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Abstract

In this paper, firstly, we obtain some inequalities which estimates complex polynomials on the circles.
Then, we use these estimates and a Moebius transformation to obtain the dual of this estimates for
the lines in upper half-plane. Finally, for an increasing weight v on the upper half-plane with
certain properties and holomorphic functions f on the upper half-plane we obtain an equivalent
representation for weighted supremum norm.
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1. Introduction

In [3], W. Lusky used convolution with de-la-valle Poussion kernel on a certain sequence of integers
to obtain a representation equivalent to the weighted supremum norm || f||,, for holomorphic or
harmonic functions f from unit disc into complex plane. In this paper, we obtain an equivalent
representation for weighted supremum norm for holomorphic functions form upper half-plane into
complex plane whenever our weights satisfy certain properties. Paper is organized as follows: in
section two we present some necessary notations and definitions. Section three is devoted to some
technical lemmas which we need for the proof of the main result of the paper in Theorem

Definition 1.1. Suppose x € C and y € R (y > 0), = + v, denotes the circle with center x and
radius y in x € C.
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Definition 1.2. By z++, C 2’ + 1, we mean that the circle x 4y, is inside of the the circle x'+

Definition 1.3. Suppose f : Q C C — C is a complex function. We define Mo (f,§2) = sup,cq |
f(z)]

Definition 1.4. D={z € C: |z |[< 1} and G = {w € C: Im w > 0} are unit disc and upper
half-plane respectively.

Definition 1.5. For anyé > 0 we define Ls := {w € G: Imw =} and G5 :== {w € C: Imw > ¢§}.
In particular Ly := {w € C: Im w = 0} is the real line.

Definition 1.6. Deﬁne a:D— G by afz) = 14, G — ]D) is a Hw) = 2= Ifw € Lg

+
then | a ! (w) — 5. S0 a”'(w) maps the line Ly to the circle m + \ {(1,0)}.

5+1 |_ i+

Definition 1.7. A continuous function v : G — (0,+00) is called a weight. We say a weight v

satisfies (x) if a = SUPpeNu{0} (2(2:‘n1)2) < 0.

Remark 1.8. From now on, we always assume weight v is increasing, satisfies (%), depends only on
the imaginary part, that is v(w) = v(Im w i) and lim;_,o v(ti) = 0.

Definition 1.9. For a function f : G — C we consider, the weighted sup-norm
[f1l := sup | f(2) [ v(2)
zeG
and the spaces
HG):={f|f:G— C,fis holomorphic}

H,(G)={f]|[f:G—C, fis holomorphic and | f|., < oo}

2. Inequalities and Estimations

Lemma 2.1. Suppose f: Q C C — C defined by f(2) = _, apz® (where m,n € N and m < n).
Alsor,s e R ,0 <r < s,a,b € C such that a+ v, Cb+~v, CQ and 0 ¢ b+ v, then

My (f,a+ ) < (Zt—M)mMm(f, b+ s)

Proof . Firstly note that z€a+,and w € b+ s imply

| z|< r+ ] a] and |w| < # respectively. Define g : @ C C — C by g(2) = > 1" Qrmz" so
f(z) =2"g(2).
Moo(fia+) = sup | f(z)[= sup [z[|"]g(2) |
zZea+yr zZea+yr

< sup |z[" sup |g(z) [<(r+[a[)” sup |g(z)].
z€a+r z€a+yr zea+yr

Now, using maximum modulus principle we have

Moo (fra+7) < (r+|a )™ sup | g(2) |
Z€b+'}’s
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Since | g(2) | is a holomorphic function, there is a w € b+, such that | g(z) | attains its supremum
in the point w. So

(r+lal)™

| w|" g(w) |
| w ™

r+ | a | r+ | a |

< (o) 1) 1< (o) Ma (.4 7)

Moo(fra+ ) < (r+|a )™ | g(w) |=

Il
Lemma 2.2. Suppose f: Q C C — C defined by f(z) = > p_oaxz” and 0 <r < s, a,b € C such
that a +~, Cb+~s C Q. Also (0,0) ¢ a+~, and (0,0) ¢ b+ s then
s+|b|.,
M0+ 7)< CEL s (0 44

—|al
Proof . Again we have |z |< s+ | b and 1 < < |a‘ Define g : ©\ {(0,0)} =Q; c C — C by
9(2) = 2hpon(3)"F = Y p a2 So f( )_Z 9(z) Vz € Q.

Now, maximum modulus principle implies that

Muo(g,b+7s) < Moo(g,a + )
Moo (f,b+7s) = sup | f(2) |= sup |=z["]g(2) |

z€b+s 2€b+ys
< sup |z | sup [g(z) [< (s+[b])"Mo(g, 0+ 7)
2€b+s 2€b+s

< (s+ 10 ])"Meo(g,a+ )
Since | g | is holomorphic, there exists a w € a + v, such that | g | attains its maximum in w. So

(s+1o])"

Mal7.042) < (5 10 96 1= TR o g 1<
Ly e 12 (o)

]
Lemma 2.3. Suppose 0 < 0; < 09 and [ : G — C is defined by f(w) = > 1y ak(Z—:Lj)k Then
Moo(f, Ls,) = Mso(f, Ls,)
Proof . We recall that if w € Ls, and w € Lg, then a1 (w) €
aHw) € 12 + g \{(1 0)} = Cy respectively.
Since 01 < 8y, Oy g C; C D. Define f; : D — C by fi(w') = > peyax(w)F thus Mo(f, Ls,) =

SUD e, | f(w) |=supyee, | fi(w') | Using maximum modulus principle we have

sup | fi(w') [> sup | fi(w) |

1+61 +7 \{(1 0)} = C} and

w'eCq w'eCy
Therefore,
Moo (f,Ls,) = sup | fi(w') |= sup | f(w) |= Moo(f, Ls,)
w'eCy UJEL52
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Lemma 2.4. Suppose f : G — C is defined by f(w) = D 2gaw()F If 0 < 6y < 6y < 1 or
1 < 01 < b9, then for anyn € N

1+
1 -4

Proof . Let C; and C3 be as in the Lemma Note that if w’ € Cy then | &' |< 1 and if w € Cy
then ﬁ < }Jrg?.
wl = 152
Now, define f; : C; CD — C by fi(w) = Zk o axw”® and
1:CL CD — Cby gi(w) = Yo an(2)" (since 6; # 1, (0,0) ¢ Cy and g, is well-defined)

therefore, fi(w) = w"g(w)
Mso(f; Ls,) = sup | f(w) [= sup | fi(w') |

weL r—w=i
o1 W=oT

MOO(f? L51) < (

)nMOO<f7 L52> (21)

= sup | (W)" || g1(w) |< sup [ ()" sup | gi(w) [< sup | gi(w') |
w'eCq w'eCr w'eCr w'eCr
thus, My (f, Ls;) < Mx(g1,C1). Since g; defined by variable % instead of w, maximum modulus
principle implies that M. (g1, C1) < Moo (g1, Co).
Again, g; is a holomorphic function so there exists a w € C5 such that g; attains its maximum on
Cs in w. Therefore,

Moo (f; Lsy) < Moo(g1, Ch) < Moo(g1, C2) =| g1(w) |

but
149

|016) 1= o Lo Pl on) 1< (T2 1 i) |

SO
0. 0
Mool L) < (o0 |60 | (o) Mac(f1,Co)
146y,
§(1_52) MOO(f7L52>

Remark 2.5. Indeed, if relation 2.1 is true for n =1, then it’s true for alln > 1.

Lemma 2.6. Suppose h : G — C is defined by h(w) = >} _ ak(‘:}—jrﬁ)k where m € NU{0},n € N
and 0 < 6 < 7,0 # 1. Then for any fixed point wy € L, we have

WO—’i 1—|—(5

< m
| hle) | 2 ™ (1

)" Moo (h, Ls)

Proof . Firstly, note that since § # 1, (0,1) ¢ Ls. Thus for each w € Ly a™'(w) = 7% # 0. Define
g:G— Chy g(w) =>_, ap(=Hk™ s0 h(w) = (L2)™g(w). We have

w1 wo+1

| 9(wo) [< sup | g(w) [= Muo(g, Lr) < Moo(g, Ls)

weL,
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The last inequality is a consequence of Lemma[2.3] Now, since ¢ is holomorphic, there exists a point
in Ls (call it again w) such that g attains its maximum on Ls in w, thus | g(wg) |<| g(w) |.

Wo — wo—i
h — m < m
| han) || 2 ™ | glo) |<] 2 7 90w |
| h(wp) || o=t o Lm | et o —2|™ | h(w) |. Therefore,
Wo — 1 w—1
h < m ™ My (h, L 2.2
[ e 1<) 2 [ | S ™ Ml L) 22)

Now, we make an upper bound for the factor | Z—jr; |™. Since w is a point in L, there exists a € R

such that w =2 + 0. |w+i [*= (w+i)(w—1i) = (w+)(W—1) =|w | —iw+iw+1 =2+ (14 )%
2 2 2

Similarly, | w —i [2= 22 4 (1 — §)2. So Ll — XX #(3) — 14 where ¢ = 22, (14 0)2 = a and

|w—1]2 x2+(1-6)2 t+b
(1-68)2=0b.
-2 2 2
I:Jj}z = ;iﬁfg; = f(t) = iiz where t = 22, (1 + §)? = a and (1 —§)? = b. Since f'(t) = Hb 2= < (),
f:[0,00) — R is a decreasing function and max f = f(0) = ¢. This gives }“’HIQ < ngQ. Therefore,

W 1+0.,,

| ™

w+1 _(1—5)

(2.3)

By inserting relation 2.3 in relation 2.2 we are done. U

Put my; = 1, since v is an increasing function and lim,_, v(¢ ) = 0, we can find an integer my such
(2m2 i)
V(le i)
define a sequence of integers {m,} such that m,; is the smallest integer larger than m,,, for which
vigmerd) _ 1

V(igmmi) — 27

Clearly in the above construction we can begin with m; = 0, m; = 2 or any other integers.

0,
that my is the smallest integer larger than m; for which § . Hence, by induction, we can

we have

Remark 2.7. From now on , we always assume sequence {m,} has constructed such that

V(zmvlwrl Z) < 1

V(QT}LH i) 2

Lemma 2.8. Let 0 < 7 < 3 be given. If f : G — C is defined by f(w) = iﬁn;m g (2)" K where
My, Mpr1 € {my}, then there exists a universal constant C' > 0 such that

| flir) | v(ri) < OMul(fi L+ (i)

2mn+1—1 2mn+1_1

Proof . Firstly, note that, we can find my, € {m,} such that 2m++1 <7< % We prove the lemma
in two cases.
Case 1: (7 > QmTll_l) Now, by using Lemma for wg =iT,h = f and 6 = m, we have

1—71

|2'mn <1—|—5 omn
1+7

1—5)

Before continuing the proof we recall that for all nonnegative x we have

| fGr) <] Moo (f, Ls)

l4+z<e &l -z <e™.
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Since 0 < 0 < 1 and 5 =1+ 2, (M)Qm" < e Also

-6
26 2 H 12662m o an+1 T, mn . 2mn+1*m721*1_2—mn S { } . . .
105 = g1y Hence, e =e =e . Since {m,} is an increasing
sequence, My11 —my, — 1 > 0. So i
2mnt1=mn—l > 90 which implies that 2mn+12_mn_1 < 20722_%. consequently, e2™ 1 e <

2
e20—27mn

2 0_ol
m, > 1= 20721_% < 20;1. Hence, ez0—2-mn < 22 = ¢* and we have

=5 =e¢
ﬁ—: = 1—12+—TT :>Jnl+7 2" < e 1472 . Since, T > gmr, 14+ 1 < 14 2M = ;f: < 1+2T+1 Thus,
e_%gmn < @%.
Up to now, we have shown
4 =2 2mn 1
| f('LT) |§ e e1+2 kT Moo(f; LS) where § = W
Above relation implies that
—2 2™Mn 1 )
| F(im) | lri) < et M. Loy T
2mn+1—1 V<2mn+1712)
Since v is increasing and 7 < ka, we have
1 2o (g
| (67 | (i) < Mol f, LYo iperiiiir _Uzmt)_ (2.4)
2mn+1—1 V(Wz>
By the construction of the sequence {m,}, we have
1
v g mi)
% < 1V¥n € N. Thus, ((TL; > 1¥n € N and this gives
anl anZ
V(i
—<21" ), <2 VYneN (2.5)
V(gmmiet)
Clearly,
V<2mk Z) V(ka Z) V(Q’”Lrl Z) V(gnlmn Z)
I = T 1 (2.6)

V(sr=ri)  v(gmi) vismsi) v(smeri)
Now, we estimate each factor of the right hand side of relation 2.6. Obviously,
. . 1 .
U(Q%kl) V(Q’"Lkz) V(ka+1*1 Z)

l/<27n++12) B V<2mk1171i) V(gmi-ui)

Since, v satisfies (%) (see Definition [1.7] and Remark and relation relation 2.5 holds, we have

v (g

— < 2a
V(Q"‘++1@)
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Similarly, each factor of the right hand side of relation 2.6 is less than or equal to 2a. Thus,

V(g
V( 9Mn41—1 i

< (2a)" M (2.7)

Clearly, we can find a nonnegative constant M such that a < ™. Hence,

(2a)"F+1 < n—hFLMn=MEEM _ =k 1 Mn—Mi+M (2.8)

Relations 2.7 and 2.8 imply that

1 .
=2 2™n P =22™Mn | e A Mn—ME+M
o112 kT (27’;1@ ) : S e 112 Rt +n—k+14+Mn k+ — D (29)
I/(an+171Z)
—2 2mn
Now, we make an upper bound for T
—22mn _ _2 2Mn"Mk41
142™Mk+1 T 9TMmE41 4
My — Mps1 Z n—k—1= 2Mmn=mk1 Z 2n—k—1 = 2 9Mn—Mki1 Z _2"_]“, Also 1+T+k+1 S 1. Thus,
_on—k_ —
D<e 2" Mkt 1+ Mn—Mk+M ._ E

Since, M and k are fixed, for large enough n, £ <1 and D <e.
Finally, relation 2.4 and relation 2.9 imply that

1

2mn+1—1

| f(i) | v(7i) < € Muo(f, Ls)v(0i) where § =

which completes the proof in Case 1.
Case 2: (1 < ): Note that, | f(i7) |< My (f, Ls). Since 7 < —~—, Using Lemma ﬂ, we

D S
2mn+171

omn+41—17
have
1+ 0 gmni 1
Moo(f, Lr) < (7—5)7 " Muolf, Ls) whered = oo
Thus,
[ fGr) [ v(mi) < (775" Mool Ls) (i)
1+0 9mni .
< (H)Q " Moo (f, Ls) v(50)
2Mn+1 26 _gmp41 m
% =1+ % = 1_413 < ei-52"" Also 12—_‘562 ntl — —271_;}”1 .
Since, My > 2, ——21— < 8. Hence, (1£2)2""*" < ¢8. Therefore,
+ 2 1_2mn+1 1-6
1
| f(i1) | v(7i) < €® My (f, Ls) v(8i) where § = ST
Above relation proves the lemma in Case 2. Now, put C' = e®, we are done. U

We say two real factors A and B are equivalent and we write A ~ B iff there are universal constants
a and b such that aA < B < bB.
We conclude this section with the following three corollaries.

Corollary 2.9. Suppose [ : G — C is defined by f(w) = izgtln ak(a‘j—;ﬁ)k, where My, My €
{mn} and 6 = 2—. Then My (f, Lo) ~ My (f, Ls)

9mMnt1—1°
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Proof . Using Lemmas 2.3] and 2.4 for 6; = 0 < d2 = 0 we have the following relations.
Moo(f. Ls) < Mo(f, Lo) and Mo(f, Ls) < (+55)""" Moo (f, Ls)-
Now similar to the proof of the Lemma 2.8 again, (3£2)2""*" < 8. Therefore,

1-6
MOO(f7 Lé) S M00<f7 LO) S eSMOO(fa Lt;)

Il

Corollary 2.10. f: G — C is defined by f(w) = i:;jnln ak(g—jri)k, where My, My € {Mmyp} and
51 = 2m++1 and (52 = 2"”77.—-1&-1*1 ThG’I"L Moo(f, L(sl) I/(512) ~ Moo(f> L52) I/(ég’&)
Proof . Lemma[2.3/implies M (f, Ls,) > Mo (f, Ls,). Since v satisfies (x), v(d2i) < av(14). Hence,

a Moo (f, Ls,) v(017) = Moo(f, Ls,) v(627) (2.10)
Using Lemma and the argument of Lemma [2.8] we have M. (f, Ls,) < My (f, Ls,).
v is increasing so

MOO(f? L51) V(éll) < egMOO(fa L52) V((S?Z) (211)
Now, relation 2.10 and relation 2.11 prove the corollary. 0

Corollary 2.11. Under the assumptions of Corollary[2.1(
Meolf, L) v(3si) < 2 Mo(f, L) v(021) < 20 Maolf, L) v(510)

where d3 =

2

Proof . Since §; < 03, Lemma implies that M. (f, Ls,) > Moo (f, Ls,). Relation relation 2.5 in
Lemma [2.8) gives

MOO(fv L53) V(§3Z) < 2M00(f7 L52) V<52Z>
Now, use relation 2.10 in Corollary to conclude the proof. 0

3. Main result

For arriving to the main result of this paper, we need to introduce following concepts.
For a map f : G — C is defined by f(w) = Yoy au(“2)* (N € N U {o0}), we denote the

N w1
composition map f o« by f which is defined from D into D by

(foa)) = Fl2) = fla() = S an(LEL T - S g,

—~ afz) i

Now, consider f : G — C defined by f(w) = S, ap(£2)* (N € NU {oo}), for any n € N, we
define R, f, R, f as follows.

. ontl _ L
(R..f)(2) = Z apz® + Z o ozt
k=0 k=241
Y T
R, =
(Rnf)(w) ;;Mw+)-zg;1 ()

R, is a convolution with a de-la-valle-Poussion kernel on D.
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Remark 3.1. Note that, if N < n then R,f = [ and R.f = f. Also, it is clear that Ry,Rinf =
Ruin(mm) and Ry Ry f = Ruingmn)f ¥ m,n € N such that m # n.

Remark 3.2. For f: G — C defined by f(w) =S p_, k/(“’_i)k/ (N € NU{oo}) we have

omp+1 r_ OME41 omE4+1+1 mp 1+l g, o
(Rkarl_Rmk)(f):{ k}’:ka O‘k’(sz'%:k)(wﬂ) +Z —gmptly g O (wﬂ)k,‘i‘z —omkt141 O k’Wle(Z—ﬁ)k,
where my, my11 € {my, }.
Also, we can rewrite (R

s — Bome ) (f) in the following shorter form.

oMp41+1

(Rmk+1 - Rmk)(f) k' =2Mk Bk (w_i_l)k/-

Lemma 3.3. Suppose f : G — C defined by f(w) = Y5 _o aw (2 Z) M oand let 0 < 1 < 1 be given.
Then there exists a universal constant C' > 0 such that

| flir) | v(7i) <C sup Moo((Rpy.y, — Bmy) f5 Lo )V (0k0)
keNuU{0}

where ), = W and mg, mg1 € {m,} for any k € N.

omME4+1t

Proof . For each k € N, we define g;(w ) = (Rmk+1 — Ry ) ()W) = D0 _om ﬁk ()M, Since
0<71< 1 , there exists [ € N such that 2ml+1 <7< le If we assume my = 0 and R,,,f = 0, then

Zk:o gk( ) = Ry, (f)(w) which implies that > ° ) gr(w) = f(w) since limy/o0(f) = f. Hence, in
particular f(it) =Y 72, gx(iT). Now, we have

| FOT) 1< 30020 [ 96 GT) 1= 205,57 1 96 (iT) | 4305, < | 9w (i7) |

-2

Z W|—|—Z\gkw

k=0 k=l-1

Firstly, we compute Y .-, | | gx(¢7) |. Here, 0 < 7V k > [ — 1. Therefore, by using Lemma [2.6| for
w =17 we have

. < kaM L 1
oulim) 1] T P (5™ Mac(r L) (3.1

forall K >1—1.

. v %

Since 0, < T < 2%“ :(((;ji)) < i (211) ) < (2a)**! (see the proof of the Case 1 of Lemma .
oMpg41+1

Thus,

v(1i) < (2a) " u(6d) VR, k>1—1
Again, as in the proof of the Case 1 of Lemma there exists a positive M such that

(2a)k—l+1 < e(M—f—l)(k;—l—f—l)

Now, insert the above relations in relation relation 3.1 we have

7—_1 ’2mk (1+6k

1 G Maclges Lo eV D 04) (3.2)

| g (i) | v(7i) <|
forall k >1—1.

Now, we find upper bounds for factors | I [*"* and (ifgz )2,
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2™k _ (1=T\2™k 2T_omi
7'+1 | (T+1) < e I
27 omy « —227k =2 QMU L
1+ — 142mtt T 2Tty

. _ m _ok—l
Since my —my —1 > k—1—1, 277 m=t > 9 g gmimmitt o 9kl o SR < s <
—2k=t Thus,

Since, 0 < 7 < 1,

1
T2 gt =~

T — 1 omy _2k7l
[— < 3.3
’ T 1 ‘ € ( )

26

m =k . B
AISO’ (}—ng)Q ' < et and 25§k - 2mk+1_mZ+172*mk' Since My — My + 1> 2; PARSE et >

22.my, > 1= —27™ > 271
Therefore 2 < % which implies that

) 9Mp4 mk+1_27mk

1— 0

Q)
RIS

(

Now, put relations 3.3 and 3.4 in relation 3.2 we have

(3.4)

| ge(i7) | v(7i) < e e eMHENED M Np (g0 Ls Vi (8yi)

forall Kk >1—1.
Thus,

o0

Z | gi(i7) | w(7i) < e7e™*V sup Moo(gr, Ls,, )v(0x7) Z e DAY

k=l-1 kzi-1 k=l—1

Use the root test to see Y o, , e~2" =DM+ g convergent (say to Cy). Therefore,

4 .
S Lgulin) | vlri) < el €y sup Mol Lo, (5
h=l—1 k2i-1

Now, we estimate 22;20 | gr.(iT) | v(77). Here o), > 7, so Lemma implies that

1+ o
1— 6

forall k, 0 < k <[ — 2. It easy to see that

| gr(iT) < ( 2" Moo (g, Lsy ) (3.5)

1+ 0

omMg+1+1 8
< .
(o) <e (36)

w

Vigmd)  v(gmgsd) vigmosi)  v(gmi)

V(WZ) a V(kaJlrﬁLli) V(Qmi+2 Z')”‘I/(Qmile)

(3.7)

Remark [2.7] and Remark [T.§] imply that

V(2m++22) o V(Qmiw Z) V<2m£+1 Z) <

1
V<2mk<1|—1+1 Z) a V(Qmiﬂ Z) V(ka_lHJrl 2) 2
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The other factors of the right hand side of relation 3.7 are less than %, hence
1 .
’/(?Z) _ < (l)l—k—la
v (WZ)
1

2
Since v is increasing, 7 < 5wy and Op = —kailﬂu
1

v(ri) < (5)1—’“—1@ (ki) (3.8)
Considering relations 3.5, 3.6 and 3.8 we have

1

[ geir) | v(7i) < €5 (5)* a0 Moo (gi, Lo Jv(04d)

we have

which implies that

-2
Z | gr(it) | v(1i) < aes sup Moo (gx, Ls, ) v(0xi)
k=0

0<k<i—2

since 35 (3) 51 < 1. Now, using Corollary [2.10] (m, — 1) times inductively we can find a universal
constant C” such that

Moo(QOa L(So) V<50Z) < Moo(glaLﬁl) V((Sl’l)

Hence,
sup  Meoo(gk, Ls, )v(0xt) < C"sup Moo (g, Ls, ) v(0x7)
0<k<I—2 keN
Therefore,
1—2
8
| gr(iT) | v(7i) < C'aes sup Moo(gk, Ls,) v(0x1)
=0 keNU{0}

Finally, we have

| Flir) | v(ri) < S0 | gulim) [ v(ri) 4352 | gulin) | v(ri) < C'aeh suppenqop Mool L, J0(64i)+
Cs SUPkreNu{0} Moo (g, Ls, )v (1)

Where Cp = e7e™+) O}, Now, put C' = max(C’a €3, C5). Since g = (R s — Ry )(f), proof is
complete. 0

Lemma 3.4. Let v be a bounded weight on Gy and A := {zeG:Im=z<1}. Then
[flly ~sup [ f(2) [ v(2)
z€A

Proof . Obviously, sup,c, | f(2) | v(2) < ||f]l,- By Lemma 2.3
sup.ca | f(2) |= sup.ep, | f(2) | for any & > 5. Hence, sup.cq | f(2) [< sup.cy | f(2) |. Since v
is increasing and bounded, there exists a constant C' such that v(z) = 23 v(3i) < Cu(3i) for all

v(51)
z € G. Therefore, ’

I, < Csup | £2) [ v(50) < Csup | £(2) | ()

z€A

U
For any a € R, we define T, : H,(G) — H,(G) by (T.f)(z) = f(z +a). It is easy to see that
| Tafllo = | fllo- Thus, T, is an isometric isomorphism.
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Lemma 3.5. Suppose f € H(G) and v is a bounded weight on G%. Then there exists a positive
universal constant C such that

||f||V S sup sup Moo((Rmk_H - Rmk)Tafa Lék)’/(ékz)

acR keNU{0}
where 0, = W and my, mgy1 € {my} for any k € N.

Proof . Consider a fixed z in the strip A :={z € G : Im z < 5}. For 7 = I'm z we have

| f(2) [ v(7i) =| (Tge of(iT) | v(71)
By Lemma there exists a C' > 0 such that

| (The =f (i) | v(7i) < C sup Mo((Rmyyy — Bony)Tre =[5 Lo, )v(0)
keNU{0}

where 0, = W and mg, mg1 € {m,} for any k € N. Hence,

| f(2) [ v(7i) < C sup Mo((Rungsy = Riny)Tre = f L, )V (01i)
keNU{0}

Since v depends only on the imaginary part and z € A is arbitrary , we have

sup | f(2) | v(z) < Csup sup Moo((Rm,,, — By )Tre = f, Ls, )v(6xi)
z€A Re z keNU{0}

Put a = Re z. When 2z runs over A, a runs over R. Therefore,

sup | f(2) | v(2) < Csup sup Moo((Rmy,y — Ry )Tof, Ls,)v(61i)
z€A a€R keNU{0}

Now, Lemma |3.4] completes the proof. O

Lemma 3.6. Suppose f € H(G) and a € R is arbitrary. Then there exists a universal constant C
such that

where 0, = W and my, mgy1 € {my} for any k € NU{0}.

ME41

Proof . We prove the equivalent relation with relation 3.9, which is

Macl By = Fom s 2 472 0) € Ol T +70)
where h = T,f and h = h o a. For each k € N ¢, < 1, hence circle 1i’3k + Vit includes the origin
for each & € N. Thus, the concentric circle 'y;g: is dominated by the circle 1i%k + Ve Put
g= (Rmk“ — Ry, )h. Since g is a polynomial of deg = 2™+*! using Lemma ﬁ we have

O 1+ 0k gmpratt
M9, ——=+7 1) < (—— M (g,71-
(g 1+5k+71;6k)_(1_5k) (g VL«;:)

Simila}j to the proof of Lemma ’ (ii—_?;)gmk+1+1 < e5. It is wellknown that for any n € NU
{0} | Rnll <3 (see [2]). Hence,
Moo ((R - Rmk)iz,’y%) <6 Myo(h,v1-5,)
k

Mp+1
+ 1+5y,

Therefore, by maximum modulus principle we have

N S - 8 = 8 i
Moo((Bmyepy = By )l 75, 72 ) < 6€3Moo(hﬁ%) < 6es Moo (h, 5 +72) O
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Lemma 3.7. Suppose f € H(G) and v is a bounded weight on G%. Then there exists a universal
constant C' such that

sup  sup Moo ((Bingy, — By ) Tuf, Lo, )0 (0i) < Cl ],

a€R keNU{0}

Mp41

where 0, = W and my, mgy1 € {my} for any k € NU{0}.

Proof . Lemma |3.6] implies that there exists a universal constant C' > 0 such that for any a € R

and any k € NU {0}

M ((R — Ry )Tof, Ls, )v(0xi) < C Moo(T,, Ls,)

ME41

Since Moo (Tuf, Ls,) = Moo(f, Ls,.),

sup sup Moo ((Rm,,, — By )Tof, L, )v(0i) < C sup M (f, Ls, )v(0xi)
a€R keNU{0} keNU{0}

(note that M (f, Ls,) does not depend on a). But

sup - Moo (f, Ly, Jv(0ki) < sup Moo (f, Ls)v(62) = || f]l»

keNU{0} §>0

Therefore, we are done. O

Theorem 3.8. Suppose f € H(G) and v is a bounded weight on G%. Then

£l ~sup sup Moo ((Rmy,, = By ) Taf, Lo Jv(0k7)

acR keNU{0}
where o), = W and my, mgy1 € {my} for any k € NU {0} and v satisfies required conditions.

Proof . Is a consequence of Lemma [3.6| and Lemma [3.7] [J
At the end we present some examples of weights which satisfies required conditions in Theorem 3.8

Example 3.9. Following weights are increasing satisfy condition (%) and are bounded on G%.
vi(w) = (Im w)? for any 0 < B < 1, vp(w) = min((Im w)?, 1) for any 0 < 5.

Proof . Clearly, these weights are increasing and bounded on G 1. Also they satisfy condition (x) (see
). O
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