, 4, 6, 7, 8, 13, 14, 15, 16, 25, 27, 29]. Simultaneous block
iterative methods have also been used to increase computational e�ciency using parallel processors
[3, 8, 21]. For an overview in a more general framework, see [9]. In the case of LFP, we recall the
simultaneous version of block Kaczmarz (it is same as row-Jacobi method [15]) which is suitable for
parallel computing. In addition, we obtain that our algorithms and (sequential and simultaneous)
block Kaczmarz methods are equivalent.

We now present a short summary of the contents of the paper. In Section 2 we introduce a
sequential block iterative method and its parallel version, i.e., Algorithms 2.1 and 2.2. All convergence
theorems are given in Section 3. Precisely, we demonstrate (from theoretical point of view) in
Theorems 3.2 and 3.3, that the whole produced sequence by Algorithms 2.1 and 2.2 converge to a
feasible point. In Section 4, we describe how the Algorithms 2.1 and 2.2 can be e�ciently implemented
for the LFP. Indeed the assumed solution point x∗ is disappeared from the computation step. Also we
remind sequential block Kaczmarz (for an excellent presentation see [23]) and its simultaneous version
(row-Jacobi method, see [15]). Furthermore, it is shown that the generated cycles by Algorithms 2.1
and sequential block Kaczmarz (i.e., Algorithm 4.2 when λ = 1) and their parallel versions which are
Algorithm 2.2 (with equal exterior weights wk,s) and simultaneous block Kaczmarz (i.e., Algorithm
4.3 when λ = 1) are equivalent. For the inconsistent case, we conclude from above equivalency and
[14] that the cycles of Algorithm 2.1 converge to a point which satis�es a certain linear system. Also
it is shown the Algorithms 2.2 and 4.3 converge to a weighted least squares solution.

2. Preliminaries and algorithms

Let B = {1, 2, · · · ,m}, the index set, and let Ci∈B be a �nite family of closed convex sets in Rn.
The intersection C =

⋂
i∈B Ci is assumed to be nonempty. A block iterative method may be formed

by partitioning of index set B into q subset Bt such that B =
⋃q

t=1Bt. The orthogonal projection
of x ∈ Rn onto Ci is denoted by Pi(x) which satis�es Pi(x) = argminy∈Ci

‖x − y‖. Here 〈x, y〉 is
the Euclidean inner product and ‖x‖ the corresponding norm. A well-known property of projection
operators is their non-expansivity, i.e., ‖Pi(x)− Pi(y)‖ ≤ ‖x− y‖ for any x and y in Rn.

Also we use the standard terms sequential block iterative (SeqBI) and simultaneous block iterative
(SimBI) from [9, 20]. Indeed, an iterative step sequentially moves from one block to the next one in
SeqBI methods whereas SimBI methods use simultaneously a given starting point for each block and
an iteration is produced by combination of all outcomes which are made by each block. Obviously,
SimBI methods are more suitable than SeqBI methods for parallel computation, see [8, 9, 21].

Our schemes, SeqBI and SimBI methods, can now be described as follows.



Weights in block iterative methods5 (2014) No. 2,37-49 39

Algorithm 2.1. SeqBI
Initialization: x0 ∈ Rn is arbitrary.
Iterative Step: Given xk compute,

xk,0 = xk,

xk,s = xk,s−1 +
∑
i∈Bs

wk,s
i

(
Pi(x

k,s−1)− xk,s−1
)
, s = 1, . . . , q,

s.t. xk,s = argminx∈Ψk,s‖x∗ − x‖,
xk+1 = xk,q,

where wk,s
i are weights and Ψk,s = xk,s−1 + span{Pi(x

k,s−1)− xk,s−1}i∈Bs .

In Algorithm 2.1, the step from k to k+1 is called a cycle and it consists of a sequence of sub-iterative
steps (referred to as atomic steps). Each atomic step moves from xk,s−1 to xk,s.

The following algorithm is appropriately designed for parallel computations.

Algorithm 2.2. SimBI
Initialization: y0 ∈ Rn is arbitrary.
Iterative Step: Given yk compute,

yk,0 = yk,

yk,s = yk +
∑
i∈Bs

wk,s
i

(
Pi(y

k)− yk
)
, s = 1, . . . , q,

s.t. yk,s = argminy∈Ωk,s‖y∗ − y‖,

yk+1 =

q∑
s=1

wk,syk,s,

s.t. yk+1 = argminy∈Ωk‖y∗ − y‖,

where wk,s
i , wk,s are weights, and Ωk,s = yk + span{Pi(y

k)− yk}i∈Bs ,Ω
k = span{yk,s}qs=1.

As seen, the starting point is used for each block in parallel. Then each block has its own result
and the combination of such results makes the next iteration. Both Algorithms 2.1-2.2 encounter
with an optimization problem and needs a solution point x∗ in each step. Although this problem is
resolved for the LFP, but the applicability of these methods to the nonlinear case is, however, unclear
due to the nature of the error-measure.

The following theorem (see, e.g., [22]) and Lemma 2.4 guarantee the existence and uniqueness of
the atomic step xk,s (of Algorithm 2.1) such that ‖x∗ − xk,s‖ becomes minimum over Ψk,s whereas
x∗ ∈

⋂
i∈B Ci.

Theorem 2.3. Consider �nite dimensional subspace Y of normed linear space X and an arbitrary
point x ∈ X. Then there exists a point in Y which is the best approximation to x. Also to have a
unique point in Y it is enough to consider X a Hilbert space.

Lemma 2.4. For any �xed x∗ ∈
⋂

i∈B Ci there exists a unique element xk,s ∈ Ψk,s such that xk,s =
argminx∈Ψk,s‖x∗ − x‖.
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Figure 1: optimal weights versus convex combination of weights

Proof . Let x ∈ Rn be an arbitrary point. Using Theorem 2.3, there exists a unique point z̃ =∑
i∈Bs

w̃i(Pi(x) − x) ∈ span{Pi(x) − x}i∈Bs which minimizes ‖(x∗ − x) − z‖ over z ∈ span{Pi(x) −
x}i∈Bs . Now we assert ỹ = z̃ + x is unique minimizer of ‖x∗ − y‖ over y ∈ x+ span{Pi(x)− x}i∈Bs .
Let ŷ = x +

∑
i∈Bs

ŵi(Pi(x) − x) =: x + ẑ such that ‖x∗ − ŷ‖ ≤ ‖x∗ − ỹ‖. From the last inequality
we have ‖(x∗ − x)− ẑ‖ ≤ ‖(x∗ − x)− z̃‖ which gives the desired result in the lemma. �

Similarly, one easily gets the same results for the Algorithm 2.2.

Remark 2.5. Since, for the case of convex combination of weights, the convergence results of Al-
gorithms 2.1 and 2.2 are known one may imagine that our convergence results with the optimal
weights are not so surprising. But the �gure 1 demonstrates reverse results. Indeed, it results
‖x∗ − xopt,1‖ ≤ ‖x∗ − x1‖ whereas ‖x∗ − xopt,2‖ ≥ ‖x∗ − x2‖ here B1 = {1, 2}, B2 = {3}. Also
x1, x2 and xopt,1, xopt,2 are computed using convex combination of weights and optimal weights re-
spectively.

3. Convergence of the block iterative methods

In the this section we derive convergence theorems for our algorithms. First we begin with a
lemma which is used in our further proofs.

Lemma 3.1. Let {βk} be a sequence in Rn and α ∈ Ci. If

lim
k→∞

∣∣‖α− βk‖ − ‖α− Pi(β
k)‖
∣∣ = 0,

then
lim
k→∞
‖βk − Pi(β

k)‖ = 0.

Proof . For any r1, r2, r3 ∈ Rn we have

‖r1 − r2‖2 = ‖r1 − r3‖2 + ‖r2 − r3‖2 − 2〈r2 − r3, r1 − r3〉,

which gets ∣∣‖r1 − r2‖2 − ‖r1 − r3‖2
∣∣ =

∣∣‖r2 − r3‖2 − 2〈r2 − r3, r1 − r3〉
∣∣ .

Putting r1 = α, r2 = βk and r3 = Pi(β
k) provides

lim
k→∞

∣∣‖βk − Pi(β
k)‖2 − 2〈βk − Pi(β

k), α− Pi(β
k)〉
∣∣ = 0.

Using metric projection characterization properties, see [2, FACTS 1.5] and [17, Section 3], one
gets

−2〈βk − Pi(β
k), α− Pi(β

k)〉 ≥ 0,

which shows
lim
k→∞
‖βk − Pi(β

k)‖ = 0.

�

Theorem 3.2. If C 6= ∅ then the sequence of atomic steps {xk,s} in Algorithm 2.1 converges to a
point x∗ ∈ C.
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Proof .
Since xk,s = argminx∈Ψk,s‖x∗ − x‖, for every i ∈ Bs we have

‖x∗ − xk,s‖ = ‖x∗ − xk,s−1 −
∑
i∈Bs

wk,s
i

(
Pi(x

k,s−1)− xk,s−1
)
‖

≤ ‖x∗ − xk,s−1 −
(
Pi(x

k,s−1)− xk,s−1
)
‖

= ‖x∗ − Pi(x
k,s−1)‖,

which o�ers
‖x∗ − xk,s‖ ≤ min

i∈Bs

‖x∗ − Pi(x
k,s−1)‖. (3.1)

Non-expansivity of projection operator and (3.1) guarantee that for any i ∈ Bs there exist scalars
0 ≤ γk,si ≤ 1 such that

‖x∗ − xk,s‖ ≤ ‖x∗ − Pi(x
k,s−1)‖

= ‖Pi(x
∗)− Pi(x

k,s−1)‖ = γk,si ‖x∗ − xk,s−1‖. (3.2)

Let
δk,s = min

i∈Bs

γk,si , s = 1, · · · , q. (3.3)

From (3.2) and (3.3) one gets

‖x∗ − xk,s‖ ≤ δk,s‖x∗ − xk,s−1‖, s = 1, · · · , q. (3.4)

Repeating (3.4) gives

‖x∗ − xk+1‖ = ‖x∗ − xk,q‖ ≤ δk,qδk,q−1 · · · δk,1‖x∗ − xk,0‖
= δk,qδk,q−1 · · · δk,1‖x∗ − xk‖. (3.5)

Let εk = mins∈{1,··· ,q} δ
k,s, therefore (3.5) provides

‖x∗ − xk+1‖ ≤ εk‖x∗ − xk‖, (3.6)

which shows
lim
k→∞
‖x∗ − xk‖ = d. (3.7)

Using (3.6) recursively gives

‖x∗ − xk‖ ≤ εk−1εk−2 · · · ε0‖x∗ − x0‖. (3.8)

Now we consider two cases: �rst let the sequence {εk} have a subsequence {εkr} such that
limkr→∞ ε

kr = α < 1. Therefore
∏∞

r=1 ε
kr = 0 which means

∏∞
k=1 ε

k = 0. Using (3.8) we get
limk→∞ ‖xk−x∗‖ = 0. The second case, the complimentary case of the �rst one, results in limk→∞ ε

k =
1. By the de�nition of εk and δk,s one obtains

lim
k→∞

γk,si = 1, for i ∈ Bs. (3.9)

Using (3.2) and (3.9) we get

lim
k→∞

∣∣‖x∗ − xk,s−1‖2 − ‖x∗ − Pi(x
k,s−1)‖2

∣∣ = 0, for i ∈ Bs. (3.10)
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Lemma 3.1 and (3.10) show that

lim
k→∞
‖xk,s−1 − Pi(x

k,s−1)‖ = 0 for i ∈ Bs. (3.11)

Now we claim
lim
k→∞
‖xk − Pi(x

k)‖ = 0 for i ∈ B. (3.12)

Put ζk,s−1 =
∑

j∈Bs
wk,s

j

(
Pj(x

k,s−1)− xk,s−1
)
, then for i ∈ Bs (no matter if i ∈ B` for 1 ≤ ` ≤ q)

lim
k→∞
‖xk,s − Pi(x

k,s)‖ = lim
k→∞
‖xk,s−1 + ζk,s−1 − Pi(x

k,s−1 + ζk,s−1)‖ (3.13)

≤ lim
k→∞

{
‖xk,s−1 − Pi(x

k,s−1 + ζk,s−1)‖+ ‖ζk,s−1‖
}
.

The equality (3.11) and boundedness of weights {wk,s
i } result

lim
k→∞
‖ζk,s−1‖ ≤ lim

k→∞

∑
j∈Bs

|wk,s
j | ‖Pj(x

k,s−1)− xk,s−1‖ = 0. (3.14)

Since a projection operator is nonexpansive, we have

‖Pi(x
k,s−1 + ζk,s−1)− Pi(x

k,s−1)‖ ≤ ‖ζk,s−1)‖. (3.15)

Using (3.11), (3.14) and (3.15), one concludes

lim
k→∞
‖xk,s−1 − Pi(x

k,s−1 + ζk,s−1)‖ =

= lim
k→∞
‖xk,s−1 − Pi(x

k,s−1) + Pi(x
k,s−1)− Pi(x

k,s−1 + ζk,s−1)‖,

≤ lim
k→∞

{
‖xk,s−1 − Pi(x

k,s−1)‖+ ‖Pi(x
k,s−1)− Pi(x

k,s−1 + ζk,s−1)‖
}
,

≤ lim
k→∞

{
‖xk,s−1 − Pi(x

k,s−1)‖+ ‖ζk,s−1)‖
}

= 0, (3.16)

for i ∈ Bs.
Therefore using (3.13) we get

lim
k→∞
‖xk,s − Pi(x

k,s)‖ = 0 for i ∈ Bs. (3.17)

From (3.11) and (3.17) one �nds (by induction)

lim
k→∞
‖xk,r − Pi(x

k,r)‖ = 0, for i ∈ Bs and s− 1 ≤ r ≤ q. (3.18)

Since the set Bs is arbitrary, one easily gets the desired result in (3.12). Concerning (3.7), there
exists the subsequence {xkt} of {xk} that converges to a point x̄. Using (3.12) we �nd

0 = lim
t→∞
‖xkt − Pi(x

kt)‖ = ‖x̄− Pi(x̄)‖ for i = 1, 2, . . . ,m (3.19)

which means x̄ ∈ C. Now, if we use x̄ instead of x∗, one concludes d = 0 which shows that xk

converges to a feasible point x̄. It is easy, using (3.5), to show that the whole sequence of the
algorithm converges to x̄. �

Next we explain a similar theorem for Algorithm 2.2.
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Theorem 3.3. If C 6= ∅ then the sequence of atomic steps {yk,s} in Algorithm 2.2 converges to a
point x∗ ∈ C.

Proof .
The de�nition of yk,s in Algorithm 2.2 yields

‖x∗ − yk,s‖ ≤ min
i∈Bs

‖x∗ − Pi(y
k)‖ for s = 1, · · · , q. (3.20)

Since a projection is nonexpansive mapping, there exist 0 ≤ γk,si ≤ 1 such that

‖x∗ − Pi(y
k)‖ = γk,si ‖x∗ − yk‖. (3.21)

Let δk,s = mini∈Bs γ
k,s
i . Using (3.20) and (3.21) we have ‖x∗−yk,s‖ ≤ δk,s‖x∗−yk‖ for s = 1, · · · , q.

Therefore

‖x∗ − yk+1‖ = ‖x∗ −
q∑

s=1

wk,syk,s‖ ≤ 1

q

q∑
s=1

‖x∗ − yk,s‖

≤ 1

q

q∑
s=1

δk,s‖x∗ − yk‖ = εk‖x∗ − yk‖, (3.22)

where 0 ≤ εk = 1
q

∑q
s=1 δ

k,s ≤ 1. Obviously, we get the following two results from (3.22)

lim
k→∞
‖x∗ − yk‖ = d, (3.23)

and
‖x∗ − yk+1‖ ≤ εk · · · ε0‖x∗ − y0‖. (3.24)

Similar to proof of Theorem 3.2 two cases occur: First let the sequence {εk} have a subsequence
{εkr} such that limkr→∞ ε

kr = α < 1. Therefore
∏∞

r=1 ε
kr = 0 which means

∏∞
k=1 ε

k = 0. Using (3.24)
we get limk→∞ ‖xk − x∗‖ = 0. The second case, the complimentary case of the �rst one, necessitates
limk→∞ ε

k = 1. This equality causes

lim
k→∞

δk,s = 1, lim
k→∞

γk,si = 1 for s = 1, · · · , q, i ∈ Bs. (3.25)

Using (3.21) and (3.25) we get

lim
k→∞

∣∣‖x∗ − yk‖2 − ‖x∗ − Pi(y
k)‖2

∣∣ = 0, for i ∈ Bs (3.26)

Thus, the Lemma 3.1 and (3.26) give

lim
k→∞
‖yk − Pi(y

k)‖ = 0 for i ∈ Bs, s = 1, · · · , q. (3.27)

Regarding (3.23), there exists the subsequence {ykt} of {yk} that converges to a point x̄. The
equality (3.27) implies ‖ykt − Pi(y

kt)‖ → 0 which results ‖x̄− Pi(x̄)‖ = 0 for s = 1, · · · , q, i ∈ Bs.
It means that x̄ is a feasible point. Now using x̄ instead of x∗ in (3.23) gets d = 0 which completes
convergence proof of the sequence yk. Using (3.22), one easily gets the convergence of whole sequence
of Algorithm 2.2. �
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4. Implementations and new results for LFP

Here we discuss how to e�ciently implement Algorithms 2.1-2.2 for the following linear system
of equations. Indeed the assumed solution point x∗ is not needed, i.e., it disappears from the weight
computation step. Let us consider the linear system of equations (which may be inconsistent)

Ax = b, (4.1)

where A ∈ Rm×n and b ∈ Rm. Let Hi∈B = {x ∈ Rn, 〈x, ai〉 = bi} here ai and bi indicate ith row of
A and b respectively. Respect to partitioning of the index set B, the matrices A, b be partitioned into
q (not necessarily disjoint) row blocks {At}, {bt} respectively. Obviously, the orthogonal projection
of a point x ∈ Rn onto Hi can be calculated by

Pi(x) = x+
bi − 〈x, ai〉
‖ai‖2

ai. (4.2)

Both Algorithms 2.1-2.2 contain a norm minimization in each step. To minimize a convex function
f(x) = ‖x∗ − x‖ over a proper subspace of Rn, its gradient is used . Recall that a subgradient of a
convex function f at y is any vector g that satis�es the inequality f(x)− f(y) ≥ 〈g, x− y〉 for all x.
If f is di�erentiable at y then its gradient ∇f(y) is the unique subgradient of f at y. Therefore, any
y that satis�es ∇f(y) = 0 is a global minimizer of f .

Remark 4.1. In our algorithms, the linear system of equations ∇f(y) = 0 may have many solutions.
But any solution (weights) results in a unique iteration (atomic step/cycle), see Theorem 2.3 and
Lemma 2.4.

Since an optimization problem, in fact a small linear system of equations comparing with (4.1),
must be solved in each step of Algorithms 2.1-2.2, we remind the block Kaczmarz method which is
comparable with our methods from that point of view. The sequential block Kaczmarz method (also
called block iterative ART) can be formulated as:

Algorithm 4.2. Seq. Block Kaczmarz
Initialization: u0 ∈ Rn is arbitrary.
Iterative Step: Given uk compute,

uk,0 = uk,

uk,s = uk,s−1 + λAT
s (AsA

T
s )†(bs − Asu

k,s−1), s = 1, . . . , q,

uk+1 = uk,q,

where 0 < λ < 2 is relaxation parameter and B† shows pseudoinverse of B.

This algorithm is a special case of [14, Algorithm 1.10]. The subsequences of cycles {uk,s}, k ≥ 0
with �xed s will actually converge. Indeed, if b ∈ R(A) then {uk} converges toward a solution of
Ax = b. If in addition u0 ∈ R(AT ), then {uk} converges to a point, see [14, Theorem 1.3]. Indeed
this point satis�es a certain linear system of equations, see [16, Proposition 4]. For the special case
λ = 1, we explain in Section 4.1 (Remark 4.4) why this algorithm and Algorithm 2.1 are equivalent.

Next we remind of the simultaneous block Kaczmarz method which is same as row-Jacobi method
(�rst introduced in [15]).
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Algorithm 4.3. Sim. Block Kaczmarz (Row-Jacobi)
Initialization: v0 ∈ Rn is arbitrary.
Iterative Step: Given vk compute,

vk,0 = vk,

vk,s = vk + λAT
s (AsA

T
s )†(bs − Asv

k), s = 1, . . . , q,

vk+1 =
1

q

q∑
s=1

vk,s,

where 0 < λ < 2 is relaxation parameter.

Indeed, if b ∈ R(A) and v0 ∈ R(AT ) then the generated cycles of row-jacobi method (Algorithm
4.3) converges towards the solution of (4.1) with minimum norm, see [15, Theorem 1]. Similar to
Algorithm 4.2, we obtain that this algorithm gives the same iterates as in Algorithm 2.2 when λ = 1
and the exterior weights (i.e., wk,s) are equal, see Section 4.2, Remark 4.6.

Both Algorithms 2.1 and 2.2 can be written as the following matrix forms:

xk,0 = xk,

xk,s = xk,s−1 + AT
sMk,s(bs − Asx

k,s−1), s = 1, . . . , q,

s.t. xk,s = argminx∈Ψk,s‖x∗ − x‖,
xk+1 = xk,q,

and

yk,0 = yk,

yk,s = yk + AT
sMk,s(bs − Asy

k), s = 1, . . . , q,

s.t. yk,s = argminy∈Ωk,s‖y∗ − y‖,

yk+1 =

q∑
s=1

wk,syk,s,

s.t. yk+1 = argminy∈Ωk‖y∗ − y‖,

where Mk,s = diag(
wk,s

i

‖ai‖2 ) and {wk,s
i }i∈Bs are related weights of each algorithm.

4.1. Algorithm 2.1

Let x∗ be a solution of (4.1) and zi(x) = bi−〈ai,x〉
‖ai‖2 . To �nd the weights in Algorithm 2.1, forming

partial derivative of ‖x∗− xk,s‖2 with respect to {wk,s
j } and setting them to zero result the following

linear system of equations

〈xk,s−1 +
∑
i∈Bs

wk,s
i

(
Pi(x

k,s−1)− xk,s−1
)
, zja

j〉 = zjbj, for j ∈ Bs, (4.3)

thus, the equality (4.2) gives∑
i∈Bs

wk,s
i zi〈ai, aj〉 =

(
bj − 〈aj, xk,s−1〉

)
, for j ∈ Bs, (4.4)
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where zi := zi(x
k,s−1) for i ∈ Bs.

Next, by a simple calculation we demonstrate that Algorithms 2.1 and 4.2 become identical when
λ = 1. In each step of Algorithm 4.2, the following linear system of equations should be solved

(AsA
T
s )x = (bs − Asu

k,s−1), (4.5)

where uk,s−1 is computed in previous iteration. Also the weights in Algorithm 2.1 satisfy (4.4) which
can be rewritten as the following matrix form

(AsA
T
s )Dw = (bs − Asy

k,s−1), (4.6)

where D = diag(zi) and w =
{
wk,s

i

}
i∈Bs

. Note that we assumed zi 6= 0, otherwise we do not need to

compute xk,s since bi − 〈ai, xk,s−1〉 = 0. Therefore (4.5) and (4.6) show x = Dw. To compute next
iteration in Algorithms 4.2 and 2.1 we have to calculate uk,s−1 + AT

s x and

xk,s−1 +
∑
i∈Bs

wk,s
i

(
Pi(x

k,s−1)− xk,s−1
)

= xk,s−1 +
∑
i∈Bs

wk,s
i zia

i

= xk,s−1 + AT
sDw, (4.7)

respectively. Now we can conclude

Remark 4.4. Algorithms 2.1 and 4.2 (with λ = 1) are equivalent.

Remark 4.5. Using Remark 4.4 and [14, Theorem 1.3], the generated cycle in Algorithm 2.1 con-
verges to a solution of (4.1) (Also, from Theorem 3.2, we can see that the whole generated sequence
by this algorithm converges to a solution of (4.1)). And for inconsistent case, it converges to a point.
Indeed this point satis�es a certain linear system of equations, see [16, Proposition 4], which do not
correspond to a gradient mapping.

4.2. Algorithm 2.2

In Algorithm 2.2, the weights wk,s
i and wk,s are called �interior � and �exterior � weights respec-

tively. The complexity of �nding the weights in Algorithms 2.1 and 2.2 are quite similar. Indeed, see
(4.4), the interior weights {wk,s

i } satisfy the following equations for Algorithm 2.2∑
i∈Bs

wk,s
i zi〈ai, aj〉 =

(
bj − 〈aj, yk〉

)
, for j ∈ Bs, s = 1, · · · , q. (4.8)

Also exterior weights wk,s satisfy

q∑
s=1

wk,s〈yk,s, yk,t〉 = 〈x∗, yk〉+
∑
i∈Bt

wk,t
i bizi, for t = 1, · · · , q. (4.9)

Let k = 0. If y0 ∈ R(AT ) then we can compute {w0,s}qs=1 (x∗ is disappeared from (4.9)) and
y1 =

∑q
s=1 w

0,sy0,s. In the next iteration, k = 1, after computing w1,s
i from (4.8) we need 〈x∗, y1〉 in
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(4.9) to calculate w1,s. But

〈x∗, y1〉 = 〈x∗,
q∑

s=1

w0,sy0,s〉

=

q∑
s=1

w0,s〈x∗, y0,s〉

=

q∑
s=1

w0,s

〈
x∗, y0 +

∑
i∈Bs

w0,s
i

(
Pi(y

0)− y0
)〉

=

q∑
s=1

w0,s

(〈
x∗, y0

〉
+
∑
i∈Bs

w0,s
i zi(y

0)bi

)
, (4.10)

which means 〈x∗, y1〉 can be computed without using x∗. By this way the whole generated sequence
can be calculated devoid of the solution.

Similar conclusions as in Remark 4.4 can be drawn for Algorithms 2.2 and 4.3.

Remark 4.6. The Algorithms 4.3 (for λ = 1) and 2.2 with equal exterior weights are equivalent.

The following proposition provides a convergence proof for Algorithm 2.2 when the linear system
(4.1) is inconsistent.

Proposition 4.7. The sequence of atomic steps in Algorithm 2.2 converges to a solution of (4.1).
In the inconsistent case, the generated cycle in Algorithm 2.2, with equal exterior weights, converges
to a solution of a certain weighted least-squares problem.

Proof .
The proof of the �rst part of the statement can be deduced from Theorem 3.3 (it was proven

that the generated cycle converges to a solution of (4.1), see [15, Theorem 1] ). For the inconsistence
case, we use Remark 4.6 and rewrite Algorithm 4.3 as a fully simultaneous method. In Algorithm
4.3, the summation of xk,s over s furnishes

q∑
s=1

xk,s = qxk + λ

q∑
s=1

AT
s (AsA

T
s )†(bs − Asx

k)

= qxk + λ

A1
...
Aq


T  (A1A

T
1 )† O

. . .

O (AqA
T
q )†


b1 − A1x

k

...
bq − Aqx

k


= qxk + λATM(b− Axk) (4.11)

where M = diag((AiA
T
i )†) is a symmetric positive semide�nite matrix. Therefore the cycle of this

algorithm can be written as

xk+1 = xk +
λ

q
ATM(b− Axk). (4.12)

Using classical theorems for full simultaneous iteration methods like (4.12), see, e.g., [28], one
�nds that the cycles {xk} converge to a solution of min ‖Ax− b‖M if 0 < ε ≤ λ/q ≤ 2/ρ(ATMA)− ε
where ρ(Q) shows the spectral radius of Q. Thus, proof of the second part is completed by this fact
that ρ(ATMA) = 1. �
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Remark 4.8. The Remark 4.6 and Proposition 4.7 show that the sequence of atomic steps in Al-
gorithm 4.3 (with λ = 1) converges to a solution of (4.1). For the inconsistent case, the generated
cycle converges to a solution of a certain weighted least-squares problem when 0 < ε ≤ λ/q ≤ 2− ε.

5. Conclusions

The sequential and simultaneous block iterative methods with optimal weights are proposed for
solving convex feasibility problems. The whole sequences generated by both methods converge to
a point in the feasible set. In the case of LFP, it is observed that the simultaneous and sequential
block Kaczmarz methods inherently use the optimal weights. Additionally, it is demonstrated that
the generated sequence by the simultaneous block Kaczmarz method converges to a weighted least
squares solution.
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